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Background

• RIFT core design team realized that the flooding reduction mechanism 
can easily be extended to provide built-in multicast support
• w/o additional multicast specific signaling

• This turns out to be very similar to PIM-BIDIR
• Traffic travels north all the way and fork down south along the way

• Further considerations & discussions led to using separate multicast 
signaling after all
• Elephant flow; load-balancing

• Current thinking is enhance and extend PIM-BIDIR concept with 
native RIFT signaling



PIM-BIDIR Background
• (*,G) Joins are sent “upstream” towards a Rendezvous Point Address (RPA)

• RPA is either on a particular router, or just an address on a LAN not bound to any router
• The link that the RPA is on is RP Link (RPL - a loopback or a LAN interface)
• The joins establish sub-trees rooted at the RPL routers (routers on the RPL)
• The RPL connects the sub-trees into a tree

• Traffic flows along the tree
• Upstream towards the RPA, eventually arriving at RPL routers
• Along the way, traffic also forks to downstream routers from which (*,G) joins are received
• RPL routers flood all traffic to each other

• They don’t send joins to each other
• This is fine on a LAN

• Traffic received on the RPL (from other RPL routers) is sent downstream as needed

• With BGP-MVPN, the provider network can be used as a RPL
• PEs are RPL routers
• But they can send joins towards each other, for selectively sending traffic



PIM-Bidir Adapted for RIFT 1/2

• No explicit RPA
• Joins just follow the default route based on control plane hashing

• Problem – there is no RPL (the ToFs aren’t connected)
• See later slides

• Bidirectional (*, G-prefix) trees
• G-prefix can be ‘G’ or ‘*’ to the two extremes, or anything in between

• (*,*) for “mice” flows - traffic sent everywhere – even if no receivers

• (*,G) for “elephant” flows – sent only where there are receivers for G

• (*,G-prefix) for “giraffe” flows
• sent where there are receivers for any group in the G-prefix



• Joins are done with N-PGPs
• Consumed, merged and re-originated at every hop

• But only sent to ONE of the north neighbors
• Chosen by downstream with hashing

• Load balancing different groups to different upstream neighbors
• Different downstream nodes will pick the same upstream neighbor for a particular group

• Even if they somehow pick different upstream it will still work
• Hash algorithm should prevent too many downstream nodes from picking the same upstream

• So that the upstream does not have to replicate to too many downstream neighbors

• (*,G)/(*,G-prefix)/(*,*) forwarding state built accordingly
• Interface list includes hashed northbound interface, and southbound 

interface on which a join is received
• Traffic arriving on any of the interfaces forwarded out of others in the list

PIM-Bidir Adapted for RIFT 2/2
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RPL Problem:
disjoint sub-trees rooted at the Sub ToF

Problem: Build a meta tree (a tree of sub-trees). 
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Goal: connect the sub-trees

Proposal: Build a loopless a meta-tree (a tree of trees) by joins those trees via the superspine 



Build a Spanning Tree here
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Approach: 
build a spanning tree of ToF and SubToF

The spanning tree must span all subToF and may span some or optionally all ToF nodes



Proposal: Step 1, subToF selects a parent ToF

A hash may determine a subset of ToF nodes
 That subset of ToF nodes now become partial roots

SubToF nodes advertise the ID of their parent to other ToFs
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Result: A set of partial trees

N3 N4 N5

S3 S4 S5S1 S1



Proposal: Step 2, SubRoot join Main Root tree

Main Root is highest system ID of the Roots (S4 here)
 SubRoot can parent to a subToF in a tree with higher sysID

SubRoots nodes now advertise the higher sysID

Highest system ID

Result: A subset of ToF nodes are partial root 
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Result a spanning structure with subset of ToF


