RPKI/ROV data analysis with detailed characterization of Invalid routes

Lilia Hannachi, K. Sriram, Oliver Borchert, and Doug Montgomery

IETF SIDROPS Meeting IETF 104 Prague, Czech Republic March 2019

Covering V or NF routes (79%)

R-V: Routable to Covering Valid R-NF: Routable to Covering NF NR: Not Routable to Covering V or NF

Covering V or NF routes (65%)

R-V: Routable to Covering Valid R-NF: Routable to Covering NF NR: Not Routable to Covering V or NF

Covering V or NF routes (65%)

* Before/After relative to AT&T dropping Invalid routes from peers starting in February 2019

Covering V or NF routes (91%)

* Before/After relative to AT&T dropping Invalid routes from peers starting in February 2019

Detailed Analysis of Invalid Routes

More Definitions:

- I-ML: Route is Invalid only due to prefix length > maxlength
- I-AS: Route is Invalid only due to AS mismatch
- I-AS-ML: Route is Invalid due to both reasons
- Same OAS: OAS of the covering route is the same as that of the Invalid route
- Diff OAS: OAS of the covering route is different from that of the Invalid route

If Diff OAS, is the Diff OAS the transit provider of the OAS in the Invalid route?

Preview of NIST RPKI Monitor 2.0

Preview of NIST RPKI Monitor 2.0

