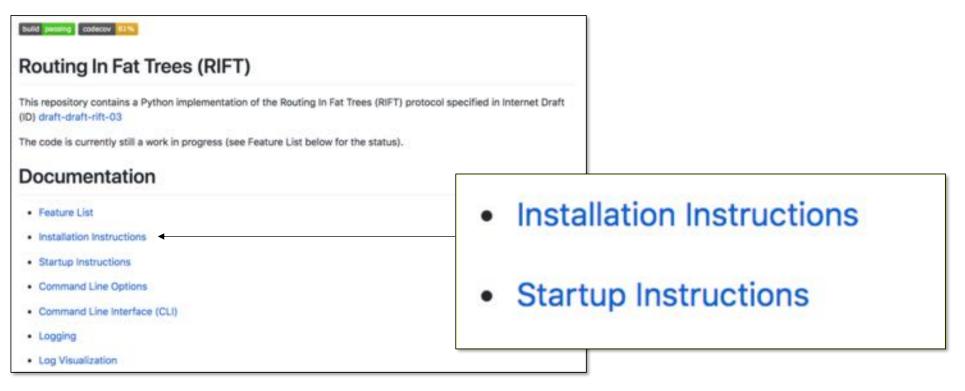
RIFT-Python Open Source Implementation Status Update, Lessons Learned, and Interop Testing

IETF 104, Prague, RIFT Working Group Bruno Rijsman, brunorijsman@gmail.com, 24-Mar-2019 v3


RIFT open source implementation

- On GitHub: <u>https://github.com/brunorijsman/rift-python</u>
- Grew out of IETF 102 hackathon
 - Original modest goal was to test the LIE FSM
 - Work is continuing to become complete RIFT implementation
- Goals:
 - Help get the RIFT specification to the point that it is clear and complete
 - To be a reference RIFT implementation
- Current emphasis on being a user-friendly, educational, transparent, debugable reference implementation (rather than raw performance).
- Implemented in Python
- Extensive documentation: <u>README.md</u>
- Not associated with any vendor

24-Oct-2018 v1

Getting started with RIFT-Python

https://github.com/brunorijsman/rift-python/blob/master/README.md

New: IPv6 support

- IPv6 adjacencies (LIE packets)
 - Always send both IPv4 and IPv6 LIE packets (order does not matter)
 - Every LIE packet is received twice (once on IPv4 an once on IPv6)
 - LIE FSM must be (and in fact is) "idem-potent":
 - Receiving the same LIE packet again must not change state
 - Sending an IPv6 LIE implies that IPv6 forwarding is supported (ditto for IPv4)
 - If a node wants to stop forwarding IPv4/IPv6, the adjacency must be bounced
- IPv6 flooding (TIE, TIDE, TIRE packets)
 - Pick either IPv4 or IPv6 for sending flooding packets
 - Based on first LIE packet received (this is implementation choice)
 - IPv4 routes can be flooded over IPv6 and vice versa
 - Might end up using IPv4 flooding $A \rightarrow B$, but IPv6 flooding $B \rightarrow A$
 - Hence, must always receive flooding packets on both IPv4 an IPv6
 - "Chaos monkey" testing found a bug here

New: IPv6 support

- IPv6 support very dependent on OS and OS version
- show interface ... sockets command helps debug IPv6 issues

Traffic	Direction	Family	Local Address	Local Port	Remote Address	Remote Port
LIEs	Receive	IPv4	224.0.0.120	10000	Any	Any
LIEs	Receive	IPv6	ff02::78%veth-1007a-107a	10000	Any	Any
LIEs	Send	IPv4	99.37.38.37	41761	224.0.0.120	10000
LIEs	Send	IPv6	fe80::648e:c4ff:fed7:fcb7%veth-1007a-107a	44996	ff02::78%veth-1007a-107a	10000
Flooding	Receive	IPv4	99.37.38.37	10001	Any	Any
Flooding	Receive	IPv6	fe80::648e:c4ff:fed7:fcb7%veth-1007a-107a	10001	Any	Алу
Flooding	Send	IPv4	99.37.38.37	46850	99.37.38.38	10001

leaf-3-1> show interface veth-1007a-107a sockets

24-Oct-2018 v1

New: Flooding reduction

- Implemented the "example" algorithm in draft (which is complex)
- Other implementations are free to choose different algorithm
- **show flooding-reduction** command for debugging:

