

Exploiting Packet Replication and Elimination in Complex Tracks in LLNs

draft-papadopoulos-paw-pre-reqs-01

Presenter: Georgios Z. Papadopoulos

Authors: G. Papadopoulos, R. Koutsiamanis, N. Montavont and P. Thubert

PAW - IETF 104 - Prague

Outline

draft-papadopoulos-paw-pre-reqs-01:24/03/2019

- \Rightarrow Motivation
- \Rightarrow PRE Functions
- \Rightarrow PRE Requirements
- \Rightarrow Alternative Parent Selection modes
- \Rightarrow Recent Results

Outline

draft-papadopoulos-paw-pre-reqs-01:24/03/2019

- \Rightarrow *Motivation*
- \Rightarrow PRE Functions
- \Rightarrow PRE Requirements
- \Rightarrow Alternative Parent Selection modes
- \Rightarrow Recent Results

Toward Robust and Predictable Communication

Motivation :

- \Rightarrow Reliable communication
- \Rightarrow Guaranteed maximum (bounded) latency
- \Rightarrow Ultra-low jitter performance

Outline

draft-papadopoulos-paw-pre-reqs-01:24/03/2019

- \Rightarrow Motivation
- \Rightarrow PRE Functions
- \Rightarrow PRE Requirements
- \Rightarrow Alternative Parent Selection modes
- \Rightarrow Recent Results

Wireless Topology of 2 hops

Topology :

- \Rightarrow S is the source device;
- \Rightarrow D is the destination device;
- \Rightarrow A and B are the relay devices.

Packet Replication

Replication :

⇒ Data packet is transmitted to both Default & "Alternate" Parents

D

Β

Packet Replication

Replication :

⇒ Data packet is transmitted to both Default & "Alternate" Parents

D

Packet Elimination

Elimination :

 \Rightarrow Discards the copies of a data packet which was previously received.

Promiscuous Overhearing

Promiscuous Overhearing :

- \Rightarrow Wireless medium is broadcast;
- ⇒ Any neighbor of a transmitter may overhear a transmission;
- ⇒ Thus, it increases the probability of the data packet reception at the Destination (D).

IEEE 802.15.4 TSCH Schedule example

Outline

draft-papadopoulos-paw-pre-reqs-01:24/03/2019

- \Rightarrow Motivation
- \Rightarrow PRE Functions
- \Rightarrow PRE Requirements
- \Rightarrow Alternative Parent Selection modes
- \Rightarrow Recent Results

1. Related to Alternative Parent (AP) Selection

- ⇒ The topology SHOULD be defined when proposing solutions for Alternative Parent Selection.
 - For instance, the ladder topology should be defined e.g., number of parallel paths, density.
- ⇒ The routing protocol SHOULD allow for each node to select AP(s) in addition to the DP;
 - This enables packet replication to multiple parents.
- ⇒ Control (or mitigate) network flooding by carefully selecting the Alternative Parent (disjoint vs common ancestor pattern);
 - Considering that the Packet Replication procedure increases the traffic in a network, when proposing solutions for Alternative Parent Selection, they should be efficient enough to mitigate the uncontrolled packet duplications.

1. Related to Alternative Parent (AP) Selection

Disjoint

Common Ancestor

2. Related to Propagated Information

⇒ Nodes MUST have a way of receiving the required information for efficient Alternative Parent Selection.

 As an example, in RPL to achieve the Common Ancestor Pattern, it is possible to use and extend the DODAG Information Object (DIO) Control Message to allow nodes to propagate information about their Parent Set to potential children.

3. Related to Promiscuous Overhearing

⇒ The **MAC implementation** MUST support bypassing MAC address filtering to accept the overheard frame.

4. Related to Packet Elimination

⇒ To perform Packet Elimination the data packet copies MUST be able to identify copies, e.g., sequence number or time stamp.

Outline

draft-papadopoulos-paw-pre-reqs-01:24/03/2019

- \Rightarrow Motivation
- \Rightarrow PRE Functions
- \Rightarrow PRE Requirements
- \Rightarrow Alternative Parent Selection modes
- \Rightarrow Recent Results

Alternative Parent Selection

One possible option is to select the Alternative Parent as the one having *common ancestor* with the Default Parent.

Common Ancestor (CA) example modes

Common Ancestor : **Strict** mode

Common Ancestor : **Medium** mode

$PP(PP) \in PS(AP)$

Common Ancestor : **Soft** mode

$PS(PP) \subseteq PS(AP)$

Common Ancestor : Probabilities

Probability of finding an Alternative Parent

Outline

draft-papadopoulos-paw-pre-reqs-01:24/03/2019

- \Rightarrow Motivation
- \Rightarrow PRE Functions
- \Rightarrow PRE Requirements
- \Rightarrow Alternative Parent Selection modes
- \Rightarrow Recent Results

"*Alternative Parent Selection for Multi-Path RPL Networks*" T. L. Jenschke, G. Z. Papadopoulos, R.-A. Koutsiamanis and N. Montavont In Proc. **IEEE WF-IoT 2019** - Limerick, Ireland, April 2019

PRE Recent Results

тѕсн	Single- path	Multi-path
Scheduling	Centralized	Centralized
EB period	4 sec	4 sec
Timeslot length	10 ms	10 ms
Slotframe length	345 Timeslots 345 Times	
Nº of channels	1	1
Nº of RTX	1 RTX, 4 RTX, 8 RTX	1 RTX

Simulation		Тороlogy	
Duration	Until 1000 pkts	Topology	Multi-hop
Data traffic	1 pkt/18 sec	Nº of nodes	32
Routing	RPL	Nº of layers (L)	5
Parent set size	6	Nº of sources	1
PS_{MC} size (M)	3	Link quality	70% - 100%

PRE Recent Results : PDR

PRE Recent Results : Delay and Jitter

PAW - IETF 104 - Prague

draft-papadopoulos-paw-pre-reqs-01

PRE Recent Results : Traversed nodes & TX packets

Implementation Status

 \Rightarrow Partial code is available here :

o Contiki : Parent extension (DIO) https://github.com/ariskou/contiki/tree/draftkoutsiamanis-roll-nsa-extension

 O Wireshark dissectors (for the optional TLV, i.e., PS): https://code.wireshark.org/review/gitweb?p=wireshark.git;a=commit;h=e2f6b a229f45d8ccae2a6405e0ef41f1e61da138

 \Rightarrow Shall we push the results to github repository?

Thanks!

draft-papadopoulos-paw-pre-reqs-01

Presenter: Georgios Z. Papadopoulos

Authors: G. Papadopoulos, R. Koutsiamanis, N. Montavont and P. Thubert

PAW - IETF 104 - Prague