Tutorial on Quantum Repeaters Rodney Van Meter \& Tracy Northup
@IRTF, 2019/3/25

Outline

- What's a quantum network? (tl;dr version)
- Applications: Why quantum networks?
- Basic terminology \& concepts
- Basic mathematical notation
- Basics of entanglement
- Teleportation
- Implementation
- Repeaters: rationale, concepts \& generations
- Final thoughts: learning more \& getting involved

Quantum networks: the vision

- Quantum nodes at which information is stored and processed.
" atoms
- Quantum channels for information transport.
" photons

Two kinds of quantum networks

Unentangled Networks

Good only for quantum key distribution (QKD), whi h aids longevity of secrecy encrypted inform classical networ' Very limited distaı. satellite possible!). Weak in multi-hop settıngs, better for point-to-point. Easier (still not easy) to build.

Actually a series of steps from here to there (Wehner, Elkouss, Hanson)

Entangled Networks

Good for many purposes:

- cryp っ functions including QKD

ऽ quantum computers um Internet.
stance using quantum

Strong ،n networked settings. Hard to build.

Entanglement（量子もつれ）

Even if they are far apart！

＂Measure＂this one and find its value．．．
and you＇ll also
know what this
one is

SundayReview

The Ǎu Hork Eimes

Is Quantum Entanglement Real?

ON THE EINSTEIN PODOLSKY ROSEN PARADOX*

J. S. BELL ${ }^{\dagger}$
Department of Physics, University of Wisconsin, Madison, Wisconsin

(Received 4 November 1964)

I. Infroduction

THE paradox of Einstein, Podolsky and Rosen [1] was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables. These additional variables were to restore to the theory causality and locality [2]. In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics. It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty. There have been attempts [3] to show that even without such a separability or locality requirement no "hidden variable" interpretation of quantum mechanics is possible. These attempts have been examined elsewhere [4] and found wanting. Moreover, a hidden variable interpretation of elementary quantum theory [5] has been explicitly constructed. That particular interpretation has indeed a grossly nonlocal structure. This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions.

The job of a quantum repeater network is...

- ...to make end-to-end entanglement (modulo some arguments about temporal matters).
- And, entanglement is a consumable resource, so we have to make lots of it.

So the job of a quantum repeater is...

- 1) to make base-level entanglement over a physical link
- 2) to couple entangled links along an end-to-end path to meet the applications' needs
- 3) to monitor and manage errors (purification, QEC, or both)
- 4) to participate in the management of the network

And the job of a Quantum Internet is...

To do all of this:

- across heterogeneous networks (both physically and logically)
- in an environment with minimal trust between networks
- no knowledge of the internals of autonomous networks
- possible presence of malicious nodes

sfors	Apposates	semples	Stanemats	16	26	${ }_{36}$
$\frac{1085}{800}$			$0 \cdot 0$	$\checkmark \checkmark$		
			be			\checkmark
		End-to-end		\checkmark		
						\checkmark

Elements:
Remotely entangled qubit \triangle Flying qubit (photons)
Qubit in an encoded block \triangle Measurement $(\mathrm{X} / \mathrm{Z})$, Teleportation-based Error Correction

Good for \& not good for

Quantum networks are about new capabilities, not some path to huge communication bandwidth. Reduced \# of communication rounds (asymptotically, theoretically), higher precision, scalability of distributed quantum systems, etc.

BEL'S SECOND THEOREM:
MISUNDERSTANDINGS OF BELL'S THEOREM
HAPPEN $5 O$ FAST THAT THEY VIOLATE LOCALITY.

No faster-than-light communication!
You can each get shared, secret random numbers upon measuring shared, entangled states, but that doesn't give you the ability to send messages.

Why quantum networks? Introduction to applications

Reduce dependency on

public key, one-way
functions, computational Byzantine complexity agreement
seader election

Distributed
crypto functions

Quantum

secret sharing
Blind quantum
computation
Basic
client-server
QC
Interferometry

Clocks

Distributed System-area computation networks

Other reference frame uses

IPsec with QKD: Quantum-protected campus-to-campus connection

draft-nagayama-ipsecme-ike-with-qkd-01.txt, 2014/10

IPsec with QKD

D-H: Diffie-Hellman key exchange
QKD: Quantum Key Distribution
AES: Advanced Encryption Standard

Factoring becomes possible

D-H + AES

QKD + AES

Feasible today for metro nets

See WeakDH.org!
(Am interested in your opinion of this!)

ARPA NETWORK，LOGICAL MAP，MAY 1973

Bind conputation：Secure

C Secure https：／／quantumexperience．ng．bluemix．net／qx／devices

IBM Q 20 Tokyo［ibmq＿20＿tokyo］

Last Calibration：2018－09－05 10：13：36

AVAILABLE TO HUBS，PARTNERS，AND MEMBERS OF THE IBM Q NETWORK

Average

4.97
88.86
54.97
1.80
7.80

AVG
MultiQubit gate error $\left(10^{-2}\right) \quad 3.14$

＞IBM Q 20 Austin［QS1＿1］	AVAILABLE TO HUBS，PARTNERS，AND MEMBERS OF THE IBM Q NETWORK	
＞IBM Q 16 Rueschlikon［ibmqx5］	ACTIVE：CALIBRATING	AVAILABLE ON QISKIT
＞IBM Q 5 Tenerife［ibmqx4］	MAINTENANCE	AVAILABLE ON QISKIT
＞IBMQ 5 Yorktown［ibmqx2］	MAINTENANCE	AVAILABLE ON QISKIT
＞IBM Q QASM Simulator［ibmq＿qasm＿simulator］	ACTIVE SIMULATOR	AVAILABLE ON QISKIT

Distributed QC: blind computing

Sensors: Interferometry

Oh, yeah, and communication complexity

Quantum Physics
Quantum Communication Complexity (A Survey)
Gilles Brassard
(Submitted on 1 Jan 2001)
arXiv.org > quant-ph > arXiv:1605.07372

Quantum Physics

Communication Complexity

Ran Raz

ranraz@wisdom.weizmann.ac.il, Department of Applied Mathematics,

Weizmann Institute, Rehovot 76100, ISRAEL

Exponential separation for one-way quantum communication complexity, with applications to cryptography

Dmitry Gavinsky*
IQC, University of Waterloo
Iordanis Kerenidis ${ }^{\dagger}$
Univ. de Paris-Sud, Orsay

Julia Kempe ${ }^{\dagger}$ School of Computer Science

Tel Aviv University

Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication
Philippe Allard Guérin, Adrien Feix, Mateus Araújo, Časlav Brukner
(Submitted on 24 May 2016 (v1), last revised 9 Sep 2016 (this version, v2))
For some abstract tasks, theoretically can be exponentially fewer rounds of communication. I don't know much about this, but see Raz STOC 1999; arXiv:quant-ph/0101005; arXiv:quant-ph/0611209; arXiv:1605.07372; and a few others.