					5 A.				A 100 (0 - 1)		
Interface Name		Pari Sys7	iystem 10 Farent iystem 10 Interface Name				Grandparen Count	1 Similari 1 Group	ty Flood Repeater		
veth-1007a-1	87a 1	387	8-30	spine	-1879-1	1067a	2	1 1: 3-2	True		
vech-1007c-1	85a	189		spine-3-3:veth-		-18%a-3	1007c	3	1 1: 3-2	True 1	
vect-1007p-1	854	386	1	spine	3-21 WES	-186a-1	10075	2	1 1: 3-2	False 1	
irandparents:											
Grandpartent System 20	Par Cos	ett et	Flood Repeat Adjaci		Redundar Covered						
2	3	5	2		True						
3	1		1		False	i					
4	3	1.1	2	- 1	True	i					
Interfaces:											
Interface Name			ntace r			Syste	nber m 10	Neighbor State	Neighbor Direction	Neighbor is Fluod Repeater for This Node	This Node is Flood Repeater for Neighbor
veth-1007a-1	878	spine-3-1:veth-D#7a-DM7a		187	1 2	THREE_MAY	North	True	Not Applicable		
veth-18879-3	68a	spine-3-2:veth-188a-1887b		180		THREE_MAY	North	false	Not Applicable		
and the second second second			spine-3-2:veth-186a-1887b spine-3-3:veth-186a-1887c					THO WAY	North	True	Not Applicable

24-Oct-2018 v1

New: Shortest Path First (SPF)

- Separate north-bound and south-bound SPFs
- **show spf** command for debugging:

spine-1-1> show spf SPF Statistics:

SPF Runs | 1193 | SPF Deferrals | 9848 |

South SPF Destinations:

Destination	Cost	Predecessor System IDs	Tags	IPv4 Next-hops	IPv6 Next-hops
101 (spine-1-1)	0		i	l	
1002 (leaf-1-2)	11	101	i	veth-101b-1002a 99.7.8.7	veth-101b-1002a fe80::3477:5cff:fe85:68fd
88.0.2.1/32	2	1002	i	veth-101b-1002a 99.7.8.7	veth-101b-1002a fe80::3477:5cff:fe85:68fd
88.1.1.1/32	11	101	i	i	I

North SPF Destinations:

Destination	Cost	Predecessor System IDs	Tags	IPv4 Next-hops	IPv6 Next-hops
101 (spine-1-1)	0		1		
88.1.1.1/32	1	101	1	1	1

24-Oct-2018 v1

New: Routing Information Base (RIB)

- IPv4 and IPv6
- ECMP support
- show routes commands to see contents of RIB:

spine-1-1> show routes
IPv4 Routes:

Prefix	Owner	Next-hops
0.0.0.0/0	North SPF	veth-101f-3a 99.91.92.91

IPv6 Routes:

Prefix	Owner	Next-hops
::/0	North SPF	<pre>veth-101e-2a fe80::5077:c3ff:fee8:1b36 veth-101f-3a fe80::f8f6:86ff:fe16:742d veth-101g-4a fe80::2062:a5ff:fe18:5b77</pre>

24-Oct-2018 v1

New: Forwarding Information Base (FIB)

- Route which will be installed into kernel
- **show forwarding** commands to see contents of FIB:

spine-1-1> show forwarding
IPv4 Routes:

Prefix	Owner	Next-hops
0.0.0.0/0	North SPF	veth-101f-3a 99.91.92.91 veth-101g-4a 99.109.110.109
88.0.1.1/32	South SPF	veth-101a-1001a 99.1.2.1
88.0.2.1/32	South SPF	veth-101b-1002a 99.7.8.7

IPv6 Routes:

Prefix	Owner	Next-hops
::/0	North SPF	<pre>veth-101d-1a fe80::9079:71ff:fe08:728e veth-101f-3a fe80::f8f6:86ff:fe16:742d</pre>
	i i	veth-101g-4a fe80::2062:a5ff:fe18:5b77

24-Oct-2018 v1

New: Install Routes into Kernel

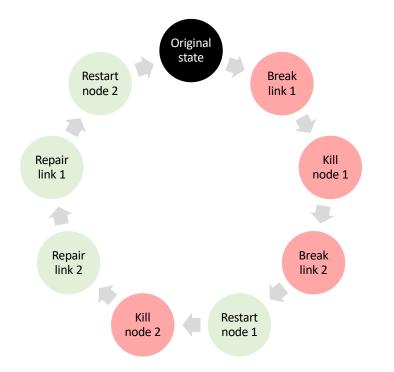
• **show kernel routes** commands to see routes in kernel:

Table	Address Family	Destination 	Туре	Protocol	Outgoing Interface	Gateway	Weight
Main	IPv4	99.1.2.0/24	Unicast	Kernel	veth-101a-1001a		
Main	IPv4	99.7.8.0/24	Unicast	Kernel	veth-101b-1002a		1
Main	IPv4	99.13.14.0/24	Unicast	Kernel	veth-101c-1003a		1
Main	IPv4	99.55.56.0/24	Unicast	Kernel	veth-101d-1a		1
Main	IPv4	99.73.74.0/24	Unicast	Kernel	veth-101e-2a		1
Main	IPv4	99.91.92.0/24	Unicast	Kernel	veth-101f-3a		1
Main	IPv4	99.109.110.0/24	Unicast	Kernel	veth-101g-4a		1
Main	IPv6	::/0	Unicast	RIFT	veth-101f-3a	fe80::f8f6:86ff:fe16:742d	1
Main	IPv6	::/0	Unicast	RIFT	veth-101g-4a	fe80::2062:a5ff:fe18:5b77	1
Main	IPv6	fe80::/64	Unicast	Kernel	veth-101a-1001a		1
Main	TPv6	fe80::/64	Unicast	Kernel	l veth-101h-1002a		1

spine-1-1> show kernel routes table main
Kernel Routes:

24-Oct-2018 v1

New: Extensive Statistics


- Statistics per interface, per node, per engine
- Packet count and rates, byte count and rates
- FSM events and transitions
- Show commands with exclude-zero option, clear commands spine-1-1> show interface veth-101e-2a statistics Traffic:

Description	Value	Last Rate Over Last 10 Changes	Last Change
RX IPv4 LIE Packets	258 Packets, 39064 Bytes	0.07 Packets/Sec, 9.79 Bytes/Sec	0d 00h:00m:14.91s
TX IPv4 LIE Packets	5150 Packets, 792080 Bytes	0.75 Packets/Sec, 115.02 Bytes/Sec	0d 00h:00m:00.26s
RX IPv4 TIE Packets	17 Packets, 5256 Bytes	0.00 Packets/Sec, 1.31 Bytes/Sec	0d 00h:02m:28.51s
TX IPv4 TIE Packets	1074 Packets, 320971 Bytes	10.53 Packets/Sec, 3115.93 Bytes/Sec	0d 00h:00m:03.37s
RX IPv4 TIDE Packets	36 Packets, 77112 Bytes	0.00 Packets/Sec, 10.70 Bytes/Sec	0d 00h:00m:12.06s
TX IPv4 TIDE Packets	323 Packets, 252586 Bytes	0.09 Packets/Sec, 69.55 Bytes/Sec	0d 00h:00m:03.53s

24-Oct-2018 v1

New: Chaos testing framework

Described in IETF 104 hackathon readout presentation

Proposal to implement RIFT in FRR

- Free Range Routing (FRR) is open source routing stack: <u>https://frrouting.org/</u>
- FRR community is considering implementing RIFT on FRR
- Code would be in C and open source
- The work would be done by NetDEF (a 501c3) <u>https://www.netdef.org/</u>
- Bruno Rijsman (author of RIFT-Python) would be main implementer
- Completely new implementation in C on FRR infrastructure, but re-using experience gained from RIFT-Python implementation
- Expose YANG data structures using new FRR north-bound APIs
- Looking for additional sponsorship. Contact Alistair Woodman (awoodman@netdef.org or in person here at IETF)if interested.

Current status summary

Feature group	Completeness estimate
Adjacencies	85%
Zero touch provisioning (ZTP)	100%
Flooding	75%
Route calculation	50%
Management interface	75%
Development toolchain	85%

Was already completed at IETF 103

Newly completed at IETF 104

Not yet completed

Note: all estimates are a finger in the wind estimates

24-Oct-2018 v1

Current status: adjacencies

Complete	Not Complete
Exchange LIE packets	New multi-neighbor state
LIE finite state machine IPv4 adjacencies	Interactions with BFD Security envelope
Interoperability with vendor RIFT	
IPv6 adjacencies	

Current status: Zero Touch Provisioning (ZTP)

Current status: flooding

Complete	Not Complete
Exchange TIE / TIDE / TIRE packets Node TIEs Prefix TIEs TIE database TX / RTX / REQ / ACK queues Flooding procedures Flooding scope rules (N, S, EW) South-bound default route origination Honoring received overload bit Interoperability with vendor RIFT	Efficient TIE propagation (w/o decode) Positive disaggregation TIEs Negative disaggregation TIEs Key-value TIEs External TIEs Policy-guided prefixes Setting sent overload bit Clock comparison
IPv6 flooding Flooding reduction	

Note: large bold font indicates changes since IETF-103

Current status: route calculation

Complete	Not Complete
Routing Information Base (RIB) Forwarding Information Base (FIB) North-bound SPF South-bound SPF IPv4 and IPv6 Optimized route calculation on leafs ECMP	East-west forwarding Positive disaggregation procedures Negative disaggregation procedures Fabric bandwidth balancing Label binding / segment routing Multicast *

* = Not yet clear whether or not this will be included in the RIFT draft

Current status: management

Complete	Partial	Not Complete
Configuration file Telnet CLI client Operational commands Documentation Multi-node topologies Logging Command history	On-the-fly config commands Command help Statistics	SSH CLI client * Command completion YANG data models * Granular debugging / tracing

* = Currently not planning to implement this

Current status: development toolchain

Complete	Not Complete
Automated unit tests	100% code coverage
Automated system tests	Wireshark dissector / standalone pcap
Automated interop tests	
Travis continuous integration (CI)	
Strict pylint	
Finite state machine (FSM) framework	
Visualization tool	
Codecov code coverage (~ 85%)	
Topology generation tool	
Network namespace-based topologies	
Chaos monkey	