# Threat Testing for the Good of the Internet

How hacking anti-virus and other security products makes everyone safer



#### # whoami: Simon Edwards

- SE Labs founder/ CEO
- AMTSO Chairman

#### **SE Labs**

- London-based security testing lab
- Experienced team
- Works with:
  - Global 500 enterprises
  - Security service/ product vendors
  - Security teams (e.g. BT)
  - Analysts



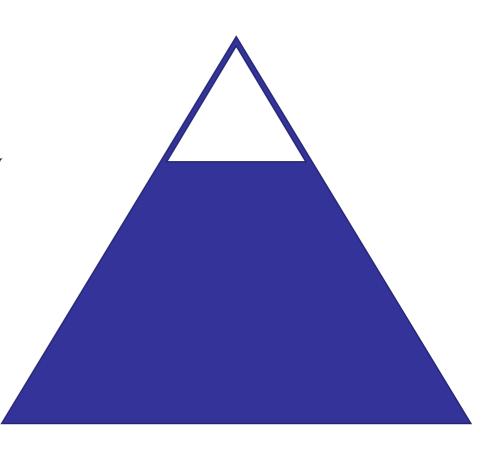
#### What we test

- Endpoint security software (detection/ protection/ response)
- Network appliances (security)
- Combined solutions (endpoint and appliance)
- Cloud security services (vs. on-prem)

## Why do we test?

- Too much snake oil
- Bad enough before 'next-gen'
- "AV is dead, AI will save the world!"
- This stuff costs LOAD\$!

## Intelligence-based testing

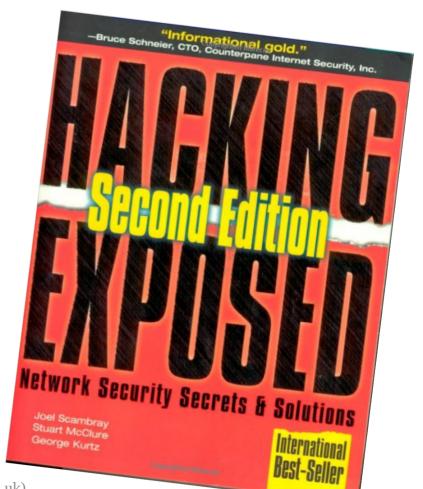

- Realism
  - NO VIRUS TOTAL TESTING!
  - Real-life attacks and close copying of techniques
  - Full attack chain
  - Breach, not just compromise
- Validation
  - Don't believe the security products
  - Forensic 'incident response' approach
- Ethics
  - Reproducible (product improvement)
  - Transparent (low-level data sharing, clear methodologies)

#### Different strokes for different folks

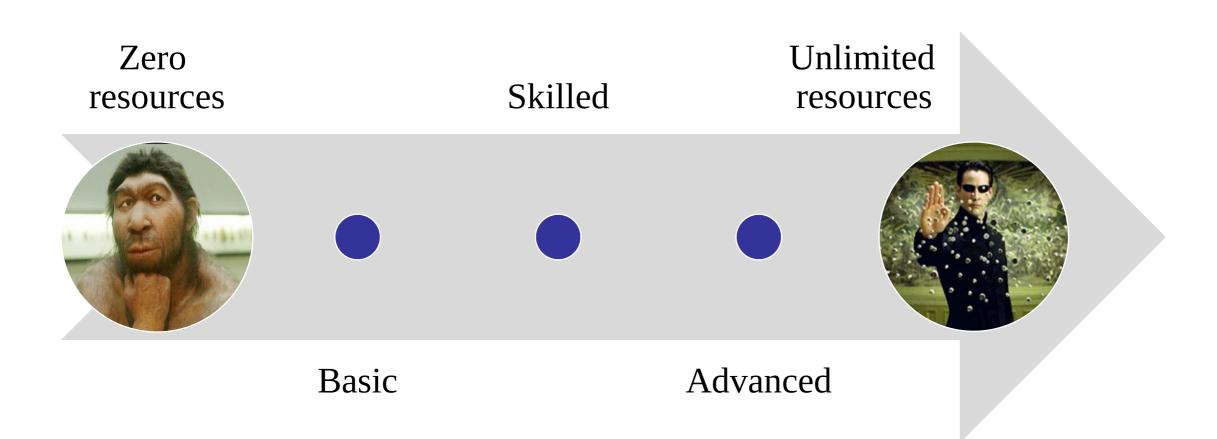
- Not all products work the same way
- Not all products do the same thing (or claim to some next-gen)
- Testing needs to pay heed to these differences
- Millions of malware samples vs. series of well-known targeted attacks
- How products react to real attacks provides valuable information for improvement

