
IETF 104 ROLL

Routing over Low-Power And Lossy
Networks

Chairs:
Peter van der Stok

Ines Robles

Secretary:
Michael Richardson

1

Monday 03/25 - 16:10-18:10

Note Well
This is a reminder of IETF policies in effect on various topics such as patents or code of conduct. It is only meant to
point you in the right direction. Exceptions may apply. The IETF's patent policy and the definition of an IETF
"contribution" and "participation" are set forth in BCP 79; please read it carefully.

As a reminder:

● By participating in the IETF, you agree to follow IETF processes and policies.
● If you are aware that any IETF contribution is covered by patents or patent applications that are owned or

controlled by you or your sponsor, you must disclose that fact, or not participate in the discussion.
● As a participant in or attendee to any IETF activity you acknowledge that written, audio, video, and photographic

records of meetings may be made public.
● Personal information that you provide to IETF will be handled in accordance with the IETF Privacy Statement.
● As a participant or attendee, you agree to work respectfully with other participants; please contact the

ombudsteam (https://www.ietf.org/contact/ombudsteam/) if you have questions or concerns about this.

Definitive information is in the documents listed below and other IETF BCPs. For advice, please talk to WG chairs or
ADs:

BCP 9 (Internet Standards Process)
BCP 25 (Working Group processes)
BCP 25 (Anti-Harassment Procedures)
BCP 54 (Code of Conduct)
BCP 78 (Copyright)
BCP 79 (Patents, Participation)
https://www.ietf.org/privacy-policy/ (Privacy Policy)

Source: https://www.ietf.org/about/note-well/

2

https://www.ietf.org/privacy-policy/
https://www.ietf.org/about/note-well/

Meeting Materials
● 16:10-18:10 Monday Afternoon session II

● Remote Participation

○ Jabber Room: xmpp:roll@jabber.ietf.org?join

○ Meetecho: https://www.meetecho.com/ietf104/roll

○ Etherpad: https://etherpad.tools.ietf.org/p/notes-ietf-104-roll

○ Minutes taker: MILLION THANKS to Dominique B.

● Jabber Scribe: MILLION THANKS to Rahul J.

● Please sign blue sheets :-)

3

https://etherpad.tools.ietf.org/p/notes-ietf-103-roll

Agenda

Milestones

5

Date Milestone

Apr 2018 Initial Submission of a proposal with uses cases for RPI, RH3 and IPv6-in-IPv6 encapsulation to the IESG

Aug 2018 Initial submission of a root initiated routing state in RPL to the IESG

Dec 2018 Initial submission of a proposal to augment DIS flags and options to the IESG

Jan 2019 Initial submission of a proposal for Source-Route Multicast for RPL to the IESG

Jul 2018 Initial submission of a solution to the problems due to the use of No-Path DAO Messages to the IESG

Jul 2018 Initial submission of a reactive P2P route discovery mechanism based on AODV-RPL protocol to the IESG

Jul 2019 Initial submission of a Forwarder Selection Protocol for MPL to the IESG

Mar 2019 Initial submission of a YANG model for MPL to the IESG

Sep 2019 Recharter WG or close

State of Active Internet-Drafts
 Draft Status

draft-ietf-roll-aodv-rpl-06 WGLC - Discussion today

draft-ietf-roll-dao-projection-05 WGLC - Discussion today

Draft-ietf-roll-forw-select-00 (Expired) On hold

draft-ietf-roll-useofrplinfo-25 New Version - WGLC ready

Draft-ietf-roll-dis-modifications-00 (Expired) To be continued

Draft-ietf-roll-mpl-yang-02 (Expired) On hold

Draft-ietf-roll-bier-ccast-01 (Expired) Bier-roll design team takes over

draft-ietf-roll-efficient-npdao-09 Submitted to IESG :D

draft-ietf-roll-rpl-observations-00 Used as model to develop further drafts

draft-ietf-roll-nsa-extension-01 Discussion today

6

Related Internet-Drafts

7

 Draft Status

draft-thubert-roll-unaware-leaves-06

Discussion today :-)
draft-rahul-roll-mop-ext-00

draft-koutsiamanis-roll-traffic-aware-of-00

draft-audeoudh-rpl-asymmetric-links-00

Open tickets

8

https://trac.ietf.org/trac/roll/report/2

Using RPL Option Type, Routing Header for Source Routes and
IPv6-in-IPv6 encapsulation in the RPL Data Plane

draft-ietf-roll-useofrplinfo-25

● Operational Considerations added for unaware-leaves

● Operational Considerations of the new option 0x23

● Security Considerations modified - Tickets 190,191,192 and 193 fixed.

● Normative Terminology eliminated of the examples.

● Please read and comment into the ML => submitted to IESG, in LC

Asymmetric AODV-P2P-RPL in Low-
Power and Lossy Networks (LLNs)

draft-ietf-roll-aodv-rpl-06
IETF 104, Prague

Satish Anamalamudi <satishnaidu80@gmail.com>

Mingui Zhang <zhangmingui@huawei.com>

Charlie Perkins <charles.perkins@earthlink.net>

S.V.R Anand <anand@ece.iisc.ernet.in>

Liu Bing <remy.liubing@huawei.com>

Changes from version 05 to version 06

• Added Security Considerations based on the
security mechanisms defined in RFC 6550.

• Clarified the nature of improvements due to
P2P route discovery versus bidirectional
asymmetric route discovery.

• Editorial improvements and corrections

Security Considerations from RFC 6550

Previous Security Considerations referred the
reader to RFC 6550. The new document
presents the RFC 6550 framework in detail.

• Unsecured (rely on external mechanisms)

• Preinstalled (pre-configured shared key)

• Authenticated (node obtains a second key
from a key authority)

P2P versus bidirectional asymmetric
route discovery

• P2P routes reduce congestion at the root

• P2P routes often provide shorter paths
 Higher performance routing, reduced interference

• Bidirectional asymmetric routes may exist that
would not be found when only looking for
symmetric routes
 better network connectivity

Other editorial improvements

• Use “Target Node” in the Introduction (instead
of TargNode, which wasn’t defined yet)

• Move some bibliographic references from
Normative to Informational

• Clarifications to improve meaning, for instance
about sequence number incrementation

• Various spelling and grammatical syntax
corrections

Next steps

• WG Last Call comments have been resolved

• Shepherding

• Request publication

• More reviewer comments?

MOP Extension & Capabilities
draft-rahul-roll-mop-ext-00

- Rahul, Pascal @ IETF104, Prague

Need?
● Mode of Operation (MOP)

– Defines mandatory primitives to be
supported by the routers in the
networks

– 3-bit size

– Already exhausted

MOP Used for

0 No downward routes

1 Non-storing

2 Storing with no mcast

3 Storing with mcast

4 P2P-RPL

5,6,7
(Unused)

(AODV-RPL, P-DAO-NS, P-
DAO-Storing)

MOP Extension
● MOPex Option

– New RPL Control message option

– Applicable only if base DIO-MOP = 0x7

– Final MOP = base MOP + MOPex

Introducing Capabilities
● Capabilities indicate the set of features supported

– DIO(cap): Capabilities supp by BR
– DAO(cap): Capabilities supp by 6LR/6LN
– Could be mandatory or optional

● Specs defining new capability indicate whether it is mandatory/optional

● Why MOP is not sufficient?
– MOP defines mandatory primitives needed by the routers to participate
– With capabilities, you can have mandatory or optional with handshake (using DIO/DAO/ACK)

● Example use-case
– Indicate support for 6LoRH capability ?

