
TCPM @ IETF 104, March 2019

QUIC Loss Detection
draft-ietf-quic-recovery-19

Short header

QUIC Packet Format

Long header

Short header

QUIC Packet Format

Long header

Short header

QUIC Packet Format

Long header

Frames

Frames

Frames

Frames

STREAM Frame

QUIC Packetization: Example

Key Phase

Packet Number

Spin Bit

Header = 0b01

QUIC Packet

Dest Conn ID

QUIC Packetization: Example

Key Phase

Packet Number

Spin Bit

Header = 0b01

STREAM Frame STREAM Frame ACK Frame

QUIC Packet

Dest Conn ID

QUIC Packetization: Example

Key Phase

PN = 56

Spin Bit

Header = 0b01
STREAM Frame

STREAM Frame ACK Frame

QUIC Packet

Dest Conn ID

Stream ID: 5
Offset: 1123
Length: 500
Fin: False

Application
Data

QUIC Packetization: Example

Key Phase

PN = 56

Spin Bit

Header = 0b01
STREAM Frame

ACK Frame

QUIC Packet

Dest Conn ID

STREAM Frame

Stream ID: 8
Length: 300
Fin: False

Application
Data

Stream ID: 5
Offset: 1123
Length: 500
Fin: False

Application
Data

ACK Frame

ACK Frame

Highest Packet
Number seen so far

ACK Frame

Highest Packet
Number seen so far

Time since Largest
Acked was received

ACK Frame

Highest Packet
Number seen so far

Time since Largest
Acked was received

Contiguous from
Largest Acked

QUIC Packetization: Ack Example

Packets received: 1 … 125
Time since largest received: 25ms

represented as a shifted value (default 3, negotiable)
25ms = 3125us << 3

ACK fields
Largest packet received so far: 125
First Ack Range: 124
Ack Range Count: 0

QUIC Packetization: Example

Key Phase

PN = 56

Spin Bit

Header = 0b01
STREAM Frame ACK Frame

Largest: 125
Ack Delay: 3125
Ack Range: 0
First Range: 124

QUIC Packet

Dest Conn ID

STREAM Frame

Stream ID: 8
Length: 300
Fin: False

Application
Data

Stream ID: 5
Offset: 1123
Length: 500
Fin: False

Application
Data

QUIC Packetization: Ack Example

Packets received: 1 … 125, 130
Time since largest received: 0ms

ACK fields
Largest packet received so far: 130
First Ack Range: 0
Gap #1: 126 - 129
Ack Range #1: 1 - 125

QUIC Packetization: Ack Example

Packets received: 1 … 125, 130
Time since largest received: 0ms

ACK fields
Largest packet received so far: 130
First Ack Range: 0
Gap #1: 126 - 129 (encoded as 3)
Ack Range #1: 1 - 125 (encoded as 124)

QUIC Packetization: Example

Key Phase

PN = 56

Spin Bit

Header = 0b01
STREAM Frame ACK Frame

Largest: 130
Ack Delay: 0
Range Count: 1
First Range: 0
Gap #1: 3
Range #1: 124

QUIC Packet

Dest Conn ID

Stream ID: 5
Offset: 1123
Length: 500

Application
Data

STREAM Frame

Stream ID: 8
Length: 300

Application
Data

Packet 56 dropped

QUIC Packetization: Loss Example

Packet 56 dropped

Also, Stream 8 was reset

QUIC Packetization: Loss Example

Packet 56 dropped

Also, Stream 8 was reset

QUIC loss detection marks packet 56 as lost
let’s say last packet sent was packet number 74

QUIC Packetization: Loss Example

QUIC Packetization: Example

Key Phase

PN = 56

Spin Bit

Header = 0b01
STREAM Frame ACK Frame

Largest: 130
Ack Delay: 0
Range Count: 1
First Range: 0
Gap #1: 3
Range #1: 124

QUIC Packet

Dest Conn ID

Stream ID: 5
Offset: 1123
Length: 500

Application
Data

STREAM Frame

Stream ID: 8
Length: 300

Application
Data

QUIC Packetization: Example

Key Phase

PN = 75

Spin Bit

Header = 0b01
STREAM Frame ACK Frame

Largest: 130
Ack Delay: 0
Range Count: 1
First Range: 0
Gap #1: 3
Range #1: 124

QUIC Packet

Dest Conn ID

Stream ID: 5
Offset: 1123
Length: 500

Application
Data

STREAM Frame

Stream ID: 8
Length: 300

Application
Data

QUIC Packetization: Example

Key Phase

PN = 75

Spin Bit

Header = 0b01
STREAM Frame ACK Frame

Largest: 130
Ack Delay: 0
Range Count: 1
First Range: 0
Gap #1: 3
Range #1: 124

QUIC Packet

Dest Conn ID

Stream ID: 5
Offset: 1123
Length: 500

Application
Data

STREAM Frame

Stream ID: 8
Length: 300

Application
Data

Packet numbers represent transmission order
stream IDs and offsets used for delivery order
monotonically increasing 62-bit packet numbers
(caveat: multiple PN spaces during connection setup)