#### Real threats for better tests

- Locate prevalent threats
- Don't take feeds from vendors
- Expose products realistically
  - Social engineering (web, email)
  - Automatic attacks (web-based exploits) < a specialty
  - Targeted attacks
- What about APTs?
  - Threat intelligence exists
  - It's 'just hacking'
  - FireEye's pyramid of relevance




#### Can we behave like an 'APT'?


- Nation states/ criminals are not equally well-resourced
  - The Unbearable Lightness of APTing (
    <a href="https://www.virusbulletin.com/uploads/pdf/conference\_slides/2015/Balmas-etal-VB2015.pdf">https://www.virusbulletin.com/uploads/pdf/conference\_slides/2015/Balmas-etal-VB2015.pdf</a>)
    compares tactics used by US and middle-east actors
  - Mossad vs. Hamas
- Nation states have **incentives not to use zero days** 
  - Scalable
  - Extra hard to attribute
  - Disposable 'burner' technology
- Nation state **targets often lack defences** (activists and their friends/ families)
- Breach Level Index 2016 **1% state sponsored**
- Verizon **0.4%** Cyber Espionage

## Hacking Exposed vs. Hacking Team

- Hacking Exposed 2nd Edition pub. **2000**
- Hacking Team compromised **2015**
- Data leak <u>published</u> 2015
- Phineas Phisher's 'methodology' <u>pub</u>. **2016**
- Compare and contrast his/her methods and those outlined in a 16 year-old manual. (Hint: virtually **identical**)



#### Zero to Neo



#### Breach = process, not infection

- Products will miss the infection stage sometimes
- Products may not notice post-infection activities but they might!
- A breach is a combination of attack stages
- Many tests stop after the malware is introduced
- A thorough test will make no assumptions about a product's capabilities
  - Test like a real attacker and see what happens
  - Take no short-cuts (e.g. introduce malware realistically, such as via email)
  - Use realistic configurations (seek advice)

#### Testing challenges with evasive malware

- Rootkits hide (O RLY?!)
- Mainly about validation of installation and removal...
- How can you tell if anti-malware blocked/ removed a rootkit?
- How can you validate that the rootkit installation succeeded (when pre-infecting systems?)
- What if you want to test specialised anti-rootkit tools?
- What kind of evidence will satisfy challengers of the results?
- Have the seen the size of a modern memory dump?

## Expensive memory dumping

WindowsSCOPE CaptureGUARD Physical Memory Acquisition Hardware – PCIe Add-on



**\$9,599** ea. (March 2019)

http://www.windowsscope.com/product/captureguard-physical-memory-acquisition-hardware-pcie-add-on/

## Free memory dumping

#### DumpIt

(Was by MoonSols, now Comae Technologies)

- Direct download: <a href="http://www.moonsols.com/wp-content/plugins/download-monitor/download.php?id=7">http://www.moonsols.com/wp-content/plugins/download-monitor/download.php?id=7</a>
- 'Legit' download: <a href="https://comae.typeform.com/to/XIvMa7">https://comae.typeform.com/to/XIvMa7</a> (annoying survey > email link to download)
- Mdd (Apparently from ManTech, but good luck finding the link on the corporate site...)
  - Download: <a href="https://sourceforge.net/projects/mdd/">https://sourceforge.net/projects/mdd/</a>
- Why >1? Sometimes one will crash on infected systems.

## Analysis: Malware infection (not rootkit)

From a recent SE Labs test, in which the result of 'compromised' was disputed by the vendor...

- File system changes:
  - + C:\Users\x\AppData\Local\Temp\<mark>server.exe</mark>
- Registry changes:
  - + HKLM\SOFTWARE\Wpw6432Node\Microsoft\ Windows\CurrentVersion\Run\x: ""C:\Users\x\App Data\Local\Temp\server.exe" .."
  - + HKLM\SYSTEM\CurrehtControlSet\services\SharedAccess\Parameters\
    FirewallPolicy\FirewallRules\x: \v2.10|Action=Allow|Active=1RUE|Dir=In|
    Protocol=17|Profile=Public|App=C:\Users\x\AppData\Local\Temp\server.exe
    Name=server.exe

## Summary: 'Regular' infection

```
si@SEL:~/$ volatility -f dump.raw --profile=Win7SP1x64 pslist
           PID PPID
                               Hnds
Name
                       Thds
                                       Sess
                                               Wow64 Start
System
           4 0
                   112 504 ----- 0 2017-01-18 10:04:15
                       33 ----- 0 2017-01-18 10:04:15
           288 4
smss.exe
svchost.exe 716 540 12 369 0 0 2017-01-18 10:04:20
Agent.exe
           780 540 42 978 0
                             0 2017-01-18 10:04:21
taskhost.exe 1500
                   540 11 197 1
                                       2017-01-18 10:05:45
dwm.exe
           1544
                   796 6
                          126 1
                                       2017-01-18 10:05:45
                           35 820 1
explorer.exe 1552
                   1536
                                           2017-01-18 10:05:45
Agont III ova 2256
           2688
                   2152
                              218 1
                                          2017-01-18 10:05:48
server.exe
Dumpit.exe 33/2
                                           2017-01-18 10:07:06
                    1552
                               53
Memory analysis for visual proof
```

## Direct Kernel Object Mode (DKOM)

- Common technique: unlink a process' entry from the doubly-linked list
- Malicious process won't appear in the process list (pslist)
- Run psscan and compare outputs
- Entries in psscan output that are **missing** from pslist are suspect

• Bit onerous, though...

