
Misbinding Attacks on
Secure Device Pairing

Tuomas Aura, Aalto University, Finland

joint work with Mohit Sethi, Ericsson, and
Aleksi Peltonen, Aalto University

IETF 104, SAAG, Prague

Outline
1. Background:

misbinding in authenticated key exchange

2. Misbinding in device pairing
(Bluetooth)

3. Misbinding in connecting devices to cloud
(EAP-NOOB)

Background:
misbinding in authenticated
key exchange

Misbinding in key exchange
• A thinks it is authenticating to E, but it is actually

authenticating to B

• E is dishonest. B can be honest

• Known since 1992 (STS, Diffie et al. 1992) and
motivated the SIGMA protocols (IKEv1, IKEv2)

• Named unknown key-share, misbinding, cuckoo

A
E

B

A, gx
A E B

E, gx

B, gy, SigB(gx,gy)B, gy, SigB(gx,gy)

SigE(gx,gy)SigA(gx,gy)

A, gx

A E B
A, gx

B, gy, SIGB(gx,gy)E, gy, SIGE(gx,gy)

SIGA(gx,gy)SIGA(gx,gy)

Misbinding of
initiator:
B thinks it is
connected to E.
In fact,
A and B are
connected.

Misbinding of
responder:
A thinks it is
connected to E.
In fact,
A and B are
connected

A, gx
A B

B, gy ,SigB(gx,gy,A)

SigA(gx,gy,B)

Solution to
misbinding:
be explicit about
identities

gx
A B

B, gy ,SigB(gx,gy) ,MACK(B)

A, SigA(gx,gy) ,MACK(A)

ISO 9798-3

SIGMA

(slightly better
protection in case of
an incompetent CA)

Detecting
misbinding
of initiator

Detecting
misbinding
of responder

A, gx

A E B
A, gx

B, gy ,SIGB(gx,gy,A)E, gy ,SIGE(gx,gy,A)

SIGA(gx,gy,E)SIGA(gx,gy,E)
E≠B

A, gx
A E B

E, gx

B, gy ,SigB(gx,gy,E)B, gy ,SigB(gx,gy,E)

SigE(gx,gy,B)SigA(gx,gy,B)

E≠A

How serious is it? (1)
• Seriousness difficult to grasp:

• No failure of confidentiality. Victim wants to talk with
the malicious party E, an thus attacker would get all the
secrets even without misbinding

• Problem related to data authentication. Victim is
confused about to who it at the other end of the secure
connection

• Attack scenarios in literature are artificial:
• A is commander, E and B fighter jets. E has been

compromised by the enemy. A tells E to self-destruct,
but the command goes to B [Hugo Krawczyk]

• A connects to bank B and, over the secure session,
deposits an electronic cheque. Bank B thinks the cheque
was deposited by E [Diffie et al.]

How serious is it? (2)
• Well-defined problem in formal verification:

failure of a correspondence property:

If A and B share session key K,
A should think it shares the key K with B.

• Easy to prevent in most protocols: bind endpoint
identifiers to the key

• However, must have authenticated identifiers (e.g.
certificates) and the other endpoint must know
what id to expect

Misbinding in device
pairing

Bluetooth numeric comparison
1. Make device B discoverable

2. On device A, search and select B

3. Key exchange in background

4. Compare 6-digit codes and press OK ➔ Paired!

Pair with:
> B

A
B

Bluetooth numeric comparison
1. Make device B discoverable

2. On device A, search and select B

3. Key exchange in background

4. Compare 6-digit codes and press OK ➔ Paired!

Pair with:
> B

A
B

KEX

Bluetooth numeric comparison
1. Make device B discoverable

2. On device A, search and select B

3. Key exchange in background

4. Compare 6-digit codes and press OK➔ Paired!

722831A

OK

B

722831
OK

KEX

Bluetooth numeric comparison
1. Make device B discoverable

2. On device A, search and select B

3. Key exchange in background

4. Compare 6-digit codes and press OK ➔ Paired!

Paired!A
B

Paired!
Paired

B

Misbinding in Bluetooth

Pair with:
> B

A

Device B is
compromised
(malicious app)