● Who else uses such capabilities field?
– 802.11 Beacon

Capabilities Option
● Defined as new RPL Control message option

– Can be part of DIO/DAO/ACK

Points to ponder
● CAPs can work with existing MOPs

– CAPs and MOPs is not dependent on each other

● CAPs to be sent in every DAO?
– Can we elide/omit after initial DIO/DAO handshake?

● Impact on memory requirement?
– 6LRs can independently generate DAO on behalf of any sub-child
– With CAPs, will it increase memory requirement?

● Example capabilities handshake use-case?

1

Root initiated routing state in RPL

Pascal Thubert

draft-ietf-roll-dao-projection

IETF 104

Prague

Changes Highlights

• Invited Matthew to contribute from implementation experience

• New text on instances indicating risk of loops if the PCE adds
routes to an instance with distributed RPL

• Added text to notify the root in case of an error detected in the
datapath. The ICMP is similar to that in non storing mode.

Discussions needed to progress

How is the topology known to the root?
Could use external management or Non-Storing DAO

Suggestion to add a peer info option similar to transit info option

How are the node capabilities known to the root?
Suggestion to add a node capability option similar

Complexity of mixed modes and route concatenation

MOP saturation: addressed by draft-rahul-roll-mop-ext

Compression of the Via Info option (so far full addresses)

Loop avoidance
- Text on constraints on SRVIO to avoid loops with other routing

Backup

New: non-storing mode transversal route

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

New non-storing P-
DAO with path

segment unicast to
target 41 via 42 +

43

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

DAO ACK

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Packet for 41

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

IP in IP encapsulation with
SRH 42, 41

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

storing P-DAO with
path segment

unicast to target 51
via 43==41 (egress)

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Packet for 51

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

IP in IP encapsulation with
SRH 42, 41

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Packet for 51

Storing mode transversal route

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

New (projected)
DAO with path

segment unicast to
target 53 via 41
(ingress), 42 and

43 (egress)

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Storing mode
DAO (forced)
with lifetime

along segment

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Storing mode
DAO (forced)
with lifetime

along segment

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

DAO-ACK unicast,
self 41 as parent,
final destination

53 as target

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Existing non storing optimization

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55

New (projected)
DAO with path

segment unicast to
target 56 via 35
(ingress) and 46

(egress)

56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Storing mode
DAO (forced)
with lifetime

along segment

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

DAO-ACK (alt: non
storing DAO)

unicast, self 35 as
parent, final

destination 56 as
target

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

DAO from 46 installs a

route to 56 in 35

(all nodes in projected

route from ingress

included to egress

excluded)

=> egress should

already have a route to

target

56 via 46

Preexisting connected
route to 56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Non
source
routed

DATA Path

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Non
source
routed

DATA Path

Loose Source routed
DATA Path

Packet to 13,
RH 24, 35, 56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55

Adding New
(projected) DAO

with path segment
unicast to target 56
via 13 (ingress), 24,

and 35 (egress)

56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Storing mode
DAO (forced)
with lifetime

along segment

Storing mode
DAO (forced)
with lifetime

along segment

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

DAO-ACK (alt: non
storing DAO)

unicast, self 13 as
parent, final

destination 56 as
target

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

56 via 46

Preexisting connected
route to 56

56 via 35

56 via 24

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Non source
routed

DATA Path

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55

ALT: Adding New
(projected) DAO

with path segment
unicast to target 35
via 13 (ingress) and

24 (egress)

56

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

Storing mode
DAO (forced)
with lifetime

along segment

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

DAO-ACK (alt: non
storing DAO)

unicast, self 13 as
parent, final

destination 56 as
target

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

56 via 46

Preexisting connected
route to 56

Preexisting connected
route to 35

35 via 24

11 12 13

25242322

3534333231

464544434241

DAG Root

Application

Server D

51 52 53 55 56

routed
DATA Path

Loose Source routed
DATA Path Packet to

35,
RH 56

routed
DATA Path

1

Routing for RPL Leaves

Pascal Thubert

draft-thubert-roll-unaware-leaves-06

IETF 104

Prague

6lo standard work

A proactive setting of proxy/routing state to avoid multicast due to reactive
Duplicate address detection and lookup in IPv6 ND

• RFC 8505 (Issued 11/2018)
• The registration mechanism for proxy and routing services

• Analogous to a Wi-Fi association but at Layer 3

• draft-ietf-6lo-backbone-router (WGLC complete 1/25)
• Federates 6lo meshes over a high speed backbone

• ND proxy analogous to Wi-Fi bridging but at Layer 3

• draft-ietf-6lo-ap-nd (WGLC complete 3/26)
• Protects addresses against theft (Crypto ID in registration)

• draft-thubert-6lo-unicast-lookup (new draft)
• Provides a 6LBR on the backbone to speed up DAD and lookup

NEW
RFC

NEW
DRAFT

https://tools.ietf.org/html/rfc8505
https://tools.ietf.org/html/draft-ietf-6lo-backbone-router
https://datatracker.ietf.org/doc/html/draft-ietf-6lo-ap-nd
https://tools.ietf.org/html/draft-thubert-6lo-unicast-lookup-00

Unmet expectations

• Connectivity for a Non-RPL aware node in a RPL domain
• Forwarding is described but not the control plane

• Integration of the EDA Exchange (EDAR/EDAC) used as keep-alive with the RPL
signaling to avoid duplication
• At the moment both are needed periodicallThis spec uses a common lifetime and the

EDA exchange is proxied

• Separation of the RPL Root and the 6LBR and proxy registration to the 6BBR
• The RPL root proxies the EDA with the 6LBR and the NS(EARO) with the 6BBR

• Do we really want that actually?

4

RFC 8505

P. Thubert, E. Nordmark, S. Chakrabarti, C. Perkins

6LR 6LBR6LN

RA (unicast)

RA (u|mcast)

Radio 1 Hop

SLLA

6CIO

PIO

MTU

SLLA

CONTEXT

6CIO

PIO

MTU

SLLA

CONTEXT

ABRO

6CIO

RS (mcast)

RFC 8505
RFC 8505

RPL
Domain

6LR 6LBRLP Node

NS (EARO)

EDAR

Radio 1 Hop

SRC = 6LR *

DST = 6LBR

REG = LPN

UID = LPN

TID included

SRC = LPN_LL *

DST = 6LR_LL *

TGT = LPN **

SLLA = LPN

UID = LPN

TID included

opt: AP-ND

* Global / ULA

Create binding state

* link local unique

EUI-64

** ULA or GUA

6LR 6LBR6LN

RFC 8505RFC 8505

RPL
Domain

6LR 6LBRLP Node

NA (EARO)

EDAC

Radio 1 Hop

SRC = 6LR

DST = 6LBR

REG = LPN

UID = LPN

TID included

SRC = 6LR_ll

DST = LPN_ll

TGT = LPN

TLLA = LPN

UID = LPN

TID included

6LR 6LBR6LN

RFC 8505RFC 8505

RPL
Domain

6LR 6LBRLP Node

NS (ARO)

DAR (ARO)

SRC = 6LR

DST = 6LBR

REG = LPN

UID = LPN

TID included

SRC = LPN_ll

DST = 6LR_ll

TGT = LPN **

SLLA = LPN

UID = LPN

TID included

Collision of binding

state. Different ROVR

for Registered Address

NA (ARO, s=1)

