
PRIVACY PASS
NICK SULLIVAN
CLOUDFLARE
@GRITTYGREASE

A LIGHTWEIGHT
ZERO-KNOWLEDGE
PROTOCOL

Cloudflare Reverse Proxy

 3

PROBLEM STATEMENT

THE PROBLEM OF SCALE

▸ Reducing malicious activity online

▸ CAPTCHA challenge for risky requests

▸ Issue a cookie once cleared

▸ Disproportionately affects privacy-conscious

▸ VPN, Tor users share IPs with bad actors 
resulting in bad IP reputation

▸ Cookies are not portable

▸ Web origin policy prevents tracking

Global Financial Services Public Sector Technology eCommerce

websites, apps & APIs
in 150+ countries

11M+

ECASH FUNDAMENTALS

WOULDN’T IT BE NICE TO HAVE AN ONLINE EQUIVALENT TO CASH?

▸ Desirable properties

▸ Withdrawals and transactions are un-linkable

▸ Can only be created by a central authority

CASH IS NOT ANONYMOUS
IN A PANOPTICON SCENARIO

Serial Number: 00003304043030

Serial Number: 00003304043030

Serial Number: 00003304043030

Official Bill

Serial Number: 00003304043030

Official Bill

Serial Number: 00003304043030

Official Bill

Serial Number: 00003304043030

Official Bill

ECASH FUNDAMENTALS

ECASH (CHAUM, 1983)

▸ Digital version of cash based on blind RSA signatures

Token Blind Token

Digital Signature

Blind Signature

Token Signature

Mint Private Key

Mint Public KeyValidate

Goods

Signature

ECASH FUNDAMENTALS

ECASH (CHAUM, 1983)

▸ Digital version of cash based on blind RSA signatures

k k*r^e mod N (k*r^e)^d mod N

k k^d mod N

d

e(k^d)^e == k

Goods

(k^d)*r mod Nk^d mod N
(k^d)*r mod N

✅

ECASH AS A CAPTCHA SOLUTION

Token Blind Token

Blind Signature

Token Signature
CAPTCHA Public KeyValidate

Bypass, Cookie

Signature

Solve CAPTCHA, Blind Token

Blind Signature, Bypass, Cookie

First CAPTCHA

Second CAPTCHA

CAPTCHA Private Key

PRIVACY PASS

IS THIS IT?
▸ It wasn’t satisfying to use slow 1980s 

cryptography

▸ There have been recent constructions that  
to similar things to ecash

▸ OPRF: Oblivious Pseudo-Random Function

▸ Analogous to blinding

▸ VRF: Verifiable Random Functions

▸ Random function provably computed with a private key

▸ VOPRF: Verifiable OPRF with VRF-like confirmation phase (new)

PRIVACY PASS

INSPIRATIONS/PRIOR WORK

▸ Freedman et al. (2005) seems to be the first to construct an OPRF (with a
constant-number of rounds)

▸ This was extended by Jarecki et al (2009) for performing set intersection
functionality

▸ The work of Jarecki, Kiayias and Krawczyk (2014) presents a VOPRF that is very
similar to our construction (without the batched DLEQ proofs). They use it to
construct round-optimal password-protected secret sharing (PPSS) and T-PAKE.

https://link.springer.com/chapter/10.1007/978-3-540-30576-7_17
https://www.iacr.org/archive/tcc2009/54440575/54440575.pdf
https://eprint.iacr.org/2014/650.pdf

PRIVACY PASS

INSPIRATIONS/PRIOR WORK

▸ Shirvanian et al. construct SPHINX: A Password Store that Perfectly Hides Itself
from OPRFs. The OPRF used is essentially the same as the one we use, except it
has no verifiability and the input data is structured differently.

▸ Elliptic-curve based random functions: Golberg et al. present a verifiable
random function (without blinding and without batched DLEQ proofs).

▸ Burns et al. (2017) give an explicit EC instantiation of the OPRF that we use,
except without the DLEQ proof (i.e. no verifiability).