Technical demands

Some of these require only the ability to measure an inbound photon at the end nodes, others require ability to entangle your local memory at the fewqubit level. True distributed computing (e.g. blind) requires lots of high-fidelity memory.

Wehner, Elkouss, Hanson, Science, 2018

FIG. 2: Timing for application classes over a single forward-propagating link.
rdv et al., arXiv:1701.04586

Basic terminology \& concepts

Seven Key Concepts for Quantum Computing

- Superposition
- Interference
- Entanglement
- Unitary (reversible) operation
- Measurement
- No-cloning theorem
- Decoherence

(Abbreviated) Glossary

- Quantum amplitude: represented by a complex number, the "amount" of the quantum wave function in a particular state
- Pure state: A quantum state whose preparation process did exactly what it was supposed to (no noise, no errors, no decay). n.b.: might be in superposition, might be entangled. Fidelity $=1.0$.
- Mixed state: A quantum state with noise, errors, decay. Fidelity < 1.0.
- Entangled state: A multi-qubit quantum state whose qubits can't be described independently, only in the context of all the qubits.
- Bell pair: A canonical two-qubit entangled state. There are four types, can be interconverted, and also can be used as a basis set for describing two-qubit states.

Superposition: Quanta Behaving Like Waves

Interference / 干渉 / การทับซ้อน

Basic mathematical notation (see extensive appendix for more)

Dirac's Bra-ket Notation

$$
\begin{array}{r}
\text { ket } \\
{\left[\begin{array}{l}
1 \\
0
\end{array}\right] \equiv|0\rangle} \\
{\left[\begin{array}{l}
0 \\
1
\end{array}\right] \equiv|1\rangle} \\
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=?
\end{array}
$$

Dirac's Bra-ket Notation

$$
\begin{aligned}
& \text { ket } \\
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] } \equiv|0\rangle \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] } \equiv|1\rangle \\
& \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=? \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& {\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=? }
\end{aligned}
$$

Dirac's Bra-ket Notation

bra

$$
\begin{array}{cc}
{\left[\begin{array}{ll}
1 & 0
\end{array}\right] \equiv\langle 0|} & {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \equiv|0\rangle} \\
{\left[\begin{array}{ll}
0 & 1
\end{array}\right] \equiv\langle 1|} & {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \equiv|1\rangle} \\
{\left[\frac{1}{\sqrt{2}}\right.} & \left.\frac{1}{\sqrt{2}}\right] \\
{\left[\begin{array}{ll}
\alpha & \beta
\end{array}\right]=?} & \frac{1}{\sqrt{2}}\langle 0|+\frac{1}{\sqrt{2}}\langle 1| \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& {\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=?}
\end{array}
$$

State Vector for Two \& Three Qubits

$$
\begin{gathered}
|\psi\rangle=\left(\begin{array}{c}
\alpha_{00} \\
\alpha_{01} \\
\alpha_{10} \\
\alpha_{11}
\end{array}\right) \underset{ }{\leftarrow \text { amplitude of 00 }} \begin{array}{c}
\leftarrow \text { amplitude of 01 } \\
\leftarrow \text { amplitude of 10 } \\
\\
\text { There are } 2^{\wedge} n \text { elements in the state } \\
\text { vector for } n \text { qubits. }
\end{array} \quad(\psi\rangle=\left(\begin{array}{c}
\alpha_{000} \\
\alpha_{001} \\
\alpha_{010} \\
\alpha_{011} \\
\alpha_{100} \\
\alpha_{101} \\
\alpha_{110} \\
\alpha_{111}
\end{array}\right) \\
\text { Each amolitude is a comolex number. }
\end{gathered}
$$

Prob. of measuring i is $\left|\alpha_{i}\right|^{2}$
Normalization requires $\sum_{i=0}^{2^{n}-1}\left|\alpha_{i}\right|^{2}=1$

No-cloning theorem

- In general, independent (unentangled) copy of a quantum state cannot be made.
- This theorem is important for cryptographic communication with quantum computation. try to copy $|\psi\rangle$ and $|\phi\rangle$ to $|s\rangle$:
U is virtual gate which copy the input first qubit to the second

$$
\begin{array}{r}
U(|\psi\rangle \otimes|s\rangle)=|\psi\rangle \otimes|\psi\rangle \\
U(|\phi\rangle \otimes|s\rangle)=|\phi\rangle \otimes|\phi\rangle \\
(\langle s| \otimes\langle\phi|) U^{-1} U(|\psi\rangle \otimes|s\rangle)=(\langle\phi| \otimes\langle\phi|) \otimes(|\psi\rangle \otimes|\psi\rangle) \\
\langle\phi \mid \psi\rangle=\langle\phi \mid \psi\rangle^{2} \\
\langle\phi \mid \psi\rangle=0,1
\end{array}
$$

Then, $|\psi\rangle$ is same or orthogonal.

Basics of entanglement: Bell pairs \& nonlocality

Nonlocality - the arguments

Either quantum mechanics is nonlocal, or it is incomplete (secret plans)

Einstein

J.S.Bell

Even if it is incomplete, it is still nonlocal!

Aspect
No local hidden variable theory can explain my experiment.

The EPR argument

Einstein, Podolsky, and Rosen asked: is quantum mechanics complete? Before we measure a system, does it have a definite state?
"If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity."

The EPR argument

Preconditions of the argument:

1. Locality: no immediate signaling.
2. Each measurement generates a single result.

QM is either nonlocal OR incomplete.

