
RIFT Multicast

Jeffrey Zhang

Pascal Thubert

IETF104, Prague



Background

• RIFT core design team realized that the flooding reduction mechanism 
can easily be extended to provide built-in multicast support

• w/o additional multicast specific signaling

• This turns out to be very similar to PIM-BIDIR
• Traffic travels north all the way and fork down south along the way

• Further considerations & discussions led to using separate multicast 
signaling after all

• Elephant flow; load-balancing

• Current thinking is enhance and extend PIM-BIDIR concept with 
native RIFT signaling



PIM-BIDIR Background
• (*,G) Joins are sent “upstream” towards a Rendezvous Point Address (RPA)

• RPA is either on a particular router, or just an address on a LAN not bound to any router

• The link that the RPA is on is RP Link (RPL - a loopback or a LAN interface)

• The joins establish sub-trees rooted at the RPL routers (routers on the RPL)

• The RPL connects the sub-trees into a tree

• Traffic flows along the tree
• Upstream towards the RPA, eventually arriving at RPL routers

• Along the way, traffic also forks to downstream routers from which (*,G) joins are received

• RPL routers flood all traffic to each other
• They don’t send joins to each other

• This is fine on a LAN

• Traffic received on the RPL (from other RPL routers) is sent downstream as needed

• With BGP-MVPN, the provider network can be used as a RPL
• PEs are RPL routers

• But they can send joins towards each other, for selectively sending traffic



PIM-Bidir Adapted for RIFT 1/2
• No explicit RPA

• Joins just follow the default route based on control plane hashing

• Problem – there is no RPL (the ToFs aren’t connected)
• See later slides

• Bidirectional (*, G-prefix) trees
• G-prefix can be ‘G’ or ‘*’ to the two extremes, or anything in between
• (*,*) for “mice” flows - traffic sent everywhere – even if no receivers
• (*,G) for “elephant” flows – sent only where there are receivers for G
• (*,G-prefix) for “giraffe” flows

• sent where there are receivers for any group in the G-prefix



• Joins are done with N-PGPs
• Consumed, merged and re-originated at every hop

• But only sent to ONE of the north neighbors
• Chosen by downstream with hashing

• Load balancing different groups to different upstream neighbors

• Different downstream nodes will pick the same upstream neighbor for a particular group
• Even if they somehow pick different upstream it will still work

• Hash algorithm should prevent too many downstream nodes from picking the same upstream

• So that the upstream does not have to replicate to too many downstream neighbors

• (*,G)/(*,G-prefix)/(*,*) forwarding state built accordingly
• Interface list includes hashed northbound interface, and southbound interface on 

which a join is received
• Traffic arriving on any of the interfaces forwarded out of others in the list

PIM-Bidir Adapted for RIFT 2/2



N1 N2 N3

L1 L2 L3
Leaves (L=0)

ToF (L=3)

Mid 1 (L=1) M1 M2 M3

Sub ToF (L=2) N4 N5

L4 L5

M4 M5

S1 S2 S3 S4 S5

RPL Problem:
disjoint sub-trees rooted at the Sub ToF

Problem: Build a meta tree (a tree of sub-trees). 



N1 N2 N3

L1 L2 L3
Leaves (L=0)

Spine (L=3)

Mid 1 (L=1) M1 M2 M3

Mid 2 (L=2) N4 N5

L4 L5

M4 M5

S1 S2 S3 S4 S5

Goal: connect the sub-trees

Proposal: Build a loopless a meta-tree (a tree of trees) by joins those trees via the superspine 



Build a Spanning Tree here
N1 N2 N3

L1 L2 L3
Leaves (L=0)

Spine (L=3)

Mid 1 (L=1) M1 M2 M3

Mid 2 (L=2) N4 N5

L4 L5

M4 M5

S1 S2 S3 S4 S5

Approach: 
build a spanning tree of ToF and SubToF

The spanning tree must span all subToF and may span some or optionally all ToF nodes



Proposal: Step 1, subToF selects a parent 
ToF
A hash may determine a subset of ToF nodes
Þ That subset of ToF nodes now become partial roots

SubToF nodes advertise the ID of their parent to other ToFs

Highest system ID

N3 N4 N5

S3 S4 S5

Result: A set of partial trees

N3 N4 N5

S3 S4 S5S1 S1



Proposal: Step 2, SubRoot join Main Root 
tree
Main Root is highest system ID of the Roots (S4 here)
Þ SubRoot can parent to a subToF in a tree with higher sysID

SubRoots nodes now advertise the higher sysID

Highest system ID

Result: A subset of ToF nodes are partial root 

N3 N4 N5

S3 S4 S5S1

N3 N4 N5

S3 S4 S5S1



N1 N2 N3

L1 L2 L3
Leaves (L=0)

Spine (L=3)

Mid 1 (L=1) M1 M2 M3

Mid 2 (L=2) N4 N5

L4 L5

M4 M5

S1 S2 S3 S4 S5

Result a spanning structure with subset 
of ToF


	Slide 1
	Background
	PIM-BIDIR Background
	PIM-Bidir Adapted for RIFT 1/2
	PIM-Bidir Adapted for RIFT 2/2
	RPL Problem: disjoint sub-trees rooted at the Sub ToF
	Goal: connect the sub-trees
	Approach: build a spanning tree of ToF and SubToF
	Proposal: Step 1, subToF selects a parent ToF
	Proposal: Step 2, SubRoot join Main Root tree
	Result a spanning structure with subset of ToF