QUIC Loss Recovery

Packet numbers represent transmission order
stream IDs and offsets used for delivery order
monotonically increasing 62-bit packet numbers
(caveat: multiple PN spaces during connection setup)

Packets are containers
carry a mix of various types of frames

QUIC Loss Recovery

Packet numbers represent transmission order
stream IDs and offsets used for delivery order
monotonically increasing 62-bit packet numbers
(caveat: multiple PN spaces during connection setup)

Packets are containers
carry a mix of various types of frames

Retransmissions are not automatically high priority
depends on relative stream priority
application-dependent

QUIC Loss Recovery

SHOULD ACK every other packet
subject to 25ms delayed ack timer

Generating ACK frames

SHOULD ACK every other packet
subject to 25ms delayed ack timer

SHOULD ACK immediately if:
Received packet number != largest received + 1
CE codepoint received

Generating ACK frames

SHOULD ACK every other packet
subject to 25ms delayed ack timer

SHOULD ACK immediately if:
Received packet number != largest received + 1
CE codepoint received

MAY process more packets before ACK
allows less frequent acking

Generating ACK frames

Loss detection only when ACK frame received
that newly acks a packet
use both packet and time thresholds

QUIC Loss Detection

Loss detection only when ACK frame received
that newly acks a packet
use both packet and time thresholds

Packet threshold
reordering >= 3 packets

QUIC Loss Detection

Loss detection only when ACK frame received
that newly acks a packet
use both packet and time thresholds

Packet threshold
reordering >= 3 packets

Time threshold
reordering >= 1 packet AND

time > 9/8 * max(SRTT, latest_RTT)

QUIC Loss Detection

Probe Timeout (PTO) triggers packet(s) when no ACK
on PTO, send 1 or 2 probe packets (new or old data)
restarted when new ACK-eliciting packet (tail) sent
exponential backoff (pto *= 2)

pto = smoothed_rtt + max(4*rttvar, kGranularity) +
max_ack_delay

Timeout does not necessarily mean packet loss
exception: if no data to send, mark outstanding as lost

No ACKs received: Probe Timeout

Probe Timeout (PTO) triggers packet(s) when no ACK
on PTO, send 1 or 2 probe packets (new or old data)

No ACKs received: Probe Timeout

Probe Timeout (PTO) triggers packet(s) when no ACK
on PTO, send 1 or 2 probe packets (new or old data)
restarted when new ACK-eliciting packet (tail) sent

No ACKs received: Probe Timeout

Probe Timeout (PTO) triggers packet(s) when no ACK
on PTO, send 1 or 2 probe packets (new or old data)
restarted when new ACK-eliciting packet (tail) sent
exponential backoff (pto *= 2)

No ACKs received: Probe Timeout

Probe Timeout (PTO) triggers packet(s) when no ACK
on PTO, send 1 or 2 probe packets (new or old data)
restarted when new ACK-eliciting packet (tail) sent
exponential backoff (pto *= 2)

pto = smoothed_rtt + max(4*rttvar, kGranularity) +
max_ack_delay

No ACKs received: Probe Timeout

Probe Timeout (PTO) triggers packet(s) when no ACK
on PTO, send 1 or 2 probe packets (new or old data)
restarted when new ACK-eliciting packet (tail) sent
exponential backoff (pto *= 2)

pto = smoothed_rtt + max(4*rttvar, kGranularity) +
max_ack_delay

Timeout does not necessarily mean packet loss
exception: if no data to send, mark outstanding as lost

No ACKs received: Probe Timeout

When all packets are lost over a long-enough time
(smoothed_rtt + 4 * rttvar + max_ack_delay) *

(2 ^ kPersistentCongestionThreshold - 1)

No ACKs received: Persistent Congestion

When all packets are lost over a long-enough time
(smoothed_rtt + 4 * rttvar + max_ack_delay) *

(2 ^ kPersistentCongestionThreshold - 1)

Collapse congestion window to min_cwnd

No ACKs received: Persistent Congestion

When all packets are lost over a long-enough time
(smoothed_rtt + 4 * rttvar + max_ack_delay) *

(2 ^ kPersistentCongestionThreshold - 1)

Collapse congestion window to min_cwnd

Default kPersistentCongestionThreshold = 2
same as 2 TLPs followed by an RTO

No ACKs received: Persistent Congestion

In-network packet tracing
Wireshark dissector available
This isn’t enough. Why?

Endpoint-based packet tracing
Log packet and frame details at endpoint
(also log other transport info, such as cwnd)
quic-trace
QUICvis

Tooling

Written by Victor Vasiliev et al (Google)
Available at https://github.com/google/quic-trace
Input: protobuf or JSON

Tooling: quic-trace

https://github.com/google/quic-trace

Written by Robin Marx et al
Available at https://quic.edm.uhasselt.be/
Input: JSON

Tooling: QUICvis

https://quic.edm.uhasselt.be/