Bell's arguments

Bell wondered if adding in hidden variables really saves QM from being nonlocal.

Bell derived an inequality that any local hidden variable theory must satisfy.

He then showed that there are some quantum states that can violate this inequality.

So quantum mechanics cannot be described with a local hidden variables theory.

That's all well and good in theory, but...
Experimentally, Bell inequality violations have been measured convincingly in many settings.

Since 2015: In three experiments, in ways that close all loopholes that (most) people take seriously...

Note: There are many Bell-type inequalities. Most famous: Clauser-Horne-Shimony-Holt (CHSH).

The Bell states

$$
\begin{array}{ll}
\left|\Phi^{+}\right\rangle=\frac{\left|0_{A} 0_{B}\right\rangle+\left|1_{A} 1_{B}\right\rangle}{\sqrt{2}} & \left|\Psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}} \\
\left|\Phi^{-}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}} & \left|\Psi^{-}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
\end{array}
$$

Bell states are entangled states.
That is, they can't be written as separable states ("product states").
(These four can also be used as a basis set to rewrite any two-qubit state.)

Bell states are a resource for quantum communication and computation.

Bell pairs can be used to generate secret keys.
If two people share a Bell pair, one can send a quantum state to the other.

The no-signaling theorem

Can we use quantum nonlocality to send a signal faster than light?

NO - it is a mathematical consequence of quantum mechanics that even if it is nonlocal, quantum systems cannot signal each other.

Consequences for quantum computing

INFORMATION CANNOT TRAVEL FASTER THAN THE SPEED OF LIGHT (probably)

Entangled states can appear to be signaling each other, but really they cannot.

Always look for the classical communication channel...

Teleportation

Teleportation

- Yet another concept discovered by Charles Bennett \& co.

- Moves a quantum state from one location to PHYSICAL REVIEW

LETTERS

Teleporting an Unknown Quantum State via Dual Classical and

Teleportation

- Yet another concept discovered by Charles Bennett \& co.
- Moves a quantum state from one location to another, not the physical carrier of the qubit. Alice

Bob

So, how do we do this?

The Bell Basis

$$
\begin{aligned}
\left|\Phi^{+}\right\rangle & =\frac{|00\rangle+|11\rangle}{\sqrt{2}}: X_{A} X_{B}, Z_{A} Z_{B} \\
\left|\Phi^{-}\right\rangle & =\frac{|00\rangle-|11\rangle}{\sqrt{2}}:-X_{A} X_{B}, Z_{A} Z_{B}
\end{aligned}
$$

Stabilizers
(won't be discussed in this tutorial; unlikely to
$\left|\Psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}: X X,-Z Z$ come up, but if they do, ask us later)

$$
\left|\Psi^{-}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}:-X X,-Z Z
$$

Our Data Qubit

Single-qubit state

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle \\
& \left|\alpha^{2}\right|+\left|\beta^{2}\right|=1
\end{aligned}
$$

Measure $0 \mathrm{w} /$ prob. $|\alpha|^{2}$

What happens to our state after applying those ops:

One-qubit operations

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
Z|\psi\rangle & =\alpha|0\rangle-\beta|1\rangle \\
X|\psi\rangle & =\beta|0\rangle+\alpha|1\rangle \\
Z X|\psi\rangle & =\beta|0\rangle-\alpha|1\rangle
\end{aligned}
$$

Teleportation Operations

Bell pair creation

Bell State Measurement

01

$$
\left|\Phi^{+}\right\rangle=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2} Z ?} X ?
$$

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

Implementation

How can I make my own Bell pair?

Need: two-level quantum systems in which to encode information.

Wish list:

- easy to entangle with each other
- easy to measure (in different bases)
- both of those processes: fast \& accurate
- minimal information loss (through interaction with the environment)
- transportable
- identical

Spoiler alert: there's no perfect TLS.

...so the best choice depends on the application.

Some favorites:

- photons
- we have: lasers, optical fibers, wave plates \& detectors...
- how do you get just one? what if you want it to stay in one place?
- atoms
- controlled interactions with lasers \& microwaves; storage \& processing
- require sophisticated laboratories; not going anywhere
- artificial atoms
- properties can be tailored; scalable fabrication
- are they really identical? are there only two levels?
- also not going anywhere...

Quantum networks: the vision

- Quantum nodes at which information is stored and processed.
" atoms
- Quantum channels for information transport.
" photons

Photons

encode 0 and 1 in...

- polarization
- time bin
- number
- path

D

Atoms

identify two electronic states!

- how long do they live?
- are they addressable with lasers? microwaves?
- are they sensitive to environmental fluctuations?

Generating remote entanglement, probabilistically

- Each atom emits a photon (or not).
- The atom's state depends on whether or not it emitted a photon (a), or the photon polarization (b).

- The detectors can't tell which atom the photon(s) came from.
- Detection projects the atoms into an entangled state.

Entangling remote ${ }^{171} \mathrm{Yb}^{+}$ions

Monroe group, University of Maryland / JQI
B. B. Blinov, Nature 428, 153 (2004)
D. L. Moehring et al., Nature 449, 68 (2007)
D. Hucul, Nat. Phys. 11, 37 (2015)

http://iontrap.umd.edu/research/ion-photon-quantum-networks/

Entangling remote ${ }^{171} \mathrm{Yb}^{+}$ions

Monroe group, University of Maryland / JQI
B. B. Blinov, Nature 428, 153 (2004)
D. L. Moehring et al., Nature 449, 68 (2007)
D. Hucul, Nat. Phys. 11, 37 (2015)

Ion trap module A

Ion trap module B

Entangling remote ${ }^{171} \mathrm{Yb}^{+}$ions

Monroe group, University of Maryland / JQI
B. B. Blinov, Nature 428, 153 (2004)
D. L. Moehring et al., Nature 449, 68 (2007)
D. Hucul, Nat. Phys. 11, 37 (2015)

Entangling remote ${ }^{171} \mathrm{Yb}^{+}$ions

Monroe group, University of Maryland / JQI
B. B. Blinov, Nature 428, 153 (2004)
D. L. Moehring et al., Nature 449, 68 (2007)
D. Hucul, Nat. Phys. 11, 37 (2015)

