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What is safety?

e Safety # Ethics

e Universities and research organizations do not currently have review
boards equipped to evaluate Internet measurement research
methods [5]

e Measurement of the technical specifics of censorship (what content
the censor blocks, and technically how they impose the blocking)
falls outside of human subjects research

e These measurements can still create risk for humans



What is safety?

When performing research on a platform shared with live traffic from other
users, that research is considered safe if and only if other users are
protected from or unlikely to experience danger, risk, or injury, now or in the

future, due to the research.



Workshop on Ethics in Networked Systems Research
CAIDA’s Promotion of Data Sharing Webpage
Menlo report and its companion

e EFF whitepaper: Unreliable Informants: IP Addresses, Digital Tips and
Police Raids

Tor Research Safety Board



What is Tor?

e Community of researchers, developers, users and relay operators
e Open Source
e Open Network

e Security, Privacy, Anonymity, Robust, Authenticated, Integrity

https://torproject.org/
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What is Tor?

Directly connecting users
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The Tor Project - https://metrics.torproject.org/

Estimated average 2,000,000+ concurrent Tor users [7]



Use Cases

Data and analysis can be used to:

detect possible censorship events

detect attacks against the network

evaluate effects on performance of software changes

evaluate how the network is scaling



Tor Metrics Philosophy

We only handle public, non-sensitive data. Each analysis goes through a
rigorous review and discussion process before publication.



Tor Research Safety Board

The goals of a privacy and anonymity network like Tor are not easily
combined with extensive data gathering, but at the same time data is
needed for monitoring, understanding, and improving the network.

Safety and privacy concerns regarding data collection by Tor Metrics are
guided by the Tor Research Safety Board’s guidelines.

https://research.torproject.org/safetyboard.html
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Key Safety Principles

e Data Minimalisation
e Source Aggregation
e Transparency



Data Minimalisation

The first and most important guideline is that only the minimum amount
of statistical data should be gathered to solve a given problem. The level
of detail of measured data should be as small as possible.

“Over time, the probability that any entity holding a large store of sensitive
private data will remain both competent enough to protect it adequately
and honest enough to want to goes to zero.” —@mattblaze



Source Aggregation

Possibly sensitive data should exist for as short a time as possible. Data
should be aggregated at its source, including categorizing single events
and memorizing category counts only, summing up event counts over
large time frames, and being imprecise regarding exact event counts.

“For almost every person on earth, there is at least one fact about them
stored in a computer database that an adversary could use to blackmail,
discriminate against, harass, or steal the identity of him or her. | mean more
than mere embarrassment or inconvenience; | mean legally cognizable
harm.” —Paul Ohm [8]



Transparency

All algorithms to gather statistical data need to be discussed publicly
before deploying them. All measured statistical data should be made
publicly available as a safeguard to not gather data that is too sensitive.

“Given enough eyeballs, all bugs are shallow” —Linus’ Law



Shortcut to Safety

e Use simulations
e Use a testbed



Case Study: Counting Unique Users of Tor

The Easy Way:

e Each relay keeps track of all the IP addresses it has seen
e These all get uploaded to a central location
e Unique IP addresses are counted



Indirect Measurement

In 2010, Tor Metrics set out to develop a safe method of counting users [3].



Indirect Measurement
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Indirect Measurement
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Indirect Measurement

The Safer Way:

Relays don’t store IP addresses at all
e Relays count number of directory requests

Relays report numbers to a central location

We have to guess how long an average session lasts
We do not have the same detail in the data

e We still get the general ballpark figure and also see trends

https://metrics.torproject.org/reproducible-metrics.html
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Indirect Measurement

Directly connecting users
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The Tor Project - https://metrics.torproject.org/

Estimated average 2,000,000+ concurrent Tor users [7]



Count-Distinct Problem

Count-distinct problem

From Wikipedia, the free encyclopedia

In computer science, the count-distinct problem!!! (also known in
applied mathematics as the cardinality estimation problem) is the
problem of finding the number of distinct elements in a data stream
with repeated elements. This is a well-known problem with numerous
applications. The elements might represent IP addresses of packets
passing through a router, unique visitors to a web site, elements in a
large database, motifs in a DNA sequence, or elements of RFID/sensor
networks.




HyperLoglog

Leth: D — [0,1] = {0,1}" hash data from domain D to the binary domain.
Let p(s), for s € {0, 1}, be the position of the leftmost I-bit (p(0001---) = 4).
Algorithm Hy PERLOGLOG (input M : multiset of items from domain D).
assume m = 2" with b & Lot

initialize a collection of m registers, M[1], ..., M[m], 0 —oc;
for v € M do
set = = h(v);
set j = 1+ (wyry -« xy)o: {the binary address determined by the first b bits of ')
Set w = Ty Tpeo -l 1set M ] := max(M [f]. p(w)):
compute 2 = (z 2""”) < {the “indicaror” function }
i=1

return E = a,m* Z

Algorithm designed for very large data sets [2] where you don’t want to
keep all the unique items around.



U.S.NAVAL . .
g PrivCount: Overview

LABORATORY

Distributed measurement system

» “Privacy-preserving counting” system
» Tracks various types of Tor events, computes
statistics from those events
+ Based on PrivEx-S2 by Elahi et al. (CCS 2014)

+ Distributes trust using secret sharing across many operators

* Achieves forward privacy during measurement
» the adversary cannot learn the state of the measurement before time
of compromise

» Provides differential privacy of the results
+ prevents confirmation of the actions of a specific user given the output

U.S. Naval Research Laboratory PrivCount: A Distributed System for Safely Measuring Tor | 30
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Other Privacy-Preserving Telemetry Schemes

e RAPPOR
https://security.googleblog.com/2014/10/
learning-statistics-with-privacy-aided.html

e PROCHLO
https://ai.google/research/pubs/pub46411

e Prio
https://hacks.mozilla.org/2018/10/
testing-privacy-preserving-telemetry-with-prio/
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Abstract

Researchers from industry and academia will often use Internet
measurements as a part of their work. While these measurements can
give insight into the functioning and usage of the Internet, they can
come at the cost of user privacy. This document describes guidelines
for ensuring that such measurements can be carried out safely.

Work-in-progress in the IRTF [6]
(Discussion in the proposed Privacy Enhancements and Assessments
Research Group (PEARG))



Next Steps

e Comprehensive general considerations checklist for any
measurement

e Introduction to literature on secret sharing/multi-party computation
telemetry systems (this may fall out of scope)

e Thinking about future computing power available
e Discussion on consent and proxy consent
e Ensure all types of harm are considered, e.g. unavailability

https://github.com/irl/
draft-safe-internet-measurement/issues
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