

A LIGHTWEIGHT
ZERO-KNOWLEDGE
PROTOCOL

Cloudflare Reverse Proxy

//////////////// _
.

THE PROBLEM OF SCALE

One more step

R ~ = oo

Enter above text

Submit

Why do | have to complete a
CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you
temporary access to the web property.

What can | do to prevent this in
the future?

If you are on a personal connection, like at home, you can run an
anti-virus scan on your device to make sure it is not infected with
malware.

If you are at an office or shared network, you can ask the network
administrator to run a scan across the network looking for
misconfigured or infected devices.

CloudFlare Ray ID: 26a0f0be462b2204 + Your IP: 209.95.50.99 - Performance & security by CloudFlare

Global

N imir RSN

CISCO = “sonoconresr

S ™
NETWORK
Q"

WARNER BROS.

I lll\"l

RTE

fobmenobonen]

NOVARTIS

M
NYSE

4

de

GAMES zendesk

28

CLOUDFLARE

dish I==f

Financial Services

v N BANC OF
N\, ~/ CALIFORNIA

@ Montecito NASDAq@
Bank & Trust
@ m PERSONAL
CAPITAL BANK CAPITAL

a9 SYMPHONY y)BCl

somosdiiferentes

W AUTORITE
||| DES MARCHES

FINANCIERS
BancoEstado*

coinbase TradeKing

(TS B] € acorns

BITFINEXZ IBLO

Public Sector

L
» . E
m | MAKE AMERICA GREAT AGAIN!
2016

QY azgov

STATE OF ARIZONA

@ ‘National Cyber
w2~ |Security Centre

ﬁ www.parliament.uk

LIBRARY OF
CONGRESS

Australian Government

T1M+

websites, apps & APIs
In 150+ countries

Technology
i vmware
CISCO

AR\ ©
cerox ©
Py W
= AT&T i 4
= zendesk

¢
CURSE

PLEX yelp%

L) oiscors “E Lattice
7 Y || Parallels’
okcupid
@
LogMe(® % Dropbox

eCommerce
STEVE
2umiez o >
MADDED

O REDBUBBLE BOSE

NIXON & Casper

@ G

Qe latahle S e

WARBY PARKER

eyewear

SrapP©

i thriftbooks # F1tolt

LOOTCRATE

ECASH FUNDAMENTALS

WOULDN

?

T 1T BE NICE TO HAVE AN ONLINE EQUIVALENT T0 CASH

» Withdrawals and transactions are un-linkable

» Desirable properties

» Can only be created by a central authority

: :
- - ‘

e

e

: ” .w

F T
'l'-'

»

.‘ ',.:v"

N W0

'-‘,.-: b
-

N -
- : ’ ——
. - Af"_/;_’-://‘/’/ =

ANONMOUS .~
1CON SCENARIO

\S -
1A)

-\
\

Serial Number- 00003304043030

ECASH FUNDAMENTALS

ECASH (CHAUM, 1983)

» Digital version of cash based on blind RSA signatures

Token * Blind Token #
Signature * Blind Signature —
Token Signature ﬁ

Goods —

Digital Signature Mint Private Key

Validate Mint Public Key

ECASH FUNDAMENTALS

ECASH (CHAUM, 1983)

» Digital version of cash based on blind RSA signatures

k * k*r"e mod N #
k"d mod N * (k d)*r mod N —
k kAd mod N ﬁ

Goods —

(k*r*e) d mod N

(kAd)*r mod N

(krd)re ==k

Filename: captcha-plugin-draft.txt
Title: Toward a better Cloudflare CAPTCHA
Authors: George Tankersley, Filippo Valsorda
Created: 19-Jan-2016

Status: Draft

Change history:
2016-01-19: Initial draft

2016-02-06: Revisions, filled in some TODOs
2016-02-12: Fill in more blanks

Overview:

In many IP reputation systems, Tor exits quickly become associated with
abuse. Because of this, Tor Browser users quickly become familiar with
various CAPTCHA challenges. The worst of these is Cloudflare- since their
CAPTCHA service requires JavaScript to serve anything but unreadable noise,
they render an increasingly large portion of the internet inaccessible to Tor
Browser users.