Entangling remote ${ }^{171} \mathrm{Yb}^{+}$ions

Monroe group, University of Maryland / JQI
B. B. Blinov, Nature 428, 153 (2004)
D. L. Moehring et al., Nature 449, 68 (2007)
D. Hucul, Nat. Phys. 11, 37 (2015)

Entangling remote ${ }^{171} \mathrm{Yb}^{+}$ions

Monroe group, University of Maryland / JQI
B. B. Blinov, Nature 428, 153 (2004)
D. L. Moehring et al., Nature 449, 68 (2007)
D. Hucul, Nat. Phys. 11, 37 (2015)

Ion trap module A

Entangling remote ${ }^{171} \mathrm{Yb}^{+}$ions

state fidelity
$F \equiv\left|\left\langle\psi_{\text {ideal }} \mid \psi_{\exp }\right\rangle\right|^{2}$

Monroe group, University of Maryland / JQI
B. B. Blinov, Nature 428, 153 (2004)
D. L. Moehring et al., Nature 449, 68 (2007)
D. Hucul, Nat. Phys. 11, 37 (2015)
here: fidelity $=78(3) \%$
(classical bound: 50\%)
entanglement every 0.22 s

Remote entanglement has been shown in a handful of experimental systems

- atomic ensembles
C. W. Chou et al., Nature 438, 828 (2005)
- neutral atoms
J. Hofmann et al., Science 337, 72 (2012)
- NV centers
H. Bernien et al., Nature 497, 86 (2013)
- superconducting qubits
A. Narla et al., Phys. Rev. X 6, 031036 (2016)
- quantum dots
A. Delteil et al., Nat. Phys. 12, 218 (2016)
state of the art: two-node experiments

Repeaters: rationale, concepts \& generations

So the job of a quantum repeater is...

- 1) to make base-level entanglement over a link
- 2) to couple entangled links along an end-to-end path to meet the applications' needs
- 3) to monitor and manage errors (purification, QEC, or both)
- 4) to participate in the management of the network

Conceptual Hardware

Figure 10.1: Generic view of the hardware of a line of repeaters. Qubit memories are represented by the atom symbol, regardless of physical device type.
(There are also all-optical approaches, with no static buffer memory.)

Store-and-Forward?

Direct Transmission Pretty Clearly Doesn't Work...

Loss in channel always too high

Must use acknowledged link layer, build generic Bell pair, then teleport

Timing Trapezoids

So Why Doesn't Hop-by-Hop Teleportation Work?

Long memory times, swapping (local xfer) fidelity

Star: E2E teleportation; filled circle: QKD; open circle: qubit measurement timing blue bar: entanglement swapping

:rios	Apposates	samples	Stamants	16	26	${ }_{3 c}$
			-	\checkmark	\checkmark	
			y			
		End-to-en $\rightarrow(1 / 0$	$\hat{0}$	\checkmark		
			家夏			

Elements:
Remotely entangled qubit \triangle Flying qubit (photons)
Qubit in an encoded block \triangle Measurement $(\mathrm{X} / \mathrm{Z})$, Teleportation-based Error Correction

Five Repeater Schemes

- 1G: Purify and swap over ACKed links: truly a distributed computation (Dur \& Briegel, Lukin, others; since 1998)
- 2G: Error Correction over ACKed links
- CSS quantum error correction \& entanglement swapping (Jiang (Lukin) et al., 2009)
- Surface code quantum error correction, sort of but not quite swap (Fowler et al., 2010)
- 3G: Error Correction over no-ACK-needed links: store-and-forward
- Quasi-asynchronous (Munro et al., 2010)
- Memoryless
(Munro et al., 2012)

Quantum Repeater Operation

Called entanglement swapping.
Fidelity declines; you must purify afterwards

Nested Entanglement Swapping

Station 0 Station $1 \quad$ Station $2 \quad$ Station 3 Station 4

Dur \& Briegel, many others

Purification: Error Detection

 one used as a test tool to test an assertion about the other. The test tool is destroyed in the process. On success, confidence in the tested state (fidelity) improves. On failure, tested state is discarded.

Repeater Protocol Stack

Application
 Purification Control (PC) $\}$
 Entang. Swapping Ctl (ESC)
 Purification Control (PC)
 End-to-End
 Repeated at Different Distances
 Entanglement Control (EC)
 Physical Entanglement (PE)
 Distance=1
 Only quantum!

[^0]
Four-Hop Protocol Interactions

2G \& 3G are still far away

- Even 1 G is really hard
- Entanglement success probability is low, many round trips in protocols, few qubits per node, memory lifetimes are still problematic
- Getting \& keeping a Bell pair to the left at the same time as Bell pair to the right to enable swapping
- Getting \& keeping two Bell pairs for purification
- Gate errors in both purification and swapping
- 2G: Error Correction over ACKed links
- Will blow up resource requirements at least $7 x$, before the probabilistic problems above
- Gate error rates too high for QEC to work yet
- 3G: Error Correction over no-ACK-needed links (store-and-forward)
- Prob. 80-93\% or better (depending on code) of correctly receiving each individual photon

What would the simplest 1 G repeater look like?

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)

1. Entangle one pair of atoms.
2. Entangle a second pair of atoms.
3. A Bell measurement on the two central atoms entangles the two outermost atoms.

This approach is not scalable because errors accumulate.

What would the simplest 1 G repeater look like?

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)

Entanglement purification is the key to scalability.
Multiple copies of entangled pairs are reduced to fewer copies with higher fidelity. Requirements: gate operations between local qubits \& readout of one qubit.

Quantum repeater = entanglement swapping + purification
Note that we have to wait for classical information to travel from A to B.

entangled!

No one has built a quantum repeater yet.

The simplest version:

1. Eight qubits, three nodes
2. Gate operations between qubits for Bell-state measurements and purification.
Closest experiment: entanglement purification with four qubits (two NV centers, two nuclear spins).
N. Kalb et al., Science 356, 928 (2017)

State of research

Some networking results from rdv's group

Routing

Architecture

rdv et al.,Prog. Info. 2013

Multiplexing

rdv et al., Trans. Networking, 2009

Some networking results from rdv's group

Internetworking

Nagayama et al., Phys. Rev. A 2016
Network Coding

Step 1

Step 2

Step 3

4) 2 crossing-over cluster states

Matsuo et al.,Phys. Rev. A 2018

Hijacking of a Repeater

Satoh et al., QST, 2018

Stephanie's group

Quantum internet: A Vision for the road ahead (https://doi.org/10.1126/science.aam9288):

This was presented already in Bangkok. This paper defines stages of quantum networks and what applications can be realized on these.

