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QUIC Packetization: Ack Example

Packets received: 1 … 125
Time since largest received: 25ms

represented as a shifted value (default 3, negotiable)
25ms = 3125us << 3

ACK fields
Largest packet received so far: 125
First Ack Range: 124
Ack Range Count: 0
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Time since largest received: 0ms

ACK fields
Largest packet received so far: 130
First Ack Range:  0
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QUIC Packetization: Ack Example

Packets received: 1 … 125, 130
Time since largest received: 0ms

ACK fields
Largest packet received so far: 130
First Ack Range:  0
Gap #1:  126 - 129  (encoded as 3)
Ack Range #1:  1 - 125  (encoded as 124)
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Packet 56 dropped
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Packet 56 dropped

Also, Stream 8 was reset

QUIC loss detection marks packet 56 as lost
let’s say last packet sent was packet number 74

QUIC Packetization: Loss Example
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(caveat: multiple PN spaces during connection setup)
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Packet numbers represent transmission order
stream IDs and offsets used for delivery order
monotonically increasing 62-bit packet numbers
(caveat: multiple PN spaces during connection setup)

Packets are containers
carry a mix of various types of frames

Retransmissions are not automatically high priority
depends on relative stream priority
application-dependent

QUIC Loss Recovery



SHOULD ACK every other packet
subject to 25ms delayed ack timer

Generating ACK frames
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CE codepoint received
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SHOULD ACK every other packet
subject to 25ms delayed ack timer

SHOULD ACK immediately if:
Received packet number != largest received + 1
CE codepoint received

MAY process more packets before ACK
allows less frequent acking

Generating ACK frames



Loss detection only when ACK frame received
that newly acks a packet
use both packet and time thresholds
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Loss detection only when ACK frame received
that newly acks a packet
use both packet and time thresholds

Packet threshold
reordering >= 3 packets

Time threshold
reordering >= 1 packet AND 

time > 9/8 * max(SRTT, latest_RTT)

QUIC Loss Detection



Probe Timeout (PTO) triggers packet(s) when no ACK
on PTO, send 1 or 2 probe packets (new or old data)
restarted when new ACK-eliciting packet (tail) sent
exponential backoff (pto *= 2)

pto = smoothed_rtt + max(4*rttvar, kGranularity) + 
max_ack_delay

Timeout does not necessarily mean packet loss
exception: if no data to send, mark outstanding as lost

No ACKs received: Probe Timeout
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When all packets are lost over a long-enough time
(smoothed_rtt + 4 * rttvar + max_ack_delay) * 

(2 ^ kPersistentCongestionThreshold - 1)

No ACKs received: Persistent Congestion
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When all packets are lost over a long-enough time
(smoothed_rtt + 4 * rttvar + max_ack_delay) * 

(2 ^ kPersistentCongestionThreshold - 1)

Collapse congestion window to min_cwnd

Default kPersistentCongestionThreshold = 2
same as 2 TLPs followed by an RTO

No ACKs received: Persistent Congestion



In-network packet tracing
Wireshark dissector available
This isn’t enough. Why?

Endpoint-based packet tracing
Log packet and frame details at endpoint
(also log other transport info, such as cwnd)
quic-trace
QUICvis

Tooling



Written by Victor Vasiliev et al (Google)
Available at https://github.com/google/quic-trace
Input: protobuf or JSON

Tooling: quic-trace

https://github.com/google/quic-trace


Written by Robin Marx et al
Available at https://quic.edm.uhasselt.be/
Input: JSON

Tooling: QUICvis

https://quic.edm.uhasselt.be/