This document describes a solution to this problem. We propose a Tor Browser
plugin that will store a finite set of unlinkable CAPTCHA bypass tokens and a
server-side redemption system that will consume them, allowing users to

forego solving a CAPTCHA so long as they supply a valid token.

0.1. Rationale

Since the Cloudflare system depends heavily on an IP reputation database to
detect abuse, these challenge pages have become a familiar sight to users of
Tor, I2P, and popular VPN services. While they are intended as a minor
inconvenience, they are impenetrable for users with high privacy or security
requirements. ReCAPTCHA de facto demands JavaScript execution- the challenges
it produces without JS have degraded to such an extent that humans frequently

cannot solve them. Worse, the challenge page sets a unique cookie to indicate
+hat+ +he 11cevy hae heen yvvevri1fFf1ied QC1nece COleo1idfFlare rondt vy o0le +he Aamaine fAar

ECASH AS A CAPTCHA SOLUTION

First CAPTCHA

Solve CAPTCHA, Blind Token

Token + Blind Token ﬁ
Signature + Blind Signature —

Blind Signature, Bypass, Cookie

a2

CAPTCHA Private Key

Second CAPTCHA A
Token Signature ﬁ

—

Bypass, Cookie

Validate CAPTCHA Public Key

PRIVACY PASS

IS THIS IT?

» It wasn't satisfying to use slow 1980s
cryptography

» There have been recent constructions that
to similar things to ecash

» OPRF: Oblivious Pseudo-Random Function
» Analogous to blinding
» VRF: Verifiable Random Functions

» Random function provably computed with a private key

» VOPREF: Verifiable OPRF with VRF-like confirmation phase (new)

PRIVACY PASS

INSPIRATIONS/PRIOR WORK

» Freedman et al. (2005) seems to be the first to construct an OPRF (with a
constant-number of rounds)

» This was extended by Jarecki et al (2009) for performing set intersection

functionality

» The work of Jarecki, Kiayias and Krawczyk (2014) presents a VOPRF that is very
similar to our construction (without the batched DLEQ proofs). They use it to
construct round-optimal password-protected secret sharing (PPSS) and T-PAKE.

https://link.springer.com/chapter/10.1007/978-3-540-30576-7_17
https://www.iacr.org/archive/tcc2009/54440575/54440575.pdf
https://eprint.iacr.org/2014/650.pdf

PRIVACY PASS

INSPIRATIONS/PRIOR WORK

» Shirvanian et al. construct SPHINX: A Password Store that Perfectly Hides Itself
from OPRFs. The OPRF used is essentially the same as the one we use, except it
has no verifiability and the input data is structured differently.

» Elliptic-curve based random functions: Golberg et al. present a verifiable
random function (without blinding and without batched DLEQ proofs).

» Burns et al. (2017) give an explicit EC instantiation of the OPRF that we use,
except without the DLEQ proof (i.e. no verifiability).

» Ryan Henry's PhD thesis (2014) describes the batched DLEQ proof we use.

http://A%20Password%20Store%20that%20Perfectly%20Hides%20from%20Itself
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/
https://eprint.iacr.org/2017/111.pdf
https://uwspace.uwaterloo.ca/handle/10012/8621

EC-VOPRF FUNDAMENTALS

FUNDAMENTAL COMPONENTS / TERMINOLOGY

» Prime order group

» e.g. The group of points on an Elliptic Curve such as P-256

» Group elements will be denoted by capital letters such as P or Q
» Scalar multiplication

» Adding a point to itself n times, such as P+P+...+P is denoted nP

» Scalars will be represented by lower-case letters

EC-VOPRF FUNDAMENTALS

FUNDAMENTAL COMPONENTS / TERMINOLOGY

» Hash to group element

» Function that takes a scalar and outputs a random group element

» Discrete log equivalence proof

» A short zero-knowledge proof that two pairs of points have the same

discrete logarithm. For example, (P, sP) and (Q, sQ) have the same discrete
logarithm. The same scalar s is used for P and Q to get sP and sQ.