A Link Layer Protocol for Quantum Networks (will be on arXiv tomorrow!):
Presents a link layer protocol which provides the defines service in https://datatracker.ietf.org/doc/draft-dahlberg-II-quantum/ together with simulations of performance metrics of a complete implementation of the protocol using a discrete-event simulator.

Parameter regimes for a single sequential quantum repeater (https://arxiv.org/abs/1705.00043):
Assesses the performance of single sequential quantum repeaters using realistic hardware parameters.
Fully device-independent conference key agreement (https://arxiv.org/abs/1708.00798):
Presents security proof for fully device-independent conference key, which task is to distribute a secret key among N parties.

Anonymous transmission in a noisy quantum network using the W state (https://arxiv.org/abs/1806.10973): Shows how one can perform anonymous transmission using a W state, which in many regimes can tolerate more noise than the more common approach of using a GHZ state.

SimulaQron - A simulator for developing quantum internet software (https://arxiv.org/abs/1712.08032): Presenting SimulaQron, a simulator intended to be used for development of software for quantum networks.

Final thoughts:
 References, learning more \& getting involved

Good Repeater References

- Dur \& Briegel's originals, 1990s onwards
- Kimble's "Quantum Internet" in Nature, 2008
- Rodney Van Meter, Quantum Networking, Wiley-iSTE 2014
- Takeoka, Guha, Wilde, Nature Communications, 2014 on when repeaters are more effective than simple transmission
- Muralidharan et al., Scientific Reports, 2016 defines 1G, 2G, 3G
- Pirandola, Nature Communications, 2017 extending TGW analysis
- Wehner, Elkouss, Hanson, Science, 2018 roadmap

Future Learn

Find a course

What would you like to learn？

```
Browse free online courses
```

 （massive open online course）on Quantum Computing includes 日本語の字幕！Starts April 1！

SINO－JAPANESE INTERACTIONS THROUGH RARE BOOKS KEIO UNIVERSITY

Learn about the role of books in the relationship between the cultures of Japan and China，with this free online course．

兆 6 Mar 䘮 3 weeks 3 hours pw Certificate

4th run of MOOC will

 include translation into Thai！
$\$$ TUDelft OpenCourseWare

The Quantum Internet and Quantum Computers: How whll They Change the World?

The Quantum Internet and Quantum Computers: How Will They Change the World?

2.3.1 What is a quantum internet?

Course subject(s)

Home > All Subjects > Computer Science > Quantum Information Science I, Part 1

Meet the instructors

Isaac Chuang Professor of Electrical Engineering and Computer Science, and Professor of Physics
Massachusetts Institute of Technology

Peter Shor
Morss Professor of Applied Mathematics and Chair of the Applied Mathematics Committee
Massachusetts Institute of Technology

Quantum Information Science I, Part 1

Want to learn about quantum bits, quantum logic gates, quantum algorithms, and quantum communications, and know some linear algebra but haven't yet learned much about quantum mechanics? This is the course for you!

Massachusetts
Institute of
Technology

We have created a Research Group
 (RG) on Quantum Internet inside the Internet Research Task Force (IRTF).
Co-chairs are Van Meter (Keio) and Stephanie Wehner (TU Delft).
https://www.irtf.org/mailman/listinfo/qirg

236 list members (as of 2019/3/18)

Workshop for Quantum Repeaters and Networks

n．b．：Dates still tentative

Join us in Japan，Sept．5－6， 2019

Beginning with dinner on the 4th，ending at breakfast on the 7th． More details coming soon．
Note that dates are still tentative．

Done!
Any questions you haven't asked yet?

Appendices

- Vectors, Matrices, Dirac's bra-ket notation, and Complex Numbers
- Quantum States
- Single-Qubit Gates
- Two-Qubit Gates
- Density Matrix
- Teleportation by the numbers

Vectors, Matrices,
 Dirac's bra-ket notation, and some complex numbers

Vectors

A vector has a direction and a distance. It can be described via a set of coordinates, assuming the vector starts at the origin.

Dirac's Bra-ket Notation

$$
\begin{array}{r}
\text { ket } \\
{\left[\begin{array}{l}
1 \\
0
\end{array}\right] \equiv|0\rangle} \\
{\left[\begin{array}{l}
0 \\
1
\end{array}\right] \equiv|1\rangle} \\
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=?
\end{array}
$$

Dirac's Bra-ket Notation

$$
\begin{aligned}
& \text { ket } \\
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] } \equiv|0\rangle \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] } \equiv|1\rangle \\
& \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=? \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& {\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right]=? }
\end{aligned}
$$

Dirac's Bra-ket Notation

bra

$$
\begin{array}{cc}
{\left[\begin{array}{ll}
1 & 0
\end{array}\right] \equiv\langle 0|} & {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \equiv|0\rangle} \\
{\left[\begin{array}{ll}
0 & 1
\end{array}\right] \equiv\langle 1|} & {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \equiv|1\rangle} \\
{\left[\frac{1}{\sqrt{2}}\right.} & \left.\frac{1}{\sqrt{2}}\right] \\
{\left[\begin{array}{ll}
\alpha & \beta
\end{array}\right]=?} & \frac{1}{\sqrt{2}}\langle 0|+\frac{1}{\sqrt{2}}\langle 1| \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& {\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=?}
\end{array}
$$

Vector Addition

$$
\begin{array}{ll}
|\psi\rangle=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] & |\psi\rangle+|\phi\rangle=\left[\begin{array}{l}
\alpha+\gamma \\
\beta+\delta
\end{array}\right] \\
|\phi\rangle=\left[\begin{array}{l}
\gamma \\
\delta
\end{array}\right] &
\end{array}
$$

Vector Inner Product

$$
\begin{array}{ll}
|\psi\rangle=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] & \langle\phi \mid \psi\rangle=\alpha \gamma+\beta \delta \\
\langle\phi|=\left[\begin{array}{ll}
\gamma & \delta
\end{array}\right] &
\end{array}
$$

