
Discarding Old Keys
QUIC, IETF 104, Prague, March 2019

Martin Thomson



Goals

2

As discussed in the Tokyo interim:

Discard Initial keys as soon as possible

Discard Handshake keys when appropriate

Signal when a key update can be initiated

Use explicit signals rather than implicit ones, or timers



Basic Idea

Use a frame to signal all transitions

Initial -> Handshake

Handshake (+ 0-RTT) -> 1-RTT

1-RTTn -> 1-RTTn+1

The frame indicates when it is safe to discard old keys

3



Options

KEYS_READY #2237

RETIRE_KEYS #2492

MAX_KEY_UPDATES #2504

4

https://github.com/quicwg/base-drafts/pull/2237
https://github.com/quicwg/base-drafts/pull/2492
https://github.com/quicwg/base-drafts/pull/2504


KEYS_READY is sent when read keys are available

Implicitly identifies keys

Initiator of a key update has to suppress old frames

When sent and received

older keys can be discarded
and new key updates initiated

KEYS_READY

5



KEYS_READY

6

SC

Hands
hake

Hands
hake

Initial

Initial
0-RTT

1-RTT

1-RTT

0-RTT

1-RTT

1-RTT

1-RTT

CRYPTO

ClientHello

CRYPTO

…, Finished

CRYPTO

ServerHello

CRYPTO
EncryptedExtensions, 

…, Finished

Hands
hake

Initial

1-RTT

ACK

ACK

ACK

1-RTT1-RTT

KEYS_READY

KEYS_READY

KEYS_READY
KEYS_READY

ACK



KEYS_READY Key Update

7

RI

N

M
N

N

KEYS_READY

KEYS_READY

M

N

N

N

N

N

N

Can update 
again from 
here

Can update 
again from 
here



RETIRE_KEYS
RETIRE_KEYS send when no more data will be sent

Initial->Handshake = first packet (special case for server)
Handshake->1-RTT = after all data is acknowledged
Key Update = sent when new keys installed

Implicitly identifies keys

RETIRE_KEYS is retransmitted until acknowledged

When both sent and received, old keys can be discarded

Subsequent key updates can be initiated once received and 
sent has been acknowledged

8



RETIRE_KEYS

9

SC

Hands
hake

Hands
hake

Initial

Initial
0-RTT

1-RTT

1-RTT

0-RTT

1-RTT

1-RTT

1-RTT

CRYPTO

ClientHello

CRYPTO

…, Finished

CRYPTO

ServerHello

CRYPTO
EncryptedExtensions,

..., Finished

Hands
hake

Initial

1-RTT

ACK

ACK

ACK

1-RTT1-RTT

RETIRE_KEYS

RETIRE_KEYS *

RETIRE_KEYS

RETIRE_KEYS

ACK

Hands
hake



RETIRE_KEYS Key Update

10

RI

N

N

N

N

N

N

N

N

N

RETIRE_KEYS

RETIRE_KEYS

Can update 
again from 
here

Can update 
again from 
here

M

M

ACK

ACK



MAX_KEY_UPDATES

Cap key updates rather than control discarding of keys

Explicit counter in frame sets cap on updates

Fixes key update issues, limited fix for handshake:

No signal for Initial->Handshake transition
Handshake->1-RTT signaled with MAX_KEY_UPDATES=0
First frame is sent after all Handshake data ack’d

11



MAX_KEY_UPDATES

12

SC

Hands
hake

Hands
hake

Initial

Initial
0-RTT

1-RTT

1-RTT

0-RTT

1-RTT

1-RTT

1-RTT

CRYPTO

ClientHello

CRYPTO

…, Finished

CRYPTO

ServerHello

CRYPTO
EncryptedExtensions,

..., Finished

Hands
hake

Initial

1-RTT

ACK

ACK

ACK

1-RTT1-RTT

MAX_KEY_UPDATES 
(0)

MAX_KEY_UPDATES 
(0)

ACK

Hands
hake

Implicit drop of 
Initial Keys

Implicit drop of 
Initial Keys



Use a frame (as agreed in Tokyo)

An endpoint can block key updates by not sending the frame

Both KEYS_READY and MAX_KEY_UPDATES allow a 
3PTO delay to cap active read keys at an endpoint to 2

The time limit is aspirational, as no mechanism exists to 
force an endpoint to send the proposed frames

Common characteristics

13



Difference: Explicit vs. Ambient Signal

Explicit: counter in frame

Drawbacks: octets, allows for >1 update

Ambient: use the encryption level

Drawbacks: need to suppress any retransmission when 
initiating a key update

14



Initial -> Handshake Transition

MAX_KEY_UPDATES says that the implicit signal is OK

The other proposals address use an explicit signal

15



Trigger

KEYS_READY - matching read keys available

RETIRE_KEYS

Handshake: all data from previous epoch acknowledged
exception for server: immediately

1-RTT: when all CRYPTO data is acknowledged

Update: send immediately, no update until 
acknowledged

MAX_KEY_UPDATES - trigger isn’t important

16