B

Misbinding in Bluetooth

Pair with:
> B

A

“B”

Attacker
has another
device
named “B”

Device B is
compromised
(malicious app)

B

Misbinding in Bluetooth

Pair with:
> B

A

“B”

K
EX

Key exchange
between wrong
devices

Attacker
has another
device
named “B”

Device B is
compromised
(malicious app)

“B”

662920
OK

Misbinding in Bluetooth

662920A

OK

B

K
EX

Key exchange
between wrong
devices

Attacker
has another
device
named “B”

Device B is
compromised
(malicious app)

“B”

662920
OK

Misbinding in Bluetooth

662920A

OK

K
EX

Key exchange
between wrong
devices

Attacker relays
6-digit code

Malicious app
spoofs UI

Attacker
has another
device
named “B”

Device B is
compromised
(malicious app)

B

662920
OK

B

662920
OK

“B”

662920
OK

Misbinding in Bluetooth

Attacker
has another
device
named “B”

Device B is
compromised
(malicious app)

662920A

OK

K
EX

Key exchange
between wrong
devices

Attacker relays
6-digit code

Malicious app
spoofs UI

User clicks OK

Attacker clicks OK

B

Paired!

“B”

Paired!

Misbinding in Bluetooth

Wrong
devices
paired!

Paired!A

Pa
ir

ed

PKa

Initiating Device

A

PKb

Phase 1: ECDH Key Exchange

Non Initiating Device

B

Cb=f1(PKbx,Pkax,Nb,0)

Na

Phase 2: Authentication Stage 1Nb

Va=g(PKax,Pkbx,Na,Nb) Vb=g(PKax,Pkbx,Na,Nb)

User checks if Va=Vb and
confirms on each end

Abort if Cb is not correct

Proceed if user
confirms ok

Proceed if user
confirms ok

Ea=f3(DHKey,Na,Nb,0,
I/OcapA,A,B)

Eb=f3(DHKey,Na,Nb,0,
I/OcapB,B,A)

Eb

Ea

Abort if Ea is not correct

Abort if Eb is not correct

Phase 3: Authentication Stage 2

Both sides compute link key
f2(DHkey,Nmaster ,Nslave ,”btlk”,

addr_master , addr_slave)

Phase 4: Link key calculation

LMP protocol Phase 5: Authentication and Encryption

• Why does
Bluetooth
not detect
misbinding?

• Could it?

• Why does
Bluetooth
not detect
misbinding?

• Could it?

• Devices have
no verifiable
identifiers!

• Authentication
based only on
physical access

PKa

Initiating Device

A

PKb

Phase 1: ECDH Key Exchange

Non Initiating Device

B

Cb=f1(PKbx,Pkax,Nb,0)

Na

Phase 2: Authentication Stage 1Nb

Va=g(PKax,Pkbx,Na,Nb) Vb=g(PKax,Pkbx,Na,Nb)

User checks if Va=Vb and
confirms on each end

Abort if Cb is not correct

Proceed if user
confirms ok

Proceed if user
confirms ok

Ea=f3(DHKey,Na,Nb,0,
I/OcapA,A,B)

Eb=f3(DHKey,Na,Nb,0,
I/OcapB,B,A)

Eb

Ea

Abort if Ea is not correct

Abort if Eb is not correct

Phase 3: Authentication Stage 2

Both sides compute link key
f2(DHkey,Nmaster ,Nslave ,”btlk”,

addr_master , addr_slave)

Phase 4: Link key calculation

LMP protocol Phase 5: Authentication and Encryption

Formal modeling
• Previous security analysis of Bluetooth had not

detected misbinding

• We modeled Bluetooth numeric comparison and
other pairing protocols with ProVerif
• Physical channel defines device identity
• Check correspondence between user intention and

completed pairing

→ Can detect misbinding

• Analysis yielded a new
double-misbinding case:

Lessons
• All device-pairing protocols are vulnerable if

devices have no verifiable identifiers and
authentication is based only on physical access