DAC (ARO, s=1)

SRC = 6LR

DST = 6LBR

REG = LPN

UID = LPN

TID included

SRC = 6LR_ll

DST = LPN_ll

TGT = LPN

TLLA = LPN

UID = LPN

TID included

6LR 6LBR6LN

9

draft-thubert-roll-unaware-leaves

IETF 104

Prague

P.Thubert

Terminology

▪ RFC 6550:

▪ A RPL leaf may understands RPL

▪ But does not act as a router

▪ This draft:

▪ A RPL-unaware leaf does not implement anything specific to RPL,

▪ but it MUST support RFC 8505,

▪ and it MUST ask the 6LR for abstract reachability services

Status

• Added support for Multicast addresses
• Requires RPL storing mode + multicast support

• Maps MLD Reports onto DAO

• Added text on applicability to smartgrid

• Dependency on draft-rfc6775-update gone (now RFC 8505)

• Otherwise stable…

• Time for adoption…

Notes on the ‘R’ flag (defined in RFC 8505)

• A RPL Unaware Leaf does not know that there is routing in place and that the routing is RPL; draft-
thubert-roll-unaware-leaves does not require anything from the Leaf.

• RFC 8505 specifies a new flag in the EARO, the 'R' flag.

• If the 'R' flag is set, the Registering Node expects that the 6LR ensures reachability for the
Registered Address, e.g., by means of routing or proxying ND.

• Conversely, when it is not set, the 'R' flag indicates that the Registering Node is a router, which for
instance participates to RPL and that it will take care of injecting its Address over the routing
protocol by itself.

• A 6LN that acts only as a host, when registering, MUST set the 'R' to indicate that it is not a router
and that it will not handle its own reachability.

• A 6LR that manages its reachability SHOULD NOT set the 'R' flag; if it does, routes towards this
router may be installed on its behalf and may interfere with those it injects.

Mapping Fields from RPL DAO to NS(EARO) and EDA

• The Registered Address in a RPL Target Option is a direct match to the Registered Address
field of the EDAR message and in the Target field of the NS, respectively

• EARO’s TID is a direct match to Path Sequence in Transit Information option (TIO)

• EARO’s opaque field carries the RPLInstanceID, 0 means 6LR’s default

• EARO’s Lifetime unit is 60s. RPL uses Lifetime Units that is passed in the DODAG
Configuration Option. Converting EARO to DAO and back requires mapping of units.

• The Registration Ownership Verifier (ROVR) field in keep-alive EDAR messages by the Root is
set to 64-bits of all ones to indicate that it is not provided. It is obtained in the EDAC from
the 6LBR and used in proxy registration.
• Q: Should we carry it in a RPL option in DAO messages?

• Upon the first registration, the EDAR / EDAC populates a state in the 6LBR including the ROVR
field and the 6LR sends a first DAO message.

• The RPL Root acts as a proxy on behalf of the 6LR upon the reception of the DAO propagation
initiated at the 6LR. Should we allow splitting from the 6LBR, e.g.:

6LN 6LR Root 6LBR

| | | |

| NS(EARO) | | |

|--------------->| |

| | Extended DAR |

| |-------------------------------->|

| | |

| | Extended DAC |

| |<--------------------------------|

| NA(EARO) | |

|<---------------| | |

| | DAO | |

| |-------------->| |

| | DAO ACK | |

| |<--------------| |

| | | keep-alive EDAR |

| | |---------------->|

| | | EDAC |

| | |<----------------|

| | | |

EDA (DAR, DAC) message Proxying

• Upon the renewal of a 6lowPAN ND registration: if the 'R' flag is set, the 6LR injects a DAO
targeting the Registered Address, and refrains from sending a DAR message.

• With a Root/6LBR split that could give:

6LN 6LR Root 6LBR 6BBR

| | | | |

| NS(EARO) | | | |

|--------------->| | | |

| NA(EARO) | | | |

|<---------------| | | |

| | | | |

| | DAO | | |

| |-------------->| | |

| | DAO ACK | | |

| |<--------------| | |

| | | | |

| | | keep-alive EDAR | |

| | |---------------->| |

| | | EDAC(ROVR) | |

| | |<----------------| |

| | | | |

| | | proxy NS(EARO) |

| | |-------------------------------->|

| | | proxy NA(EARO) |

| | |<--------------------------------|

| | | | |

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 1

RPL DAG Metric Container Node
State and Attribute object type

extension

draft-ietf-roll-nsa-extension-01

Remous-Aris Koutsiamanis
Georgios Z. Papadopoulos

Nicolas Montavont
Pascal Thubert

ROLL@IETF104

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 2

Updates on adopted -01 version

• Changes addressing Rahul’s review (many thanks!)
– Removed strict dependency on 6TiSCH

– Explained Alternative Parent (AP) selection via Common Ancestor

– Allowed flexible PS usage (any AP method)

– Allowed flexible AP usage (nodes may use different AP methods)

– Allowed flexible PRE (paths with different reliability requirements)

– Added Appendix with Implementation status + results

• Updated Contiki implementation
– to do 6LoRH-based IPv6 address compression of Parent Set

– Selected reference address to be the DODAG ID

– Added example in code

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 3

Brief Overview

 Goal: “Determinism”
 High reliability
 Low jitter
 Bounded delay

 How:
 Send multiple copies of packets (PRE) over different paths

 Challenges:
 Avoid flooding with copies
 Keep jitter low

 This draft:
 Information in DIO to help with challenges

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 4

PRE over 6TiSCH

• Low jitter bounded delay

• Reliable communication

• Packet Replication Elimination
– Replication

– Elimination

– Promiscuous Overhearing (optionally)
B

S

A

D

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 5

Parent Selection - DIO Messages

• Parent Set A:

– {D, C, E}

• Parent set B:

– {E, D}
B

S

A

DC E

Default
Potential

DIO›MC›NSA›
PS (D, C, E)

DIO›MC›NSA›
PS (E, D)

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 6

DIO Format Example

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 7

MC Format Example (1)

• Parent Set (PS)
– Node State and Attributes Option

– PS type = 1 (8 bits)

– PS Length = # of PS addresses x IPv6 address size (8 bits)

– 6LoRH type = 1 (8 bits) As in Source Routing Header 6LoRH - RFC8138

– PS IPv6 addresses = 1 or more 6LoRH compressed IPv6 addresses

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Routing-MC-Type|Res Flags|P|C|O|R| A | Prec | Length (bytes)| | MC

 +-+

 | Res | Flags |A|O| PS type | PS Length | |

 +-+ | NSA

 | 6LoRH type | 6LoRH-compressed PS IPv6 address(es) ... |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 8

6LoRH-based PS address compression

• 6LoRH type
– Indicates size of omitted IPv6 prefix (RFC8138)

– Used for all the compressed IPv6 addresses → Lowest common denominator
compression level

– Compression uses common DODAG ID for reference address
(But, what if multiple DODAGs?)