▸ Ryan Henry’s PhD thesis (2014) describes the batched DLEQ proof we use.

http://A%20Password%20Store%20that%20Perfectly%20Hides%20from%20Itself
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/
https://eprint.iacr.org/2017/111.pdf
https://uwspace.uwaterloo.ca/handle/10012/8621

EC-VOPRF FUNDAMENTALS

FUNDAMENTAL COMPONENTS / TERMINOLOGY

▸ Prime order group

▸ e.g. The group of points on an Elliptic Curve such as P-256

▸ Group elements will be denoted by capital letters such as P or Q

▸ Scalar multiplication

▸ Adding a point to itself n times, such as P+P+…+P is denoted nP

▸ Scalars will be represented by lower-case letters

EC-VOPRF FUNDAMENTALS

FUNDAMENTAL COMPONENTS / TERMINOLOGY

▸ Hash to group element

▸ Function that takes a scalar and outputs a random group element

▸ Discrete log equivalence proof

▸ A short zero-knowledge proof that two pairs of points have the same
discrete logarithm. For example, (P, sP) and (Q, sQ) have the same discrete
logarithm. The same scalar s is used for P and Q to get sP and sQ.

▸ Denoted DLEQ(P:R == Q:S)

Scenario 1
The client takes a point on an elliptic curve T and sends it to the server. The server applies a secret
transformation (multiplication by a secret number s) and sends it back. Call this step “Issue”, as the
server issues a signed point to the client.

Issue

T ->
<- sT

Later, the client sends T and sT to the server to prove it has previously issued sT.

Redeem

T, sT ->
Since only the server knows s, it can confirm that it had issued sT. We call this step “Redeem”.

Problem: Linkability

In this situation, the server knows T because it has seen it already. This lets the server connect the two
requests, something we’re trying to avoid. This is where we introduce the blinding factor.

Scenario 2
Rather than sending T, the client generates its own secret number b. The client multiplies the
point T by b before sending it to the server. The server does the same thing as in scenario 1 (multiplies the
point it receives by s).

Issue

bT ->
 <- s(bT)
The client knows b and s(bT) is equal to b(sT) because multiplication is commutative. The client can
compute sT from b(sT) by dividing by b. To redeem, the client sends T, sT.

Redeem

T, sT ->
Since only the server knows s, it can confirm that sT is T multiplied by s and will verify the redemption.

Problem: Malleability
It’s possible to create an arbitrary number of pairs of points that will be verified. The client can create these
points by multiplying both T and sT by an arbitrary number a. If the client attempts to
redeem aT and a(sT), the server will accept it. This effectively gives the client unlimited redemptions.

Scenario 3
Instead of picking an arbitrary point T, the client can pick a number t. The point T can be derived by
hashing t to a point on the curve using a one-way hash. The hash guarantees that it’s hard to find another
number that hashes to aT for an arbitrary a.

Issue

T = Hash(t)
bT ->
 <- sbT

Redeem

t, sT ->
Since only the server knows s, it can compute T = Hash(t) and confirm that sT is T multiplied by s and will
verify the redemption.

Problem: Redemption hijacking

If the values t and sT are sent across an unsecured network, an adversary could take them and use them for
their own redemption.

Sending sT is what lets attackers hijack a redemption. Since the server can calculate sT from t on its own, the
client doesn’t actually need to send it. All the client needs to do is prove that it knows sT. A trick for doing this is
to use t and sT to derive a HMAC key and use it to sign a message that relates to the redemption. Without
seeing sT, the attacker will not be able to take this redemption and use it for a different message because it
won’t be able to compute the HMAC key.

Scenario 4
Instead of sending t and sT the client can send t and HMAC(sT, M) for a message M. When the
server receives this, it calculates T = Hash(t), then uses its secret value to compute sT.
With t and sT it can generate the HMAC key and check the signature. If the signature matches, that
means the client knew sT.

Issue

T = Hash(t)
bT ->
 <- sbT

Redeem

t, M, HMAC(sT, M) ->
Since only the server knows s, it can compute T = Hash(t) and compute sT as T multiplied
by s and verify the HMAC to validate that the client knew sT.

Problem: Tagging

The server can use a different s for each client, say s_1 for client 1 and s_2 for client 2. Then the
server can identify the client by comparing s_1*Hash(t) and s_2*Hash(t) against
the sT submitted by the client and seeing which one matches.

