More Accurate ECN Feedback in TCP

draft-ietf-tcpm-accurate-ecn-08

Bob Briscoe, CableLabs®<ietf@bobbriscoe.net>
Mirja Kuhlewind, Ericsson<ietf@kuehlewind.net>
Richard Scheffenegger, NetApp®<rs.ietf@gmx.at>

TCPM WG, IETF-104, Mar 2019
Problem (Recap): Congestion Existence, not Extent

- Explicit Congestion Notification (ECN)
 - routers/switches mark more packets as load grows
 - RFC3168 added ECN to IP and TCP

<table>
<thead>
<tr>
<th>IP-ECN</th>
<th>Codepoint</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>not-ECT</td>
<td>No ECN</td>
</tr>
<tr>
<td>10</td>
<td>ECT(0)</td>
<td>ECN-Capable Transport</td>
</tr>
<tr>
<td>01</td>
<td>ECT(1)</td>
<td>Congestion Experienced</td>
</tr>
<tr>
<td>11</td>
<td>CE</td>
<td>Congestion Experienced</td>
</tr>
</tbody>
</table>

- Problem with RFC3168 ECN feedback:
 - only one TCP feedback per RTT
 - rcvr repeats ECE flag for reliability, until sender’s CWR flag acks it
 - suited TCP at the time – one congestion response per RTT
Solution (recap): Congestion Extent, not just Existence

- **AccECN**: Change to TCP wire protocol

 - Repeated count of CE packets (**ACE**) - essential

 - and CE, ECT(0) and ECT(1) bytes (**AccECN Option**) – supplementary

- Key to congestion control for low queuing delay

 - 0.5 ms (vs. 5-15 ms) over public Internet
Forward Compatibility

- Exhaustive check found more unused values
 - ECN TCP flags on SYN
- Solely about AccECN server behaviour
 - not a land-grab for AccECN
- Just an answer to the question
 - “if a future protocol uses any other combination on the SYN, which of the 3 possible server behaviours is likely to be most useful?”

- Makes behaviour from AccECN servers predictable for future protocols

<table>
<thead>
<tr>
<th></th>
<th>AE</th>
<th>CWR</th>
<th>ECE</th>
<th>On SYN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not ECN</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>RFC3168 ECN</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>AccECN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The other 5 combinations</td>
</tr>
</tbody>
</table>
Optional to implement the option

• protocol has to cope without it
• RECOMMENDED to implement_snd & rcv
• If not snd, rcv handling RECOMMENDED

The AccECN Option has to be optional to implement, because both sender and receiver have to be able to cope without the option anyway - in cases where it does not traverse a network path. It is RECOMMENDED to implement both sending and receiving of the AccECN Option. If sending of the AccECN Option is implemented, the fall-backs described in this document will need to be implemented as well (unless solely for a controlled environment where path traversal is not considered a problem). Even if a developer does not implement sending of the AccECN Option, it is RECOMMENDED that they still implement logic to receive and understand any AccECN Options sent by remote peers.
Segmentation/coalescing offload

- Yuchung/Google wants to use DCTCP-style feedback
 - AccECN addresses problems with DCTCP f/b
 - but DCTCP-style better for current GRO
- Stepping back (see draft)...
 - ECN feedback and coalescing intrinsically conflict
 - DCTCP step marking induces runs of on or off
 - fortunately complementary to coalescing
 - Ramp marking being investigated to improve responsiveness
 - DCTCP stuck with step marking, without solution to the intrinsic conflict
- Solution
 - hardware can optimize around an (experimental) standard
 - so keep AccECN as is
 - patch software offload
 - Linux TSO/GRO coded at Hackathon
 - hardware will follow
 - review volunteered
 - provide interim local-use variant for DCTCP-style f/b
 - available within AccECN negotiation
AccECN Implementation

• Linux
 • ported to latest v5.1 kernel and submitted to mainline (Olivier Tilmans + Mirja Kühlewind)
 • fall-backs TBA
 • Hackathon:
 - testing / debugging
 - TSO/GRO added
Status & Next Steps

- All the above is in draft-08
 - including resolution of Michael Scharf's issues
- Confirm GRO issue is resolved
- WGLC

- Some minor clarity edits from implementation experience
 - see mailing list – in authors' copy of draft-09
ECN++: Adding ECN to TCP Control Packets
draft-ietf-tcpm-generalized-ecn-03

Bob Briscoe, CableLabs®
Marcelo Bagnulo, UC3M

TCPM WG, IETF-104, Mar 2019
Bugfix: to prevent ECN++ disabling ECN on 84% of servers

- If a SYN requests ECN at the TCP layer and is already ECN-capable at the IP layer
 - Linux TCP listeners currently disable ECN for the connection
 - ECN++ client deployment hard to get started :(

- Recent tiny patch for back-porting to all Linux TCP listeners
 - identifies an ECN set-up SYN that's ECN-capable in IP by:
 - flag bits 4-9 == 0b000011
 - not just
 - flag bits 8-9 == 0b11
 - This can distinguish an RFC3168 ECN setup SYN from something newer that allows ECT on a SYN, such as an AccECN setup SYN, which uses
 - flag bits 4-9 == 0b111