+-----------+----------------------+

| 6LoRH | Length of compressed |

| Type | IPv6 address (bytes) |

+-----------+----------------------+

| 0 | 1 |

| 1 | 2 |

| 2 | 4 |

| 3 | 8 |

| 4 | 16 |

+-----------+----------------------+

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 9

Implementation of CA: Medium

• PP(PP) ∈ PS(AP)

– PP(A) = F

– PS(B
1
) = (E, D) ✖

– PS(B
2
) = (F, D, E) ✔

– PS(B
3
) = (G, F) ✔

S

A

FE G

Default
Potential

B
2

B
3

D

B
1

Preferred Parent (PP)

Alternative Parent (AP)

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 10

Road Forward (1)

• Adopted at the last IETF meeting

• Code is available here:

– Contiki NSA extension https://github.com/ariskou/contiki/tree/draft-ietf-roll-nsa-
extension

– Wireshark dissectors (for the optional TLV, i.e., PS): https://code.wireshark.org/
review/gitweb?
p=wireshark.git;a=commit;h=e2f6ba229f45d8ccae2a6405e0ef41f1e61da138
Pending: decode 6LoRH compressed addresses

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 11

Road Forward (2)

• We received and addressed reviews from Rahul. Pending issues:

– Draft scope: Prescribe specific AP selection method?

– Mandatory 6LoRH compression: 6LoRH type → 1 byte overhead

– Extend each parent with optional priority value to quantify preference

– We are looking for more reviews

• Next steps?

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Routing-MC-Type|Res Flags|P|C|O|R| A | Prec | Length (bytes)| |=>MC
+-+
| Res | Flags |A|O| PS type | PS Length | |
+-+ |=>NSA
|P| 6LoRH type | Opt: Pref 1 |IPv6 address 1 | |
+-+ |
| Opt: Pref 2 |IPv6 address 2 | |
+-+ |
| Opt: Pref 3 |IPv6 address 3 |
+-+

ROLL@IETF104 <RPL DAG Metric Container Node State and Attribute object type extension> 12

Thanks!

Questions?

ROLL@IETF104

ROLL@IETF104 <Traffic-Aware OF> 1

Traffic-Aware Objective Function

draft-koutsiamanis-roll-traffic-aware-of-00

Remous-Aris Koutsiamanis aris@ariskou.com
Georgios Z. Papadopoulos
Eduardo Ingles Sanchez

Chenyang Ji
Diego Dujovne

Nicolas Montavont

ROLL@IETF104

ROLL@IETF104 <Traffic-Aware OF> 2

New since -03

• Changes addressing Rahul’s review
(many thanks!)
– THROUGHPUT_PERIOD → THROUGHPUT_WINDOW

(it is a slinding window)

– Made configuration more flexible

• External configuration

• Hard-coded values

• Optional TLV to carry THROUGHPUT_WINDOW

• Optional TLV to carry THROUGHPUT_WINDOW_UNIT

– Refer to Oscillations issue (re: Pascal)
(But, no solution proposed)

– Defined behaviour of P,C,O,R,A bits for the metric

– Address additive semantics

ROLL@IETF104 <Traffic-Aware OF> 3

Standardisation Efforts

• Objective Function → Preferred Parent
– OF0

• ETX

• No hysteresis

– MRHOF

• ETX, Energy, other additive metrics

• Hysteresis

– Load balanced OF (LB-OF)

• Uses parent’s child-count

• Hysteresis

ROLL@IETF104 <Traffic-Aware OF> 4

Problem statement

• Using standard OFs (OF0, MRHOF) leads to
unbalanced network:
– Some nodes overloaded (forwarding)

– Some DODAGs overloaded (forwarding)

– Lower network and node lifetime

– Higher packet losses (queueing)

– Higher packet delay (queueing)

ROLL@IETF104 <Traffic-Aware OF> 5

DODAG Selection Example (1)

DODAG selection without RT leading to unbalanced traffic

T → Total
Throughput
Capacity

U → Used
Throughput
Capacity

Example DODAG RT,ETX

ROLL@IETF104 <Traffic-Aware OF> 6

DODAG Selection Example (2)

 DODAG selection with RT leading to balanced traffic

T → Total
Throughput
Capacity

U → Used
Throughput
Capacity

ROLL@IETF104 <Traffic-Aware OF> 7

Traffic-Aware OF

• New Remaining Throughput (RT) metric
– Aggregated → Use DAGMC.A=MINIMUM

– Sliding window tracking of used throughput capacity

• Window size: THROUGHPUT_WINDOW (time)

– Calculate RT (in THROUGHPUT_WINDOW)

• Total Throughput Capacity – Used Throughput

• Traffic-Aware OF
– Highest RT → Preferred parent

– Use with MRHOF-style hysteresis

ROLL@IETF104 <Traffic-Aware OF> 8

DIO Format Example

ROLL@IETF104 <Traffic-Aware OF> 9

Remaining Throughput

• Node Metric Object (RT)
– 2 octets – unsigned integer

– A = 2 = Minimum

– C = Constraint, set minimum acceptable RT value

– Two optional TLVs ...

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Routing-MC-Type|Res Flags|P|C|O|R| A | Prec | Length (bytes)|
 +-+
 | RT | Optional TLVs ...
 +-+

ROLL@IETF104 <Traffic-Aware OF> 10

Remaining Throughput Window TLV

• RT Window TLV
– 2 octets – unsigned integer

– Expresses window size in time

– Time units = THROUGHPUT_WINDOW_UNIT

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (TBD2) | Length (2) | THROUGHPUT_WINDOW |
 +-+

ROLL@IETF104 <Traffic-Aware OF> 11

Remaining Throughput Window Unit TLV

• RT Window Unit TLV
– 1 octets – unsigned integer

– Expresses window time unit

– Time unit = 2THROUGHPUT_WINDOW_UNIT ms

– Time unit range = 1 ms … ≈5.7*10^73 sec

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | Type (TBD3) | Length (1) |T._WINDOW_UNIT |
 +-+

ROLL@IETF104 <Traffic-Aware OF> 12

Enrollment – Layer 2 + RPL

• L2 – Join network (EB)
– ietf-6tisch-enrollment-enhanced-beacon-01

– Report PAN priority in EB
(PAN priority = 16 - FLOOR(LOG2(RT + 1))

• RPL – Initial DODAG selection

– Directly pick DODAG with max RT

– Use in conjunction with other metrics
e.g. ETX

ROLL@IETF104 <Traffic-Aware OF> 13

Road forward

• Reviewed by Rahul and addressed comments

• Contiki implementation almost ready

• Remaining issue: Oscillations

• Next steps

– Other reviewers?

– Other changes?

– Adoption?

ROLL@IETF104 <Traffic-Aware OF> 14

Thanks!
Questions?

ROLL@IETF104

Experimental observation of RPL:
routing protocol overhead and asymmetric links

Henry-Joseph Audéoud, Martin Heusse
March 25th, 2019 — IETF 104

1

Introduction

Introduction

• Context of WSNs (IEEE 802.15.4)

• We used RPL as reference for our own routing protocol
development. . . and noticed interesting details

• We report on three situations:

• Background control traffic in a standard network
• RPL in the presence of a deaf node
• RPL in the presence of a muted node

2

Introduction — Asymmetric links?

• Influence of the environment
• Interferences have not the same impact on all nodes (near-far

effect)

• Influence of the hardware
• Variability of the amplifier gain and sensitivity

→ Asymmetric links are rare but possible!

