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Misbinding in key exchange
• A thinks it is authenticating to E, but it is actually 

authenticating to B

• E is dishonest. B can be honest

• Known since 1992 (STS, Diffie et al. 1992) and 
motivated the SIGMA protocols (IKEv1, IKEv2)

• Named unknown key-share, misbinding, cuckoo

A
E

B



A, gx
A E B

E, gx

B, gy, SigB(gx,gy)B, gy, SigB(gx,gy)

SigE(gx,gy)SigA(gx,gy)

A, gx

A E B
A, gx

B, gy, SIGB(gx,gy)E, gy, SIGE(gx,gy)

SIGA(gx,gy)SIGA(gx,gy)

Misbinding of 
initiator:
B thinks it is 
connected to E.
In fact, 
A and B are 
connected.

Misbinding of 
responder:
A thinks it is 
connected to E.
In fact, 
A and B are 
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(slightly better 
protection in case of 
an incompetent CA)



Detecting 
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How serious is it? (1)
• Seriousness difficult to grasp:

• No failure of confidentiality. Victim wants to talk with 
the malicious party E, an thus attacker would get all the 
secrets even without misbinding

• Problem related to data authentication. Victim is 
confused about to who it at the other end of the secure 
connection

• Attack scenarios in literature are artificial:
• A is commander, E and B fighter jets. E has been 

compromised by the enemy. A tells E to self-destruct, 
but the command goes to B [Hugo Krawczyk]

• A connects to bank B and, over the secure session, 
deposits an electronic cheque. Bank B thinks the cheque 
was deposited by E   [Diffie et al.]



How serious is it? (2)
• Well-defined problem in formal verification: 

failure of a correspondence property:

If A and B share session key K, 
A should think it shares the key K with B. 

• Easy to prevent in most protocols: bind endpoint 
identifiers to the key

• However, must have authenticated identifiers (e.g. 
certificates) and the other endpoint must know 
what id to expect



Misbinding in device 
pairing



Bluetooth numeric comparison
1. Make device B discoverable

2. On device A, search and select B

3. Key exchange in background

4. Compare 6-digit codes and press OK ➔ Paired!

Pair with:
> B

A
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Phase 4: Link key calculation

LMP protocol Phase 5: Authentication and Encryption
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Formal modeling
• Previous security analysis of Bluetooth had not 

detected misbinding

• We modeled Bluetooth numeric comparison and 
other pairing protocols with ProVerif
• Physical channel defines device identity 
• Check correspondence between user intention and 

completed pairing

→ Can detect misbinding

• Analysis yielded a new
double-misbinding case:



Lessons
• All device-pairing protocols are vulnerable if

devices have no verifiable identifiers and 
authentication is based only on physical access

• Trusted path issue: attacker can spoof the pairing 
UI on the compromised device 
• Trusted path (e.g. hard-wired reset button) would 

prevent malicious apps from spoofing the critical UI

• Device UIs are difficult to standardize, and attacker could 
still replace or modify the hardware



Misbinding in 
connecting devices to cloud
(EAP-NOOB)



EAP-NOOB
• EAP method for bootstrapping devices out-of-the-

box without professional administration and 
without pre-established device credentials or 
identifiers

• User-assisted out-of-band (OOB) authentication
• One OOB message in one direction between peer and 

server, e.g. scanning a dynamic QR code or NFC tag

• OOB authentication registers a new peer device. 
Once registered, reauthentication without user 
interaction

draft-aura-eap-noob

https://datatracker.ietf.org/doc/draft-aura-eap-noob/


EAP-NOOB architecture
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EAP-NOOB protocol
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Misbinding in EAP-NOOB
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Misbinding in EAP-NOOB
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Misbinding in EAP-NOOB
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Misbinding in EAP-NOOB
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Why misbinding in EAP-NOOB?
• User physically identifies the the peer device; no 

other authentication

• Not a flaw in this specific protocol:
Inherent weakness in pairing-like protocols that rely 
on user’s physical access for authentication

• Misbinding of the server not possible because 
typical OOB channels use web certificates, and user 
or app checks the server name



Misbinding and trusted execution
• Misbinding-like cuckoo attacks are known in 

trusted-computing

• Cryptographic authentication of TPM/TEE does not 
prove that the secure execution takes place inside a 
the user-chosen physical device
• Compromised device with fake number plate or fake UI 

can cause misbinding

• Relevant to two IETF WGs:
• Remote ATtestation ProcedureS (rats)

• Trusted Execution Environment Provisioning (teep)



Mitigation and summary



Mitigating misbinding
• Cryptographically bind session keys to context data 

• Persistent non-modifiable device identifiers and hw info

• Channel binding to wireless MAC addresses

→Harder to trick user, and attacker may be forced to modify 
hardware or perform active MitM in the access network

• Preventing software-based UI spoofing
• Specify a trusted path for the devices (e.g. reset button)

• Knowing your devices
• Device certificates to attest make, model, serial number

• Asset tracking: user or admin has prior knowledge of the 
devices, identifiers and intended deployment



Summary
• All device-pairing and bootstrapping protocols are 

vulnerable to misbinding if
• Device authentication is based on physical access

• Device identity not cryptographically authenticated, or if 
the verifier does not know which identifier is correct

• Several ways to mitigate the threat, but complete 
prevention will require redefining the assumptions 
(or goals) of device pairing and registration 

Discussion question: Should we now tell everyone 
that Bluetooth pairing is inherently insecure, or 
similarly for TPM/TEE provisioning?



Full report: https://arxiv.org/abs/1902.07550
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