# psxview FTW!

| Name            | pslist | psscan | thrdproc | pspcid | csrss | session | deskthrd |
|-----------------|--------|--------|----------|--------|-------|---------|----------|
|                 |        |        |          |        |       |         |          |
| sychost exe     | True   | True   | True     | True   | True  | True    | True     |
| 1 doc RCData 61 | False  | True   | True     | Irue   | True  | Irue    | True     |
| explorer.exe    | True   | True   | True     | True   | True  | True    | True     |
| winlogon.exe    | True   | True   | True     | True   | True  | True    | True     |
| svchost.exe     | True   | True   | True     | True   | True  | True    | True     |
| msiexec.exe     | False  | True   | False    | False  | False | False   | False    |
| rundll32.exe    | False  | True   | False    | False  | False | False   | False    |

#### Important tips

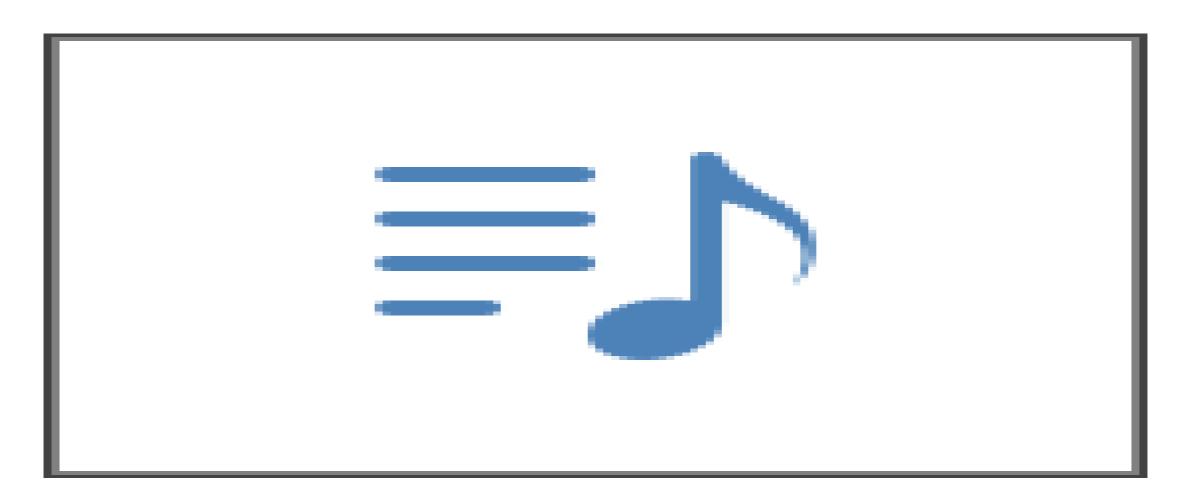
- Use these techniques in all tests, not just anti-rootkit tests
- Hygiene is important. Clean your MBR between test cases.
- Have more than one memory dumping tool to hand.
- Analyse offline.
- For a reasonable test, have a lot of storage for memory dumps.
- Share output of analysis, not full memory dumps (KBs vs. GBs).

#### Targeted attack example












#### Demo

- Fully-updated Windows 10 PC, Windows Defender, UAC enabled
- Four year-old PDF exploit
- Default Metasploit installation (and no other tools)
- Minimal social engineering
- Full Ownership in < 7 minutes
- What does anti-malware see?
- What does 'next-gen' see?
- EXAMPLE THREAT WAS NOT CHERRY PICKED FOR DRAMA!

## Anti-virus vs. next-gen detection



#### Next-generation detection

- Private test result
  - No detection/ protection from well-known 'next-gen' products (infection)
  - No protection from surprising number of established anti-malware products
  - Good protection from some established anti-malware products
  - Detection from some 'next-gen' products (post-exploit actions)

#### Reasons to run full breach testing

- Testing can indicate:
  - How useful are established and new security solutions?
  - Where are the **strengths and limits** of their capabilities?
  - Do they do what they claim?
  - Do they have **other benefits**?
- The above information can help businesses consider:
  - Are they good **value for money**?
  - How much **training** will staff need to use them effectively?
  - How much **overlap** is there with currently deployed measures?

#### Questions?

@SELabsUK

@SPGEdwards