Matrix

$$
\begin{aligned}
A= & {\left[\begin{array}{llll}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right] \quad \begin{array}{c}
\text { n.b.: It's more } \\
\text { standard to start } \\
\text { index at 1, but 0 will } \\
\text { be more convenient } \\
\text { here. }
\end{array} } \\
& {\left[\begin{array}{llll}
b_{0,0} & b_{0,1} & b_{0,2} & b_{0,3}
\end{array}\right] \quad }
\end{aligned}
$$

Matrix Addition

$$
A+B=\left[\begin{array}{llll}
a_{0,0}+b_{0,0} & a_{0,1}+b_{0,1} & a_{0,2}+b_{0,2} & a_{0,3}+b_{0,3} \\
a_{1,0}+b_{1,0} & a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & a_{1,3}+b_{1,3} \\
a_{2,0}+b_{2,0} & a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & a_{2,3}+b_{2,3} \\
a_{3,0}+b_{3,0} & a_{3,1}+b_{3,1} & a_{3,2}+b_{3,2} & a_{3,3}+b_{3,3}
\end{array}\right]
$$

Multiplying a vector by a matrix

$$
\begin{aligned}
A|\psi\rangle & =\left[\begin{array}{ll}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \\
& =\left[\begin{array}{l}
a_{0,0} \alpha+a_{0,1} \beta \\
a_{1,0} \alpha+a_{1,1} \beta
\end{array}\right]
\end{aligned}
$$

Complex numbers

Quantum physics contains complex numbers so that
Quantum information is consist of complex numbers.

$$
i=\sqrt{-1}
$$

Complex plane

Im

Exponentiating

 im complex numbers

Ro Mnivra'c fnrmula

Complex Numbers in Bra-ket

Earlier presentation wasn't quite complete!

$$
\begin{aligned}
&|\psi\rangle=\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \\
&\langle\psi|=\left[\begin{array}{ll}
\alpha^{*} & \beta^{*}
\end{array}\right] \quad\langle\psi \mid \psi\rangle=\alpha \alpha^{*}+\beta \beta^{*} \\
& \\
& \alpha=a+i b \\
& \alpha^{*}=a-i b \text { complex conjugate } \\
& \beta=c+i d \\
& \beta^{*}=c-i d
\end{aligned}
$$

Vector Outer Product

$|\psi\rangle\langle\phi|$ $\left[\begin{array}{ll}\alpha \gamma^{*} & \alpha \delta^{*} \\ \beta \gamma^{*} & \beta \delta^{*}\end{array}\right]$

Same thing as tensor!
...what's a tensor?

Tensor Product

$$
\begin{gathered}
A=\left(\begin{array}{ll}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right) \quad B=\left(\begin{array}{ll}
b_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1}
\end{array}\right) \\
A \otimes B=\binom{a_{0,0}\left(\begin{array}{ll}
b_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1} \\
a_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1}
\end{array}\right)}{a_{0,1}\left(\begin{array}{ll}
b_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1} \\
a_{0,0} & b_{0,1} \\
b_{1,0} & b_{1,1}
\end{array}\right)}
\end{gathered}
$$

Tensor Product

$$
\begin{array}{rr}
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] & I \otimes H=\frac{1}{\sqrt{2}}\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right] \\
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] & H \otimes I=\frac{1}{\sqrt{2}}\left[\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]
\end{array}
$$

$$
H \otimes H=?
$$

Quantum States

Writing quantum states

To write a quantum state we use a ket vector:

$$
|A\rangle
$$

This is "the state of system A".
We can put many things inside kets...

Writing quantum states

To write a quantum state we use a ket vector:

We can put many things inside kets...

Writing quantum states

To write a quantum state we use a ket vector:

$$
|\psi\rangle
$$

We can put many things inside kets...

Writing quantum states

To write a quantum state we use a ket vector:

$$
|\uparrow\rangle
$$

We can put many things inside kets...

Writing quantum states

To write a quantum state we use a ket vector:

We can put many things inside kets...

Writing quantum states

Ket vectors tell us the probability of measuring the state.

Suppose we just have two outcomes: 0 and 1.
A ket vector for the system could be written

$$
|O\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
$$

What does this mean?

Bloch Sphere

Question: Where are

$$
\frac{|0\rangle+|1\rangle}{\sqrt{2}} \quad \frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

$$
\frac{|0\rangle+i|1\rangle}{\sqrt{2}} \quad \frac{|0\rangle-i|1\rangle}{\sqrt{2}}
$$

Note: This is not (usually) directly relatable to something physical!

|1> is down here Image from Wikipedia

Bloch Sphere

Phase

Phase, then, is position about the vertical axis on the Bloch sphere.
You can't touch it, see it, smell it, taste it, or hear it.
It doesn’t "mean" anything.
...but you can calculate using it.

The Z Gate

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Question: What does this do to this state?

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

Question: What does this do to any observation or measurement we make?

Multiple Qubits: Hilbert Space is a Very Big Place

n qubits can be in 2^{n} possible states: 000..00, 000..01, 000..10, ..., 111...10, 111.. 11

In fact, it can be in a superposition of all of those states at once:

$$
|\psi\rangle=\sum_{i=0}^{2^{n}} \alpha_{i}|i\rangle
$$

State Vector for Two \& Three Qubits

$$
\begin{aligned}
&|\psi\rangle=\left(\begin{array}{c}
\alpha_{00} \\
\alpha_{01} \\
\alpha_{10} \\
\alpha_{11}
\end{array}\right) \leftarrow \text { amplitude of 00 } \\
& \leftarrow \text { amplitude of 01 } \\
& \leftarrow \text { amplitude of 10 } \\
& \leftarrow \text { amplitude of 11 }
\end{aligned} \quad\left(\begin{array}{c}
\alpha_{000} \\
\alpha_{001} \\
\alpha_{010} \\
\alpha_{011} \\
\alpha_{100} \\
\alpha_{101} \\
\alpha_{110} \\
\alpha_{111}
\end{array}\right)
$$

Hilbert Space

Each element of the state vector is a basis vector. The total set is Hilbert space, and it grows

n.b.: Each individual qubit has two states, or two basis vectors, but they are multiplicative when combined -adding a qubit adds dimensions to the total size of our space!

