
RIFT Multicast

Jeffrey Zhang

Pascal Thubert

IETF104, Prague



Background

• RIFT core design team realized that the flooding reduction mechanism 
can easily be extended to provide built-in multicast support
• w/o additional multicast specific signaling

• This turns out to be very similar to PIM-BIDIR
• Traffic travels north all the way and fork down south along the way

• Further considerations & discussions led to using separate multicast 
signaling after all
• Elephant flow; load-balancing

• Current thinking is enhance and extend PIM-BIDIR concept with 
native RIFT signaling



PIM-BIDIR Background
• (*,G) Joins are sent “upstream” towards a Rendezvous Point Address (RPA)

• RPA is either on a particular router, or just an address on a LAN not bound to any router
• The link that the RPA is on is RP Link (RPL - a loopback or a LAN interface)
• The joins establish sub-trees rooted at the RPL routers (routers on the RPL)
• The RPL connects the sub-trees into a tree

• Traffic flows along the tree
• Upstream towards the RPA, eventually arriving at RPL routers
• Along the way, traffic also forks to downstream routers from which (*,G) joins are received
• RPL routers flood all traffic to each other

• They don’t send joins to each other
• This is fine on a LAN

• Traffic received on the RPL (from other RPL routers) is sent downstream as needed

• With BGP-MVPN, the provider network can be used as a RPL
• PEs are RPL routers
• But they can send joins towards each other, for selectively sending traffic



PIM-Bidir Adapted for RIFT 1/2

• No explicit RPA
• Joins just follow the default route based on control plane hashing

• Problem – there is no RPL (the ToFs aren’t connected)
• See later slides

• Bidirectional (*, G-prefix) trees
• G-prefix can be ‘G’ or ‘*’ to the two extremes, or anything in between

• (*,*) for “mice” flows - traffic sent everywhere – even if no receivers

• (*,G) for “elephant” flows – sent only where there are receivers for G

• (*,G-prefix) for “giraffe” flows
• sent where there are receivers for any group in the G-prefix



• Joins are done with N-PGPs
• Consumed, merged and re-originated at every hop

• But only sent to ONE of the north neighbors
• Chosen by downstream with hashing

• Load balancing different groups to different upstream neighbors
• Different downstream nodes will pick the same upstream neighbor for a particular group

• Even if they somehow pick different upstream it will still work
• Hash algorithm should prevent too many downstream nodes from picking the same upstream

• So that the upstream does not have to replicate to too many downstream neighbors

• (*,G)/(*,G-prefix)/(*,*) forwarding state built accordingly
• Interface list includes hashed northbound interface, and southbound 

interface on which a join is received
• Traffic arriving on any of the interfaces forwarded out of others in the list

PIM-Bidir Adapted for RIFT 2/2



N1 N2 N3

L1 L2 L3
Leaves (L=0)

ToF (L=3)

Mid 1 (L=1) M1 M2 M3

Sub ToF (L=2) N4 N5

L4 L5

M4 M5

S1 S2 S3 S4 S5

RPL Problem:
disjoint sub-trees rooted at the Sub ToF

Problem: Build a meta tree (a tree of sub-trees). 



N1 N2 N3

L1 L2 L3
Leaves (L=0)

Spine (L=3)

Mid 1 (L=1) M1 M2 M3

Mid 2 (L=2) N4 N5

L4 L5

M4 M5

S1 S2 S3 S4 S5

Goal: connect the sub-trees

Proposal: Build a loopless a meta-tree (a tree of trees) by joins those trees via the superspine 



Build a Spanning Tree here
N1 N2 N3

L1 L2 L3
Leaves (L=0)

Spine (L=3)

Mid 1 (L=1) M1 M2 M3

Mid 2 (L=2) N4 N5

L4 L5

M4 M5

S1 S2 S3 S4 S5

Approach: 
build a spanning tree of ToF and SubToF

The spanning tree must span all subToF and may span some or optionally all ToF nodes



Proposal: Step 1, subToF selects a parent ToF

A hash may determine a subset of ToF nodes
 That subset of ToF nodes now become partial roots

SubToF nodes advertise the ID of their parent to other ToFs

Highest system ID

N3 N4 N5

S3 S4 S5

Result: A set of partial trees

N3 N4 N5

S3 S4 S5S1 S1



Proposal: Step 2, SubRoot join Main Root tree

Main Root is highest system ID of the Roots (S4 here)
 SubRoot can parent to a subToF in a tree with higher sysID

SubRoots nodes now advertise the higher sysID

Highest system ID

Result: A subset of ToF nodes are partial root 

N3 N4 N5

S3 S4 S5S1

N3 N4 N5

S3 S4 S5S1



N1 N2 N3

L1 L2 L3
Leaves (L=0)

Spine (L=3)

Mid 1 (L=1) M1 M2 M3

Mid 2 (L=2) N4 N5

L4 L5

M4 M5

S1 S2 S3 S4 S5

Result a spanning structure with subset of ToF


