Network-wide Protocol Monitoring (NPM): Use Cases

draft-chen-npm-use-cases-00

Huainan Chen (China Telecom) Zhenqiang Li (China Mobile) Feng Xu (Tencent) Yunan Gu, Zhenbin Li (Huawei)

Mar. 24, 2019

Control Plane Telemetry

- Management/control/data plane telemetry
 - Management plane telemetry: network operational state retrieval and configuration management
 - **Control plane telemetry:** routing protocol monitoring and routing related data retrieval, e.g., topology, route policy, RIB...
 - Data plane telemetry: traffic performance measurement and traffic related data retrieval
- Role of control plane telemetry:
 - Network troubleshooting
 - 48% of the problems are based on protocol errors or misconfiguration impact both tracking of operational and provisioning
 - Network planning
 - No effective route policy/configuration validation approach, and lacks route-traffic correlation insight
 - Real time applications of 5G require real-time TE optimization, and accurate what-if simulation for network planning

Network-wide Protocol Monitoring (NPM) Framework

Use case 1: ISIS Route Flapping

- Typical cause 1:
 - System ID conflict
- Typical cause 2:
 - IS-IS neighborship flapping: caused by interface flapping, BFD flapping, CPU high...
- Typical Case 3:
 - Route policy misconfiguration (e.g., multi-protocol import)
- Typical Case 4:
 - Abnormal LSP purges

	Causes	Conventional troubleshooting	Improvements with NPM	
	System ID conflict	Manual check one by one	Takes secondsAlert in advance	
	IS-IS neighorship flapping	 Log in devices one by one Manual check: protocol PDUs, configurations, statistics, RIB Complex CLI checks 	 Automatic/semi- automatic troubleshooting Saves time 	
	Route policy misconfiguration	 Currently lack tracking of how route policy impact route change 	 Correlated route attribute and responsible policy record for root cause analysis 	
	Abnormal LSP purges	 POI (RFC 6232) provides the flapping source but no root cause analysis 	 Analysis of PDUs for root cause detection 	

Use case 2: LSDB Synchronization Failure

- Cause 1: LSP not correctly advertised
 - It can be due to incorrect route export policy, or too many prefixes being advertised which exceeds the LSP/MTU threshold, and so on at Router A.
- Cause 2: LSP transmission error
 - IS-IS adjacency failure, .e.g., link down/BFD down/authentication failure.
- Cause 3: LSP correctly received but incorrectly processed
 - The problem that happens at Router B can be faulty route import policy, or Router B being in Overload mode, or the hardware/software bugs.

Use case 3: Route Loop

- Conventional loop detection
 - Only post-event detection: TTL anomaly report or packet loss complain
 - Requires network-wide device-bydevice check
- Improved with NPM:
 - Real-time and in-advance loop detection
 - Root cause analysis: correlated route change and policy record

Prefix	Route event	Route policy	Time stamp	Next hop	Cost
172.17.0.0 /16	1	ISIS: Route-policy r1 : permit/permit : cost 100	xx:xx:xx	192.168.2.2/24	100
	2	RM: Route-policy r2 : permit/deny : next- hop	xx:xx:xx	192.168.1.1/24	100
	3	RM: Route-policy r3 : permit/deny : cost 200	xx:xx:xx	192.168.1.1/24	200

Use case 4: Tunnel Set Up Failure

- Root causes:
 - Configuration error, path computation error, link failure
- Gaps
 - Data not carried by RSVP-TE messages (PathErr/ResvErr, etc.)
 - IP address conflict
 - LSP establishment time out at head end node
 - RSVP-TE authentication failure
- Possible improvement with NPM:
 - Collection of LSP configurations, LSP states, link states and other reasons from devices along the LSP

Use case 5: Route Policy Validation

- Existing route policy validation:
 - Lacks the vision of how policy impacts the route attributes
- Route policy pre-check simulation:
 - Simulation based on device configurations: not 100% on-going network mirroring
- Possible improvements with NPM
 - Real-time track of how policy changes route attributes
 - Control plane snapshots as the simulation input: topology, protocol neighbor state, RIB... to improve the simulation accuracy

General Requirements from above use cases

1. A "tunnel" for the control plane data export:

- Performance guarantee for: data modeling, encapsulation, serialization, exportation, transportation performance
- 2. Adequate protocol data collection:
 - The data type coverage:
 - Protocol PDUs (LSP, LSA, Hello, Open, Update...)
 - Network-wide RIBs
 - Route policies
 - Correlated policy and route attributes...
 - The network coverage:
 - Refers to the devices providing such information (network-wide)