
User-defined TCP Options Support
in Linux

Viet-Hoang Tran, Olivier Bonaventure
(INL, UCLouvain)

Supporting new TCP options

● The standard way to extend TCP

● Implementation: requires kernel changes

● Middlebox interference?
RFC 6994: “Shared Use of Experimental TCP Options”

● Based on TCP-BPF by Lawrence Brakmo:
● Hooks at different phases of a TCP connection

 or when connection state changes
● Read & write to many fields of tcp_sock

User Timeout Option
TCP User Timeout (UTO):

max time waiting for the ACK of transmitted data
before aborting the connection

RFC 5482: TCP option to announce/request UTO
Not yet implemented in Linux

SYN

SYN-ACK

ACK + UTO option

Client Server

BPF program
inserts UTO option

BPF program
parses UTO option
and set the value

Initial CWND option

When the receivers know more about the
network bottleneck.
 e.g. clients know about WiFi/Cellular capacity

Delayed ACK Option

● Motivation: Too many ACKs or too few ACKs is not good.
○ ACK processing overhead, wireless channel contention,...
○ or large bursts, too high minRTO, …

→ The need to request the remote’s ACK delay strategy

● Google proposed Low Latency Option at IETF 97-99:
Absolute Delack timeout + TS resolution

● Instead, we use a purely delayed-ACK option,
which carries two values:

Segs count: Number of received segs before sending an ACK
Delack timeout: relatively as a fraction of RTT

Value: log2(RTT/Timeout)
based on sRTT or minRTT?

Overhead
● iperf3 transfer over 10 Gbps link
● trigger on every packet

Average Throughput (Gbps)

Sender's CPU usage (%) Receiver's CPU usage (%)

Code Status

Caveats

● Option size <= 4 Bytes, extensible to 16 Bytes

● Decouple from cgroup-v2?

Conclusion
● eBPF makes it easier to extend TCP

or adapt TCP to various environments.

● More in paper: https://arxiv.org/abs/1901.01863
● Git repository: https://github.com/hoang-tranviet/tcp-options-bpf

Feel free to try and extend it!

https://arxiv.org/abs/1901.01863
https://github.com/hoang-tranviet/tcp-options-bpf

Backup slides

Congestion Control Request Option

Receiver requests the sender to use a
desired CC algorithm for the connection

E.g. Clients prefer low latency over throughput

Two sides shared the list of CC beforehand

Add new option: 2 steps

One more thing: update current MSS

BPF VM

Parse new option

tcp_parse_options()

tcp_v4_rcv()

tcp_v6_rcv()

ip_rcv()

BPF VM

Extreme (and unrealistic) benchmark

over loopback interface
trigger on every packet

Average Throughput (Gbps) RTT (usecs)