Scenario 5
The server picks a generator point G and publishes sG somewhere where every client knows it.

Issue

T = Hash(t)
bT ->
 <- sbT, DLEQ(bT:sbT == G:sG)

The client can then check to see that the server used the same s, since everyone knows sG.

Redeem

t, M, HMAC(sT, M) ->
Just like in Scenario 4, since only the server knows s, it can compute T = Hash(t) and compute sT as T multiplied
by s and verify the HMAC to validate that the client knew sT.

Problem: only one redemption per issuance
This system seems to have all the properties we want, but it would be nice to be able to get multiple points.

Scenario 6
The client picks multiple values t1, t2, … , tn and multiple blinding factors b1, b2, … , bn.

Issue
T1 = Hash(t1)
T2 = Hash(t2)
T3 = Hash(t3)
b1T1 ->
b2T2 ->
b3T3 ->

<- sb1T1, DLEQ(b1T1:sb1T1 == G:sG)
<- sb2T2, DLEQ(b2T2:sb2T2 == G:sG)
<- sb3T3, DLEQ(b3T3:sb3T3 == G:sG)

Each DLEQ can be verified independently like in Scenario 4, the client is safe from tagging.

Redeem

t1, M, HMAC(sT1, M) ->
This lets the client do multiple redemptions.

Problem: Bandwidth

DLEQ proofs are not particularly compact. Luckily, they can be optimized with something called an efficient batch DLEQ
proof. It’s essentially a single proof that covers all the returned values. This can be done by computing a proof over a
random linear combination of the points:

Because the same s is used for every T, you can use the commutative property of multiplication again to help you.

sb1T1+sb2T2+sb3T3 = s(b1T1+b2T2+b3T3)
So the server can compute a single DLEQ that proves that the same s was used for each T:

DLEQ(b1T1+b2T2+b3T3:s(b1T1+b2T2+b3T3) == G: sG) This is the same size as a single DLEQ proof.

Scenario 7
This scenario is similar to the last one except that the server sends a batch DLEQ proof rather than one for each point.

Issue

T1 = Hash(t1)
T2 = Hash(t2)
T3 = Hash(t3)
b1T1 ->
b2T2 ->
b3T3 ->

c1,c2,c3 = H(G,sG,b1T1,b2T2,b3T3,s(b1T1),s(b2T2),s(b3T3))
<- sb1T1
<- sb2T2
<- sb3T3
<- DLEQ(c1b1T1+c2b2T2+c3b3T3:s(c1b1T1+c2b2T2+c3b3T3) == G:sG)

This DLEQ proof can be validated by recomputing z = c1,c2,c3 and
then c1b1T1+c2b2T2+c3b3T3 and sc1b1T1+sc2b2T2+sc3b3T3.

Redeem

t1, M, HMAC(sT1, M) ->

PRIVACY PASS

IS THIS IT?

▸ For the protocol, yes!

▸ But we also released Privacy Pass as a Firefox and Chrome extension

▸ ~50,000 daily active users

▸ Trillions of requests per week

PRIVACY PASS

LOOKING FORWARD
▸ Currently integrating Privacy Pass with more CAPTCHA providers

▸ VOPRF is not publicly verifiable, more like a voucher than cash

▸ (V)OPRFs proposal submitted to CFRG

▸ Additional applications of the idea

▸ Anonymous session resumption for TLS

▸ Anonymous referral code mechanism

▸ Single bit zero-knowledge proofs (am I over 18? etc.)

PRIVACY PASS
NICK SULLIVAN
CLOUDFLARE
@GRITTYGREASE

VOPRFs - CFRG - IETF 101

NIZK Discrete Log Equality
logG(Y) =? logM (Z)
(Y = kG,Z = kM)

A
0 = sG+ cY

B
0 = sM + cZ

c
0 = H(G, Y, Z,A

0
, B

0)

Output c == c
0

DLEQGenerate(G, Y,M,Z) DLEQVerify(G, Y,M,Z, (c, s))

r Zp

A = rG

B = rM

c = H(G, Y, Z,A,B)

s = (r � ck)(modp)

Output (c, s)

Jarecki, Kiayias, Krawczyk. Round-Optimal Password-Protected Secret Sharing and T-PAKE in the Password-Only model.

