Connection Setup in a Quantum Network

Rodney Van Meter, Takaaki Matsuo
draft-van-meter-qirg-quantum-connection-setup-00
QIRG @IRTF/IETF104
Prague
2019/3/26

Quantum Connection

Distribution of end-to-end Bell pairs:

- On request from source node S
- Middle nodes perform entanglement swapping and error management

Quantum Connection

Distribution of end-to-end Bell pairs:

- On request from source node S
- Middle nodes perform entanglement swapping and error management

Quantum Connection

Distribution of end-to-end Bell pairs:

- On request from source node S
- Middle nodes perform entanglement swapping and error management

Quantum Internet
Distributed Data IT

Quantum Connection

Distribution of end-to-end Bell pairs:

- On request from source node S
- Middle nodes perform entanglement swapping and error management

Quantum Connection

Distribution of end-to-end Bell pairs:

- On request from source node S
- Middle nodes perform entanglement swapping and error management

Stages of the Problem

-Need to select a path (routing) (rdv et al., Networking Science 2013)
-Plan sequences of operations
-Convey sequences to nodes

Constraints/assumptions

-Links are heterogeneous and not a priori known
-Resource management (multiplexing scheme) beyond today's scope, but critically important

Information Each Node Holds

- Its own capabilities
- amount of memory, memory lifetime
- gate fidelities
- Link information
- who neighbors are
- link entanglement trial rate, success probability, fidelity (or full density matrix)
- Topology of the local network, with a routing metric
- Where the gateway to the outside world is

Information Each Node Does Not Have

- Full density matrix of the base Bell pairs generated by every node
- Number of qubits in every "QNIC" in the whole network
- Local gate fidelities for other nodes
- Anything at all about the internals of neighboring networks

All opaque to Bill (or at the very least, not known until he tries to \longrightarrow connect to QUIDDITCH)

Gateway to the outer

Gateway to the outer

conditions to purify conditions to swap

A conditions to purify conditions to swap purify if FG < 0.98, EF < 0.98 else swap

C purify if $\mathrm{BC}<0.98, \mathrm{CD}<0.98$
purify if AC < 0.98, CE <0.98 else swap
D purify if $C D<0.98$, $D E<0.98$ else swap

E purify if $\mathrm{DE}<0.98$, $\mathrm{EF}<0.98$
purify if EF < 0.98, FG < 0.98 else swap

G purify if $\mathrm{FG}<0.98, \mathrm{GH}<0.98$
purify if CE <0.98, $E G<0.98$
purify if AE < 0.98, EI < 0.98 else swap

F
purify if EG < 0.98, GI < 0.98 else swap
purify if GH < 0.98, $\mathrm{HI}<0.98$ else swap

D: Path Setup	Src: Bill's House Dst: QUIDDITCH $F=0.98$		
S	conditions to purify conditions to swap		
A	conditions to purify conditions to swap		
B	purify if FG < 0.98, EF < 0.98 else swap		
C	purify if $\mathrm{BC}<0.98, \mathrm{CD} \boldsymbol{<} \mathbf{0 . 9 8}$	purify if AC < 0.98, CE <0.98 else swap	
D	purify if CD < 0.98, DE < 0.98 else swap		
E	purify if $\mathrm{DE}<0.98$, EF <0.98	purify if CE < 0.98, EG < 0.98	purify if AE < 0.98, EI < 0.98 else swap
F	purify if EF < 0.98, FG < 0.98 else swap		
G	purify if FG <0.98, GH < 0.98	purify if EG < 0.98, GI < 0.98 else swap	
	S		

$\mathrm{F}=0.98$
conditions to purify conditions to swap
A conditions to purify conditions to swap purify if FG < 0.98, EF < 0.98
else swap
C purify if $\mathrm{BC}<0.98, \mathrm{CD}<0.98$
purify if AC < 0.98, CE <0.98 else swap
D purify if CD < 0.98, DE < 0.98

S

D: Path
Setup

Src: Bill's House
Dst: QUIDDITCH
$\mathrm{F}=0.98$
conditions to purify
S conditions to swap

A conditions to purify conditions to swap

B
purify if FG < 0.98, EF < 0.98 else swap

S

D: Path
Setup

Src: Bill's House
Dst: QUIDDITCH
$\mathrm{F}=0.98$
s
conditions to purify
conditions to swap

S

Connection Establishment Request

Used by D to establish rules and Bell pairs distribution.

Nodes provide information about the path:

- Resources
- Quality of the link, etc.

Connection Establishment (Response)

Destination node computes a swapping scheme.

Information provided by the middle nodes is important to create a consistent set of rules.

Conditions Actions

Pairs management	$\begin{gathered} A \sim x \\ F \leq 0.5 \end{gathered}$	Discard
	$\begin{gathered} A \sim x \\ A \sim x \\ \text { both } F \leq 0.95 \end{gathered}$	Purify
Swapping	$\begin{gathered} A \sim B \\ A \sim S \\ \text { both } F>0.95 \end{gathered}$	Swap

Every node receives a set of rules that will be used to maintain a consistent distributed swapping protocol.

Challenges

- Decomposition choice: swapping order hierarchical (top) or hop-by-hop (bottom)
- Limiting classical messages
- Consistency of the behaviors of every node
- Class of service

Comments from the ML

- Q: What about Segment Routing?
- A: Good thought. I'm not familiar w/ the current SR, but waypoint routing + circuit/reservation setup is what I have in mind.

Moreover, intended to be recursive, treating each network as a node in a larger graph (more than just two-layer IGP/EGP).