3

Background control traffic

Experimental setup

• Experimental scenario
• 40 client nodes + 1 sink, 2-hour duration
• 1 UDP query/response from each node to the sink every 5

minutes

• Testbed
• FIT/IoT-lab, https://www.iot-lab.info/
• > 1500 wireless sensor nodes, monitoring infrastructure
• We use ARM Cortex M3 nodes and Atmel 802.15.4 @2.4GHz

radio chips

• RPL implementation from Contiki 3.0
• MRHOF with ETX
• ContikiMAC RDC

4

https://www.iot-lab.info/

Experimental setup — DODAG

71

4 5 1 85 78

11 14

874

93 8996

147

125

131

104 112

152160 166 171

172 177

181

184

190

206

216

242

219

226 237

278

248

264

252

268265

76

283

• average number of hops to the sink: 3
• average number of neighbors: 5

5

Background control traffic

Unicast DIO (probing)
probe each neighbor every 10 min. ⇒ ~20 pkt/mn.

Broadcast DIO
Imax = 1048 sec. ⇒ ~3 pkt/mn.

Unicast DAO (& No-Path)
host route maintenance ⇒ ~10 pkt/mn.

6

What are those unicast DIOs?

RPL expects an external mechanism to be triggered dur-
ing the parent selection phase in order to verify link prop-
erties and neighbor reachability. — [RFC6550, RPL]

A node should compute the path cost for the path
through each candidate neighbor reachable through an
interface. — [RFC6719, MRHOF]

Contiki ⇒ uses unicast DIO for this task1.

1Duquennoy, S. et al., “Five-Nines Reliable Downward Routing in RPL”, arXiv

7

Background control traffic — Discussion

• Link estimation is necessary & closely related to routing. . .
even RPL-related docs recognize this!

• . . . But it is left aside. . .
not an interoperability issue!

• . . . Leaves a few questions without answer

• What is a node supposed to do when it receives a unicast DIO?
• Do they count as redundancy for Trickle?
• What about traffic overhead?

8

RPL in presence of a deaf node

Deaf node — Experimental setup

• Deaf node?
• emits correctly, but do not receive packets

• Experimental scenario
• 10 client nodes + 1 sink + 1 deaf node, 1-hour duration
• 1 UDP query/response from each node to the sink every 5

minutes

9

Deaf node — Control traffic

continuous DIS emission ⇒ continuous Trickle timer reset

10

Deaf node — Discussion

• It’s more a question of neighbor managment. . .
MAC layer should blacklist!

• . . . But DIS and DIO packets are broadcast (→ not
acknowledged)

MAC layer cannot estimate this link!

11

RPL in presence of a muted node

Muted node?

• Receives correctly, but is (almost) not heard
• Not completely muted (of course!)
• . . . Only after 15min.

45

57

48

40

40

33

33

55 51

10

12

30

18

2

⇒ there is a local repair!
12

Muted node — Experimental setup

• Muted node scenario
• 10 client nodes + 1 sink + 1 muted node, 1-hour duration
• 1 UDP query/response from each node to the sink every 5

minutes

13

Muted node — Control traffic

15

30

45

60

4

8

12

16

DIO unicast

DIO broadcast

DIS (broadcast)

0 5

15

30

45

60

10 20 30 40 50

3

6

9

12

DAO No-Path

DAO

Time (minute)

N
u
m

b
e
r

o
f

p
a
ck

e
ts

 p
e
r

m
in

u
te

40 gets muted

90% UDP q/r successes (4 losses)

14

Muted node — Discussion

• Application layer, OK

• Limited topology change, not solved by a few additional
packets but acceleration of RPL traffic due to Trickle.

15

Conclusion

Conclusion

• It is tempting (and practical) to use routing packets to the
purpose of link metric estimation, as in Contiki!

• Reserve a packet format for metric estimation?
• Explicitly allow a possible side-use of existing packet?

• Integrate (or combine) the broadcast DIS/DIO exchange to the
link metric estimation?2

• Watch out for RPL overhead

2Relation with draft-ietf-roll-dis-modification?

16

Thank you for listening!

BACKUP SLIDES

Detailed parameters

Table 1: Main parameters used during the experiments

Platform IoT-lab
Sensors IoT-lab’s (ARM Cortex) M3 motes
Sensor radio 802.15.4 @2.4GHz (AT86RF231)
OS & RPL implementation Contiki 3.0
Radio Duty Cycling (RDC) ContikiMAC
RDC Check interval 125 ms
RPL Mode of Operation Storing
Imin 4 seconds
Imax 1048 seconds
DIORedundancyConstant 10 (standard’s default)
DAO re-generation period 15 to 22 minutes
Objective function MRHOF with ETX
UDP traffic intensity per client 1 request-response every 5 minutes

17

Background traffic expe. detailed results

Table 2: Number of messages sent during the experiment of background
traffic

Message # of occurrence

DIS multicast 26
DIO multicast 760
DIO unicast 2497
DAO (unicast, counted on each hop) 1407
DAO No-Path (unicast, counted on each hop) 179
Data packet successfully routed end-to-end 1795 (97%)
Data packet emitted (counted on each hop) 5516

18

Deaf node expe. detailed results

Table 3: Number of messages sent during the experiment with the deaf
node

Message # of occurrence

DIS multicast (deaf node excluded) 5
DIO multicast 1177
DIO unicast 315
DAO (unicast, counted on each hop) 202
DAO No-Path (unicast, counted on each hop) 40
Data packet successfully routed end-to-end
(deaf node excluded)

233 (99%)

Data packet emitted (on each hop,
deaf node excluded)

583

19

Muted note expe. detailed results

Table 4: Number of messages sent during the experiment with the muted
node

Message repair (10 min) elsewhere total

DIS multicast 0 3 3
DIO multicast 37 172 209
DIO unicast 58 313 371
DAO (unicast) 41 258 299
DAO No-Path (unicast) 11 40 51
Data pkt successfully
routed end-to-end

37 (90%) 220 (99%) 251 (98%)

Data pkt emitted
(counted on each hop)

103 598 701

20

BIER - ROLL Design Team

Q&A - AOB

Thank you very much!!!!!

APPENDIX

ROLL-Bier slides for IETF 103

IETF 103 Bangkok
ROLL-BIER Design Team

Toerless Eckert (Huawei), <tte@cs.fau.de>

BIER in ROLL Vision
Design Team

• Consider joining/collaborating in BIER design team in ROLL-WG:

• Email: roll-bier-dt@ietf.org (normal subscribe)

• https://trac.ietf.org/trac/roll/wiki/roll-bier-dt (to be filled)

• Issues: tte@cs.fau.de

• What could be cool about this (if design team decides to do it) ?

• End-to-end BIER (with TE) in low-power networks (e.g.: building control)
• Example: Application Controller sends BIER packet to subset of clients (lightbulbs)

• Each client is BFER (has a bit)

• Every packet can address a separate subset of actors through bitstring

• Only controller app needs to be BIER aware. Receivers can think its just IP multicast.

• BIER TE bits to save power/memory
• Routers are low-power (memory/CPU). Do not want to keep large routing table (1000

lightbulbs). Links are low power too.

• Every interface has a bit. Routers only need to route on bits to directly connected
downstream neighbors.

• No ASIC constraints. Everything is software
• Headers/Bitstring can be compressed (loss free, lossy (bloom) to support long bitstrings.

• Should result in header more compact than existing ROLL/RPL headers even for unicast:
Only hop-by-hop bits sets to one receiver: Would also be used for unicast forwarding.