» Denoted DLEQ(P:R == Q:S)

Scenario 1

The client takes a point on an elliptic curve T and sends it to the server. The server applies a secret

transformation (multiplication by a secret number s) and sends it back. Call this step “Issue”, as the
server issues a signed point to the client.

Issue

T -—>
<- sT
Later, the client sends T and sT to the server to prove it has previously issued sT.

Redeem

T, sT —>
Since only the server knows s, it can confirm that it had issued sT. We call this step “Redeem”.

Problem: Linkability

In this situation, the server knows T because it has seen it already. This lets the server connect the two
requests, something we’re trying to avoid. This is where we introduce the blinding factor.

Scenario 2

Rather than sending T, the client generates its own secret number b. The client multiplies the

point T by b before sending it to the server. The server does the same thing as in scenario 1 (multiplies the
point it receives by S).

Issue
bT ->
<- s(bT)

The client knows b and s(bT) is equal to b(sT) because multiplication is commutative. The client can
compute sT from b(sT) by dividing by b. To redeem, the client sends T, sT.

Redeem
T, sT ->
Since only the server knows s, it can confirm that sT is T multiplied by s and will verify the redemption.

Problem: Malleability

It’s possible to create an arbitrary number of pairs of points that will be verified. The client can create these
points by multiplying both T and sT by an arbitrary number a. If the client attempts to

redeem aTl and a(sT), the server will accept it. This effectively gives the client unlimited redemptions.

Scenario 3

Instead of picking an arbitrary point T, the client can pick a number t. The point T can be derived by
hashing t to a point on the curve using a one-way hash. The hash guarantees that it’s hard to find another
number that hashes to al for an arbitrary a.

Issue

T = Hash(t)
bT ->

<- sbT
Redeem

t, sT >
Since only the server knows s, it can compute T = Hash(t) and confirm that sT is T multiplied by s and will
verify the redemption.

Problem: Redemption hijacking

If the values t and ST are sent across an unsecured network, an adversary could take them and use them for
their own redemption.

Sending ST is what lets attackers hijack a redemption. Since the server can calculate sT from t on its own, the
client doesn’t actually need to send it. All the client needs to do is prove that it knows sT. A trick for doing this is
to use t and sT to derive a HMAC key and use it to sign a message that relates to the redemption. Without
seeing ST, the attacker will not be able to take this redemption and use it for a different message because it
won’t be able to compute the HMAC key.

Scenario 4

Instead of sending t and sT the client can send t and HMAC(sT, M) for a message M. When the
server receives this, it calculates T = Hash(t), then uses its secret value to compute sT.

With t and sT it can generate the HMAC key and check the signature. If the signature matches, that
means the client knew SsT.

Issue

T = Hash(t)
bT ->

<- sbT
Redeem

t, M, HMAC(sT, M) ->

Since only the server knows s, it can compute T = Hash(t) and compute sT as T multiplied
by s and verify the HMAC to validate that the client knew sT.

Problem: Tagging

The server can use a different s for each client, say s_1 for client 1 and s_2 for client 2. Then the
server can identify the client by comparing s_1*Hash(t) and s_Z2*Hash(t) against
the sT submitted by the client and seeing which one matches.

Scenario 5

The server picks a generator point G and publishes sG somewhere where every client knows it.

Issue
T = Hash(t)
bT ->

<- sbT, DLEQ(bT:sbT == G:sG)
The client can then check to see that the server used the same s, since everyone knows sG.

Redeem

t, M, HMAC(sT, M) ->
Just like in Scenario 4, since only the server knows s, it can compute T = Hash(t) and compute sT as T multiplied
by s and verify the HMAC to validate that the client knew sT.

Problem: only one redemption per issuance

This system seems to have all the properties we want, but it would be nice to be able to get multiple points.