Bell States: Our First Important Multi-Qubit States

$$
\begin{array}{ll}
\left|\Phi^{+}\right\rangle=\frac{\left|0_{A} 0_{B}\right\rangle+\left|1_{A} 1_{B}\right\rangle}{\sqrt{2}} & \left|\Psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}} \\
\left|\Phi^{-}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}} & \left|\Psi^{-}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
\end{array}
$$

Critical for quantum communication
Foundation for tests of entanglement (CHSH inequality, a little later)

Quantum gates

- All quantum gates are unitary.
- What's unitary?
- said simply, reversible rotation,on Hilbert space

Simple single-qubit gates

X gate, Z gate

- X gate
- rotation around X axis

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Z gate
rotation around Z axis

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Y gate

- rotation around Y axis
 $$
Y=\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)
$$

$i \times X \times Z=$?

Global phase

- Global phase does not affect quantum state.

$$
\begin{aligned}
& |\phi\rangle=e^{i \theta}(a|0\rangle+b|1\rangle)
\end{aligned}
$$

$$
\begin{aligned}
& e^{i \theta} \quad \text { origin, } \\
& \text { it does not change the distance from the } \\
& \text { origin) }
\end{aligned}
$$

Y gate

$$
Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

$$
i \times X \times Z=?
$$

Y gate

$$
Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

- rotation around Y axis

$$
\begin{aligned}
i \times X \times Z & =i \times\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \times\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
= & i \times\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
\end{aligned}
$$

Y gate

- rotation around Y axis $\quad Y=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$
- can be created by multiplying X and Z

$$
\begin{aligned}
i \times X \times Z & =i \times\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \times\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =i \times\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
\end{aligned}
$$

Pauli gates

- X, Y, Z are called the Pauli matrices (Pauli gates), which are the most basic gates.

I gate

- I gate

- Identity gate, which does not change quantum state

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

H gate

- H gate exchanges the relationship between X axis and Z axis

$$
\begin{aligned}
& \text { XIS } \\
& H
\end{aligned}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$$
\begin{array}{r}
H \times|0\rangle=? \\
H \times|1\rangle=? \\
H \times \frac{|0\rangle+|1\rangle}{\sqrt{2}}=? \\
H \times \frac{|0\rangle-|1\rangle}{\sqrt{2}}=?
\end{array}
$$

H gate

- H gate exchanges the relationship between X axis and Z axis

$$
\underset{H}{\operatorname{axIS}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$$
\begin{aligned}
& H \times|0\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{1}=\frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
& H \times|1\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{0}{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}=\frac{|0\rangle-|1\rangle}{\sqrt{2}} \\
& H \times \frac{|0\rangle+|1\rangle}{\sqrt{2}}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{1}{1}=\binom{1}{0}=|0\rangle \\
& H \times \frac{|0\rangle-|1\rangle}{\sqrt{2}}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{1}{-1}=\binom{0}{1}=|1\rangle
\end{aligned}
$$

Simple two-qubits
 gates

Controlled NOT

(CNOT)

- In fact, it is more correct to call controlled X
- If the first qubit is 1 , the second qubit gets X
- the first qubit is control qubit
- the second is target qubif
$C N O T=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$

Controlled NOT (CNOT)

- two qubit state

$$
\begin{gathered}
\begin{array}{c}
|00\rangle \\
|0\rangle\rangle \\
|10\rangle \\
|11\rangle
\end{array} \\
C N O T \times\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) \\
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \times\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
d \\
c
\end{array}\right)
\end{gathered}
$$

Circuit notation

qubits

CNOT gate between q0 and q1
X gate on q0
q0 is control qubit q1 is target qubit measurement of q 0 , in Z axis

SWAP gate

 between q1 andq2

$$
\mathrm{q} 3 \mathrm{~m}_{\mathrm{t} 0}{\underset{\mathrm{t} 1}{ } \quad \mathrm{t} \mathrm{t}^{2} \mathrm{t} 3} \text { Z gate on q3 }
$$

Density Matrix Representation

Pure vs. mixed states

B

When A is part of a larger superposition, we need to know the state of both A and B to fully know the state of A.

If we do not have access to the state of B, then we have lost information about A.

Pure vs. mixed states

B

If we do not have access to the state of B, then we have lost information about A.

If we have full information about A then we say "A is in a pure state".
If we do not have full information about A then "A is in a mixed state".
Note: we can have full information about a superposition! $|+\rangle$ is still a "pure state".

Pure vs. mixed states

Pure states (full information) are written as state vectors, $|\Psi\rangle$.

How do we write mixed states, where we have lost some of the state information?

Representing mixed states

density matrix!

Representing mixed states

Density matrices let us deal with uncertainty in the quantum state.

This uncertainty comes about because the state we want is part of a larger superposition, which we do not have access to.

Density matrices record the probability of measurement outcomes.

Representing mixed states

Look again at the state

$$
|A B\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}+|1\rangle_{A} \otimes|0\rangle_{B}\right)
$$

We can write the state of A using the density matrix ρ_{A} :

$$
\rho_{A}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Representing mixed states

$$
\begin{aligned}
& |A B\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}+|1\rangle_{A} \otimes|0\rangle_{B}\right) \\
& \quad \rho_{A}=\frac{1}{2}(1) \frac{0}{0} 1 \\
& \begin{array}{l}
\text { Probability of } \\
\text { measuring " } 0 \text { " }
\end{array} \quad \begin{array}{l}
\text { Probability of } \\
\text { measuring " } 1 \text { " }
\end{array}
\end{aligned}
$$

So diagonal elements always add up to 1.

Representing mixed states

$$
\rho_{A}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

We find the probabilities of other measurements by changing the basis.

Let's find the probability of measuring " + " or "-" given this density matrix for the state.

Representing mixed states

Let's find the probability of measuring " + " or "-" given this density matrix for the state.