ROLL/BFER
stack

IP multicast App

10..1000 clients/actors

ROLL/BFR
Low-power

router

ROLL/BFIR
Root node

1

2 3

4

6

5

10

Bits for interfaces
(BIER-TE) to allow
explicit steering of

traffic

Root also acts as
Controller assigning/

Managing Bits

BIER aware
Application
Controller

Tunnel Encap
BIER / IP

App-Payload

Data Packet

Root node adds
Interface bits and

compresses header ?!

Application controller can efficiently send packets to
Every subset of receivers by being BIER aware.

AnyTransit

Slide v1.0

Control: learn
which bit maps
to which client

11.. 999

mailto:roll-bier-dt@ietf.org
https://trac.ietf.org/trac/roll/wiki/roll-bier-dt
mailto:tte@cs.fau.de

Status of dt

• Slow start but getting more organized
• Try weekly meeting via IETF webex, Wed. 7 PM GMT

• until we can get work items assigned to individual stakeholders
• Getting participants up to speed

• Will redo role call for meeting time/cycle after IETF103

• Started to put slide deck (this) and notes etc. into github
• www.guthub.com/toerless/roll-bier (no ROLL WG github repo group ?)

• Worked through bunch of arch level details
• But in middle of writing them down

http://www.guthub.com/toerless/roll-bier

Relevant docs
• draft-thubert-roll-bier

• Proposed arch of BIER via ROLL
• Core – not IP Multicast overlay, not L2.5 encap
• Intends to support BIER/BIER-TE x explicit/bloom-filter mode of operations

• draft-ietf-roll-ccast
• BIER for ROLL with bloom filters. Expect separate (IP multicast) overlay to handle false

positives

• draft-thubert-6lo-bier-dispatch
• L2.5 proposed encap for BIER packets
• Comparable layer/function to MPLS/Ether BIER encap (RFC8296) ?!

• Aka: would not use RFC8296 because in 6LO networks it all about compression

• draft-thubert-roll-unaware-leaves
• Not covering BIER, but introduces type of nodes we want to support via roll-bier too.

• draft-other-apologies-forgetting-you
• Please help complete this list

Framework/
Terminology
ROLL+BIER+6LoRH

• Tunnel Mode
• BIER, BIER-TE: Bits assigned to 6LR
• BIER-TE: Bits also assigned to

adjacencies/6TR
• No bits assigned to 6LN

• Services
• BIER 6SN-> 6LR + BA

• IP unicast 6SN -> 6LR/6LN + IA

• 6LoRH + BIER
• Compress/uncompress

unicast/multicast packets

• 6RR … 6LR

• 6LR ... 6LN ???

6RR

1

2 3

4

6

5

10

Slide v1.0

11.. 2000

RPL + BIER routers
Roles:
6RR = root.

needs to support 6LoRH for BIER
6TR = transit – no bit in BIER mode
6LR = leaf (LoWPAN) Router

bit in BIER mode,
connects to 6LN
needs to support 6LoRH BIER

6LN = Lightweight Node
no knowledge of ROLL/BIER
MAY want to support
6LoRH with BIER
extensions for compression

6SN = Server Node / Application
Not running ROLL/BIER
able to send Multicst
packets with
BIER bitstring to target
set of destinations explicit

BA = BIER aware app able to send/rcv
packets with bitstring, no IP
multicast needed

IA = IP unicast/multicast app. No BIER
awareness

6TR

6LR

6LR

6SN

6LN

6LN6LN

6TR

6TR

TerminologyFramework

Continuing to limit work scope
by eliminating “below the line / do not work” options
• Only consider IP multicast payload for ROLL-BIER multicast now

• Required for 6LN (non ROLL-BIER capable) nodes
• For 6LR receivers we do primarily care that we can address them directly from

the sender via bitstring, but not so important to get rid of potentially
unnecessary IP Multicast header
• IP Multicast header should be compressed also by 6LoRH ?!

• No new “faked” IP packets (see later slide)

• Only “transport mode” to 6LR, only “tunnel mode” to 6LN
• See explanations later

• Only consider BIER-TE semantic, not BIER ?
• TBD. Maybe we can start defining common forwarding and add BIER control

plane later (when seen necessary)

Details, Stack options
• First option: “Tunnel Mode” to 6LN, “Transport mode to 6LR”. Common

header
• Lowest layer is 6LoRH with BIER bitstring. Also all RPL artefact.
• Next: 6LoPAN compressed IP packet (RFC6282)

• Transport Mode to 6LR:
• 6LoRH indicates this mode, compres/uncompress destination address
• Save 6LoPAN state for Dst address and compression field in 6LoPAN header

(compressed state)

• Tunnel Mode to 6LN:
• Simple IP packet without any RPL/BIER artefacts.

• High compression of IP address through state on every RPL hop for src/dst addresses (stateful)
• Stateless – assumes MAC address derived IPv6 address.

• But only works single L2 hop because it relies on the L2 destination “MAC”.

• Aka: Stateful compression + BIER is big benefit because with BIER only the 6RR and 6LR would need to
have state for the addresses because 6TR would just forward based on bits.

• Need to show in slides how BIER benefit applies here:

• No changes required for 6LoPAN to get desired benefit

• FUTURE: define details of “transport mode” options.

6RR/6LR diagram

Lookup
Bitstring

Function

256 bits Next-hop 6TR

256 bits …

256 bits Next-hop 6TR

256 bits Punt (I am 6LR)

Bloom filter bitstring
Forwarding table(s)

6LoRH 6LoRH

BIER(-TE) forwarding

Storing mode (BIER):
#6LR entries

Non-storing mode (BIER):
#adjacent 6LR/6TR

+1 if we are 6LR

Bit Function Reset/FBM

1 Next-hop 6TR 256 bits

… … 256 bits

… IGNORE 256 bits

N
(256)

Punt (I am
6LR)

256 bits

Explicit bitstring Forwarding table(s)

Storing Mode
RPL routing table

6LR Bit to IPv6addr
mapping

One forwarding rule for bloom-
filter, one for explicit bitstring.

Distinction BIER/BIER-TE is just in
how forwarding table gets

populated

Only for storing-mode/BIER,
Not used with BIER-TE

Compress/Decompress packets
on the wire (L2.5)

Calculate bloom filter,
populate

Populate

6RR

6TR

(Calculate bloom filter)
Populate forwarding tables
on all 6LR

Only for non-storing-mode/BIER,
Not used with BIER

Forwarding table does
Not need to distinguish
Between BIER/BIER-TE

Difference just in how
Next-hop entries/FBM for
Bits are created

IP multicast over ROLL-BIER

BIER(-TE) forwarding

6TR6RR

6LoRHn
BIER-packets

6LR

IPv6 Multicast LHR
To BIER adaptation

6LN

6LoRH
BIER-packets

BIER(-TE) forwarding

6LoRH
BIER-packets

6LoRH
BIER-packets

6LoRH
IPMC-packets

6LoRH
IPMC-packets

IPv6 MC Host stack
Unaware of BIER/ROLL ?

IPv6 SSM App
Receive Multicast only?

BIER(-TE) forwarding

6LoRH
BIER-packets

6LoRH
BIER-packets

UDP tunnel

IPv6 SSM Server App
Send IPMC/UDP packets

with Bitstring

User level SDK

UDP tunnel

To further 6TR/6LR
on same LAN

IP unicast over ROLL-BIER (incomplete)

BIER(-TE) forwarding

6TR6RR

6LoRH
BIER-packets

6LR

IPv6 Multicast LHR
To BIER adaptation

6LN

6LoRH
BIER-packets

BIER(-TE) forwarding

6LoRH
BIER-packets

6LoRH
BIER-packets

6LoRH
Unicast Packet

6LoRH
Unicast Packet

IPv6 Unicast Host stack
Unaware of BIER/ROLL ?