• Trusted path issue: attacker can spoof the pairing
UI on the compromised device
• Trusted path (e.g. hard-wired reset button) would

prevent malicious apps from spoofing the critical UI

• Device UIs are difficult to standardize, and attacker could
still replace or modify the hardware

Misbinding in
connecting devices to cloud
(EAP-NOOB)

EAP-NOOB
• EAP method for bootstrapping devices out-of-the-

box without professional administration and
without pre-established device credentials or
identifiers

• User-assisted out-of-band (OOB) authentication
• One OOB message in one direction between peer and

server, e.g. scanning a dynamic QR code or NFC tag

• OOB authentication registers a new peer device.
Once registered, reauthentication without user
interaction

draft-aura-eap-noob

https://datatracker.ietf.org/doc/draft-aura-eap-noob/

EAP-NOOB architecture

EAP in-band

New
device

Remote
AAA

Local
AAA

AP

28

UI or
API

OOB
output

(or input)

User-assisted
OOB channel

EAP-NOOB protocol

EAP in-band

Remote
AAA

Local
AAA

AP

29

New
device

UI or
API

OOB
output

(or input)

User-assisted
OOB channel

User-assisted out-of-band
message

2.

Unauthenticated
ECDHE key exchange

1.

Key confirmation3.

Misbinding in EAP-NOOB

EAP in-band

UI or
API

OOB
output

(or input)

Remote
AAA

Local
AAA

AP
New

device

User Alice

Device UI
compromised

Misbinding in EAP-NOOB
Attacker has access to
another peer device

EAP in-band

UI or
API

OOB
output

(or input)

Remote
AAA

Local
AAA

AP
New

device
Device UI
compromised

User Alice

Misbinding in EAP-NOOB

EAP in-band

Remote
AAA

Local
AAA

UI or
API

OOB
output

(or input)

AP

Attacker relays
OOB message

New
device

User Alice

user delivers wrong
OOB message

Attacker has access to
another peer device

OOB message
replayed

to user

Misbinding in EAP-NOOB

Remote
AAA

Local
AAA

AP
New

device

User Alice

Wrong device registered to
user Alice’s account in the
Remote AAA server

Why misbinding in EAP-NOOB?
• User physically identifies the the peer device; no

other authentication

• Not a flaw in this specific protocol:
Inherent weakness in pairing-like protocols that rely
on user’s physical access for authentication

• Misbinding of the server not possible because
typical OOB channels use web certificates, and user
or app checks the server name

Misbinding and trusted execution
• Misbinding-like cuckoo attacks are known in

trusted-computing

• Cryptographic authentication of TPM/TEE does not
prove that the secure execution takes place inside a
the user-chosen physical device
• Compromised device with fake number plate or fake UI

can cause misbinding

• Relevant to two IETF WGs:
• Remote ATtestation ProcedureS (rats)

• Trusted Execution Environment Provisioning (teep)

Mitigation and summary

Mitigating misbinding
• Cryptographically bind session keys to context data

• Persistent non-modifiable device identifiers and hw info

• Channel binding to wireless MAC addresses

→Harder to trick user, and attacker may be forced to modify
hardware or perform active MitM in the access network

• Preventing software-based UI spoofing
• Specify a trusted path for the devices (e.g. reset button)

• Knowing your devices
• Device certificates to attest make, model, serial number

• Asset tracking: user or admin has prior knowledge of the
devices, identifiers and intended deployment

Summary
• All device-pairing and bootstrapping protocols are

vulnerable to misbinding if
• Device authentication is based on physical access

• Device identity not cryptographically authenticated, or if
the verifier does not know which identifier is correct

• Several ways to mitigate the threat, but complete
prevention will require redefining the assumptions
(or goals) of device pairing and registration

Discussion question: Should we now tell everyone
that Bluetooth pairing is inherently insecure, or
similarly for TPM/TEE provisioning?

Full report: https://arxiv.org/abs/1902.07550

https://arxiv.org/abs/1902.07550