Representing mixed states

$$
\rho_{A}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$$
\rho_{A}^{\text {Hadamard }}=H \rho_{A} H
$$

Representing mixed states

$$
\begin{aligned}
\rho_{A}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) & H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
\rho_{A}^{\text {Hadamard }}= & H \rho_{A} H \\
= & \frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

So $\operatorname{prob}(0)=\operatorname{prob}(1)=\operatorname{prob}(+)=\operatorname{prob}(-)=0.5$

Representing mixed states

We have seen:
The density matrix gives probabilities of measuring the basis states.

We calculate the probabilities for different measurements by transforming into the basis of that measurement.

Now: how do we calculate a density matrix?

Calculating density matrices

Now: how do we calculate a density matrix?
The elements in a density matrix represent "projection operators":

$$
\rho=\left(\begin{array}{ll}
|0\rangle\langle 0| & |1\rangle\langle 0| \\
|0\rangle\langle 1| & |1\rangle\langle 1|
\end{array}\right)
$$

So

$$
\rho_{A}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1|
$$

Calculating density matrices

$$
\rho_{A}=\frac{1}{2}|0\rangle\langle 0|-\frac{1}{2}|1\rangle\langle 1|
$$

$$
|0\rangle\langle 0|=\binom{1}{0}(1,0)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Calculating density matrices

$$
\begin{array}{r}
\rho_{A}=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1| \\
|0\rangle\langle 0|=\binom{1}{0}(1,0)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
|1\rangle\langle 1|=\binom{0}{1}(0,1)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

Calculating density matrices

$$
\begin{gathered}
\rho_{A}=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1| \\
|0\rangle\langle 0|=\binom{1}{0}(1,0)=\left(\begin{array}{ll}
1 & \mathbf{0} \\
0 & \mathbf{0}
\end{array}\right) \\
|1\rangle\langle 1|=\binom{0}{1}(0,1)=\left(\begin{array}{ll}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right)
\end{gathered}
$$

Pure vs mixed states again

$$
|0\rangle\langle 0|=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad|1\rangle\langle 1|=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

A pure state is represented as a density matrix by a single projection operator in some basis,

$$
\rho=|\Psi\rangle\langle\Psi|
$$

A mixed State is represented as a density matrix by a sum of projection operators:

Mixed:

$$
\rho=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

Calculating density matrices

$$
|0\rangle\langle 0|=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad|1\rangle\langle 1|=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Pure:

$$
\rho=|\Psi\rangle\langle\Psi| \quad \text { Mixed: } \quad \rho=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

Let's look at the state

$$
|\Psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

Calculating density matrices

$$
|0\rangle\langle 0|=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad|1\rangle\langle 1|=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Pure:

$$
\rho=|\Psi\rangle\langle\Psi| \quad \text { Mixed: } \quad \rho=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

$$
\begin{gathered}
|\Psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
\rho=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

Calculating density matrices

Let's look at the state $\quad|\Psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
$\left.\qquad \rho=\frac{1}{2}(1) \frac{1}{1}\right)$

Probability of measuring " 0 "
Diagonal elements are probabilities, and must sum to one!

Probability of measuring " 1 "
Off-diagonal elements are called "quantum coherences"

Calculating density matrices

So is this the same thing? Still 50/50...

$$
\rho_{A}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\begin{array}{r}
|\Psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
\rho=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{array}
$$

This is just a classical random variable, not a superposition!

Representing mixed states

$$
\begin{gathered}
\rho_{A}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
\rho_{A}^{\text {Hadamard }}=H \rho_{A} H \\
=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=|0\rangle\langle 0|
\end{gathered}
$$

50/50 superposition state taken back to 0 !

Representing mixed states

$$
\begin{aligned}
\rho_{A}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) & H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
\rho_{A}^{\text {Hadamard }}= & H \rho_{A} H \\
= & \frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

So $\operatorname{prob}(0)=\operatorname{prob}(1)=\operatorname{prob}(+)=\operatorname{prob}(-)=0.5$!

Summary so far

A system in a mixed state is represented by a density matrix rather than a state vector.

A pure state $|\Psi\rangle$ has a density matrix $|\Psi\rangle\langle\Psi|$ A mixed state is a sum of pure-state density matrices, $\rho=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
Still to answer: if we have a many-qubit pure state, how can we calculate the density matrices of the individual mixed qubit states?

For example:

Experimental Results

$$
\frac{|D H\rangle+e^{i \pi / 4}\left|D^{\prime} V\right\rangle}{\sqrt{2}}
$$

D and D' are states of the ion, and H and V are horizontal and vertical polarization of the photon

Theal |arl
$F=0.974 \pm 0.02$

Imeginsy pur:

Teleportation by the numbers

Teleportation By the Numbers (or Symbols)

$$
\begin{aligned}
&|\psi\rangle_{D}=\alpha|0\rangle_{D}+\beta|1\rangle_{D} \quad\left|\Phi^{+}\right\rangle_{A B}=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}} \\
&|\psi\rangle_{D}\left|\Phi^{+}\right\rangle_{A B}=\left(\alpha|0\rangle_{D}+\beta|1\rangle_{D}\right) \otimes \frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}} \\
&= \frac{1}{2}\left|\Phi^{+}\right\rangle_{\overline{D A}}|\psi\rangle_{B} \\
&+\frac{1}{2}\left|\Phi^{-}\right\rangle_{D A} Z|\psi\rangle_{B} \\
& \text { Rewrite (just } \\
&+\frac{1}{2}\left|\Psi^{+}\right\rangle_{D A} X|\psi\rangle_{B} \\
&+\frac{1}{2}\left|\Psi^{-}\right\rangle_{D A} Z X|\psi\rangle_{B} \\
& \text { DA as a pair } \\
& \text { and B as a solo }
\end{aligned}
$$

Teleportation By the Numbers (or Symbols)

$$
|\psi\rangle_{D}\left|\Phi^{+}\right\rangle_{A B}=\left(\alpha|0\rangle_{D}+\beta|1\rangle_{D}\right) \otimes \frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
$$

BSM collapses state to one of

$$
+\frac{1}{2}\left|\Psi^{+}\right\rangle_{D A} X|\psi\rangle_{B}
$$ related to original these terms, and tells us which

Question: How do we fix it up?

[^0]: Van Meter et al., IEEE/ACM Trans. on Networking, Jun. 2009, quant-ph:0705.4128