Scenario 6

The client picks multiple values t1, tZ2, .. , tn and multiple blinding factors b1, b2, .. , bn.

Issue

Tl = Hash(tl)
T2 = Hash(t2)
T3 = Hash(t3)
blTl ->
b2T2 ->
b3T3 ->
<- sb1T1, DLEQ(b1T1:sblTl == G:sG)
<- sb2T2, DLEQ(b2T2:sb2T2 == G:sG)

<- sb3T3, DLEQ(b3T3:sb3T3 == G:sG)
Each DLEQ can be verified independently like in Scenario 4, the client is safe from tagging.

Redeem

tl, M, HMAC(sT1, M) ->
This lets the client do multiple redemptions.

Problem: Bandwidth

DLEQ proofs are not particularly compact. Luckily, they can be optimized with something called an efficient batch DLEQ
proof. It’s essentially a single proof that covers all the returned values. This can be done by computing a proof over a
random linear combination of the points:

Because the same s is used for every T, you can use the commutative property of multiplication again to help you.

sb1T1+sb2T2+sb3T3 = s(b1T1+b2T2+b3T3)
So the server can compute a single DLEQ that proves that the same s was used for each T:

DLEQ(b1T1+b2T2+b3T3:s(b1T1+b2T2+b3T3) == G: sG) This is the same size as a single DLEQ proof.

Scenario 7

This scenario is similar to the last one except that the server sends a batch DLEQ proof rather than one for each point.

Issue

Tl = Hash(tl)
T2 = Hash(t2)
T3 = Hash(t3)
blTl ->
b2T2 ->
b3T3 ->
cl,c2,c3 = H(G,sG,b1T1,b2T2,b3T3,s(b1T1),s(b2T2),s(b3T3))
<- sb1lT1l
<- sbZ2T2
<- sb3T3
<- DLEQCc1blT1+c2b2T2+c3b3T3:s(clblT1+c2b2T2+c3b3T3) == G:sG)
This DLEQ proof can be validated by recomputingz = c¢l1,cZ2,c3 and
then c1lbl1T1+c2b2T2+c3b3T3 and sclb1T1l+scl2b2T2+sc3b3T3.

Redeem
tl, M, HMAC(sT1, M) ->

PRIVACY PASS

IS TRIS IT?

» For the protocol, yes!

£ Privacy Pass

» But we also released Privacy Pass as a Firefox and Chrome extension

» ~50,000 daily active users

» Trillions of requests per week

DE GRUYTER OPEN Proceedings on Privacy Enhancing Technologies ; 2018 (3):164-180

c La

Alex Davidson, lan Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda

Privacy Pass: Bypassing Internet Challenges
Anonymously

Abstract: The growth of content delivery networks .

(CDNs) has engendered centralized control over the 1 Introduction
serving of internet content. An unwanted by-product of
this growth is that CDNs are fast becoming global ar-
biters for which content requests are allowed and which

e An ineraacinalyry coamman frand fAr vrahoiteace aridh olAal

1.1 Background

(t0 access captcha.website

@y — Y

(E2) Privacy Pass

Passes 30

Get More Passes

PRIVACY PASS

LOOKING FORWARD

» Currently integrating Privacy Pass with more CAPTCHA providers

» VOPRF is not publicly verifiable, more like a voucher than cash

» (V)OPRFs proposal submitted to CFRG

» Additional applications of the idea
» Anonymous session resumption for TLS
» Anonymous referral code mechanism

» Single bit zero-knowledge proofs (am | over 18? etc.)

NIZK Discrete Log Equality

log(Y) =7logy(Z)
(Y =kG,Z = kM)

DLEQGenerate(G,Y, M, Z) | DLEQVerify(G,Y, M, Z, (c, s))

r 4 Ly A" =sG+cY

A=rG B' = sM + cZ
B =rM ¢ =H(GY,Z A B
c=H(G,Y,Z, A, B) Output ¢ —— ¢

s = (r — ck)(modp)
Output (c, s)

VOPRFs - CFRG - IETF 101