BIER(-TE) forwarding

6LoRH
BIER-packets

6LoRH
BIER-packets

To further 6TR/6LR
on same LAN

Nothing special
On erver. Just IPv6
unicast

6SN

Bit-Reset/
Bloom Filter considerations (not reviewed)
• With bloom filter bitstring, bits can not be reset

• BIER logic
• Leads to duplicates. Other radio-network issues can also lead to duplicates, so maybe not a big

issue – radio networks MUST be prepared to deal with duplicates
• Routing protocol microloops are avoided by reset. If RPL can have microloops they would only be

protected against by TTL expiry (eg.: > 100 packet replications possible).
• False positives in bloom filter can create more duplicates and more replicated packet when there

is a routing microloop

• With BIER-TE
• No routing protocol involved = no IGP microloops.
• False positives can create duplicates AND looping (like badly set bits by BIER-TE controller can

create loops too)

• Solutions ?
• Have ROLL-BIER domain TTL (6LoRH TTL ?) that is set to be as small as possible: longest path to

any receiver. Calculated by root node ?!
• With common network diameter < 8 ?! This should be good enough ?! (4 bits enough to encode ?)

• Duplicate elimination by packet-ID ? Probably takes too much memory…

• What to do ?
• Reset bits when using explicit bitstring, not-reset only when using bloom-filter bitstring ?!
• Figure out we can live without resets for all modes ?

BIER consideration (not reviewed)
• With bitstring length N, we need N * N bits for FBM – reset bits

• With bloom filters, we can not have FBM (reset bits). But we try to resolve that issue
• Do we want to forego FBM for non-bloom filter ?
• Less problems to solve than with bloom filter: No false positives! Just more

duplicates, routing microloop duplicates.

• Simple option ?
• Make FBM a “SHOULD” – low-end devices could optimiz them away.

• Quantify benefit of explicit BIER bitstring (not BIER-TE)
• Unicast: Do we save anything over existing storing mode with 6LoRH ? (header

already well compressed)
• Maybe there is NO reason to use BIER bitstring for unicast (only BIER-TE)

• Multicast: assume existing storing mode network (aka: overhead of unicast routes
acceptable)
• BIER avoids to introduce another multicast routing protocol (PIM, RPL-multicast state,…)
• More efficient use of bits (no bits used for adjacencies, just 6LR

BIER consideration (2, not reviewed)
• Option position summary ? All need to be validated/quantified.

• Non-storing mode networks
• Use BIER-TE == non-storing. Unicast+multicast.

• Can further minimize state avoiding FBM memory

• Smaller networks use explicit bitstring. Larger ones use bloom filter.

• Networks with storing mode routers
• Use BIER, maybe just multicast. No benefit? to use for unicast.

• Smaller networks use explicit bitstrings, larger ones use bloom filter.

Bitstring / BIER considerations
• Explicit BIER-TE bitstring allows to save memory on 6TR/6LR:

• Do not need RPL routing entries for all 6TR/6LR.

• With BIER, we do need RPL routing table for all 6TR/6LR
• What do we save (why BIER) ? Unclear / need to better caracterize.

• Comparison complex ? Because we also have to take savings from 6LoRH into
account.

• Aka: Do we need to consider Explicit Bitstring + BIER ?
• Forwarding plane can be the same BIER/BIER-TE. Eliminating BIER just

reduces control plane work to consider (RPL -> create BIER forwarding table
entries).

• BIER/BIER-TE forwarding more similar than outside of ROLL:

Open
• With BA (bier aware application) we could send non-IPv6 payload.

Any benefit in that ?
• No ? 6LoRH would compress IP header away so there is no benefit eliminating

IP ??

• Unicast between 6LR/6LN ? Unicast 6LR/6LN towards 6RR ?
• How do we deal with that ?

• IEF Multicast likes SSM.
• SSM could help to address 6SN (which server needs to know about IGMP

memberships). Part of

Refuse

Refuse - Does not work

• Does not work: Multicasting unicast packets
• Aka: unicast packet replicated via bitstring to more than one destination

• Could recreate packet with each destinations unicast dest-addr, but:

• No architecturally clean solution to do so – e.g.: UDP checksum calculation

• Make destination address a “unicast-group-address” – IPv6 unicast address same on all nodes

• Avoid problems like UDP checksum

• But would just reinvent IP multicast service with IP unicast addresses (which we will have).

• No added value.

Slide v1.0

Refuse - Below the line (now)

• Using BIER to carry non-IPv6 packets
• Idea was: BIER packets can directly carry any payload, no IPv6-multicast heade required, eliminate overhead/complexity of

IPv6

• Claim: 6LoRH can compress the IPv6 headers so much that there is not enough initial value in designing header stacks to
eliminate IPv6.

• But: We need to make sure 6LoRH will also equally well compresses the IPv6 multicast header

• Also eliminates need to figure out how to deal with false-positives for non-IPv6—multicast BIER packets

• Below the line: Transport mode
• In transport mode, 6LN nodes will have bits assigned to them in the bitstring. This introduces the

need for them to be more aware of BIER, e.g.: introduce more BIER awareness into 6LoRH all the
way into 6LN and receiver applications.

• For unicast
• Will work fine but below line until we have evidence that it could provide better compression than tunnel mode with

6LoRH+BIER compression.

• Transport mode for multicast
• Just too much work trying to figure out in first round how to build a lightweight node that ALSO has to be aware of

BIER bitstrings.

Slide v1.0

TO BE DISCUSSED

IP Multicast layer

IP Multicast layer overview

• Primary target for IP Multicast in ROLL-BIER
• Efficient sending/replication of multicast packets from IP multicast

sender (app) on 6SN to IP multicast receiver (app) on 6LN/6LR
• App on 6SN should be able to explicitly indicate set of receivers. Key

benefit not possible with BIER not possible with standard IP
multicast.
• Example from design-team slide: send “ON”/“OFF” message to subset

ot light-bulbs that should be switched “ON”/”OFF”

• Not needed: Send IP multicast packets from 6LR/6LN
• Application client/server mode:
• Application has one or more server (6SN) sending IP multicast

through tunnel into 6RR. Clients (6LR/6LN) can just receive IP
multicast.

• Client->client multicast “emulated” by client sending unicast to
Server and then server sends IP multicast
• Client may receive its own IP multicast packet back, so application

need to be able to recognize/filter packets from “itself”

• Client on 6LR can be excluded from bitstring by 6SN, so this
additional filtering only required for 6LN

6RR

1

2 3

4

6

5

10

11.. 2000

6TR

6LR

6LR

6SN

6LN

6LN6LN

6TR

6TR

BA = BIER aware app
IA = IP unicast/multicast app.

No BIER awareness
Tunnel

6SN

6SN

IP Multicast layer: SSM only
• Majority of IETF Multicast experts prefer SSM IP Multicast over classical ASM IP Multicast

• Proposal follows that direction
• SSM: receivers send (S,G) membership instead of (G) membership (MLDv2).
• S = sender (Server) IP unicast address.

• Benefits
• If we want to avoid implement directly client->client IP multicast in ROLL-BIER, we need

Client/Server model, only servers allowed to send IP multicast, client unicasting to server if they
need to be able to send IP multicast (previousslide). This is exactly the model how IP multicast
would be done with SSM.

• SSM avoid need to coordinate IP multicast group addresses across applications (potentially big
operational issue).

• When SSM IP multicast application on a sender wants to create a new SSM stream, it simply needs
to allocate an SSM IP multicast group that is unused on this sender (like allocating an TCP port
unused for a new unicast service).

• Client discovery of SSM (S,G) ? Use same scheme a for Unicast server discovery in the absence of
IP multicast (e.g.: DNS). As necessary, extend discovery to also discover IP Multicast group (e.g.:
Put Server IP unicast address and group-address into DNS. E.g.: group-address in TXT record).

• Ideal: New IP multicast application on 6SN can allocate new local IPv6 address (independent from
IPv6 address used by other IP multicast app running on same 6SN)

• Benefit: Applications that can have their own SSM IP Multicast sender IPv6 addresses can use static/well-known
IPv6 Multicast group application – no need for group discovery by receivers.

• Best method for local address allocation ? IPv6 privacy addresses ?... ?

IP Multicast layer: MLDv2
• Why do we even need MLDv2 ?

• Not for 6LR: Receiver application on 6LR will receive multicast packet because of
bit in BIER bitstring. No IGMP/IP Multicast needed.

• Receiver on 6LN will receive link-layer multicast packet across access-subnet with
potentially many 6LN.
• (S,G) IP multicast header indicates whether packet is of interest to receiver
• 6LR needs to know whether to send packet to a particular subnet. Some signaling needed to

learn this from receivers. No need to reinvent wheel: MLDv2 does this.
• Receivers need to open link-layer filter (eg: destination) to receive multicast and send packets

up to right application. OS-level MLDv2/multicast-socket-API does this. No need to reinvent
the wheel.

• BUT!! Above reasoning to reuse/not-modify 6LR->6LN IP multicast (SSM) is ONLY
true if IP Multicast packet actually contains IPv6 Multicast header.
• If we want compressed packet on 6LR->6LN link, then the above rules may not be true: If new

OS-level code is needed on 6LR/6LN to support 6LoRH compressed IP multicast packets, then
we should re-evaluate what the most pragmatic way is to get a working solution.

• Unclear what exists today wrt. 6LoRH/IP-multicast/compressed-packets.

IP Multicast layer: proposal (1) - INCOMPLETE
• 6LN:

• Signaling: SSM subset of RFC3810 (MLDv2), host side
• Note: This should also be subset of “lightweight IGMPv3/MLDv2” (RFC5790)

• Only need to be able to receive, not send IP multicast
• 6LoRH (extension?) to receive compressed IP multicast packets

• 6LR:
• Signaling: SSM subset of RFC3810 (MLDv2), router side
• (Modified/Extended) SSM subset of RFC4605 (IGMP/MLD proxy routing)

• 6LR aggregates SSM receiver state from all subnets: 6LN + internal virtual subnet for IP Multicast receiver application on 6LR
itself.

• 6R sends aggregated membership state to 6SN (join/leave): HOW? (later slide)
• Any BIER packet with 6LR “bit” set or 6LR comb filter match will be passed to MLD proxy routing forwarding as coming ”from

upstream”
• NO receiving of IP multicast packets from downstream nodes (6LR, 6LN) – just discard

• 6TR:
• Do not participate in P multicast layer. Just forward BIER. Become 6LR when BIER bitmask/comb-filter entry

exists for them. Every 6LR is also always 6TR (forwards BIER independent of processing IP Multicast)

• 6RR:
• Just like 6TR except that it also must be able to receive tunneled IP Multicast + (pseudo) BIER header from

6SN.

IP Multicast layer: issue
• Simple: let 6SN “just” send SSM IP multicast. No BIER improvements

• Receipt of IP multicast ONLY determined by MLDv2 membership from
receivers (6LN / 6LR).

• Foregoes application benefits of using BIER (sender determines receivers)

• Problem: Can not get BIER benefit for 6LN without non-heuristic
bitstring transport mode”
• Give BIER bits to 6LN, carry bitstring all the way to 6LN

• Can not use heuristic likely not useful here: need to be able to eliminate false
positives at application level.

• Design for ONLY SSM IP multicast different / simpler as if we want to
introduce application layer BIER benefits to application

IP Multicast ONLY model
• 6LR send aggregate MLD membership (join/leave) to RR.
• 6LR keeps (S,G) -> { 6LRi } state.
• Keep table of Bits(6LRi) -> bitstring:

• bitstring with one bit (non-bloom, BIER)
• bitstring with > 1 bits (non-bloom, BIER-TE):

• BIER bit for 6LR plus bits for each hop towards it.
• bitstring with > 1 bits (bloom BIER/BIER-TE). Bloom compression bitstring result for

6LR (BIER) plus Bloom compression bitstring result for each hop towards it (BIER-TE).

• 6SN just send IP multicast to RR via some tunnel
• RR may perform RPF check (source address must be 6SN unicast address).
• Then encaps/forwards BIER/BIER-TE:

• Loop up (S,G) of packet, Ors Bits(6LRi) for all { 6LRi }. Sends packets

• At minimum same type of hop-bits determination for BIER-TE / non-storing
mode as used for unicast non-storing mode today. Just encoded as
direct/bloom-filter bits.

IP Multicast + 6SN BIER model
• 6SN should indicate set of destinations instead of “just” MLDv2 join state

• As long as we assume we always use IPv6 multicast packet / MLD, the set
of destinations indicated by 6SN must be subset of the “joiners”
• Simple app example: Each application just has ONE IPv6 multicast group, all

application members on 6LR / 6LN join to that group. But 6SN only indicates subset
of those application clients for each packet.

• Does not work for 6LN without transport mode (prior slide).

• Most simple? Hybrid solution (introduce BIER benefit to 6SN with
minimum additional work ?)
• RR forwards (S,G) -> { 6LR } state changes to 6SN. Use of SSN makes this easy: Each

6SN only gets updates for those (Si,G) with its own Si.
• 6SN send IP Multicast packet with additional BIER pseudo-header

• Indicating subset of 6LR to which packet should go

• 6RR then only OR’s bitstrings for this subset as opposed to full { 6LR } it maintains

• INCOMPLETE

Next steps ?!
• Push discussion about BIER interface for 6SN to BIER-WG ?!

• ROLL should not come up with somethin ROLL specific that does not have to
be ROLL specific – better try to find general purpose solution in BIER (ROLL
defining requirements)

• SSM IP multicast (ONLY) solution
• ROLL: (optional) ? compression for 6LoRH extension on access LAN
• “Tunnel” from 6SN node to 6RR - to send IP Multicast packets from 6SN to

6RR
• Two cases ?
• A) 6SN is inside 6LoRH network: simple 6LoRH header extension: one bit to indicate

“packet goes to root”, but also encode IP Multicast Group address.
• B) 6SN is “behind backbone”: Need an actual IP tunnel (path between 6SN/6RR not

natively supporting 6LoRH). Just encapsulate same 6LoRH packet inside ?

• MLDv2 proxy operations on 6LR
• 6LR -> 6RR covered by ‘draft-ietf-bier-mld-01.txt’, but discovery of 6RR and constraints

(only receive, not sending) and 6LR->6LN not covered.

