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Supporting new TCP options

● The standard way to extend TCP

● Implementation: requires kernel changes

● Middlebox interference?
RFC 6994: “Shared Use of Experimental TCP Options”

● Based on TCP-BPF by Lawrence Brakmo:
● Hooks at different phases of a TCP connection

  or when connection state changes
● Read & write to many fields of tcp_sock



User Timeout Option
TCP User Timeout (UTO):

max time waiting for the ACK of transmitted data
before aborting the connection

RFC 5482: TCP option to announce/request UTO
Not yet implemented in Linux
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Initial CWND option

When the receivers know more about the 
network bottleneck.
  e.g. clients know about WiFi/Cellular capacity



Delayed ACK Option

● Motivation: Too many ACKs or too few ACKs is not good.
○ ACK processing overhead, wireless channel contention,...
○ or large bursts, too high minRTO, …

→ The need to request the remote’s ACK delay strategy

● Google proposed Low Latency Option at IETF 97-99:
Absolute Delack timeout + TS resolution

● Instead, we use a purely delayed-ACK option,
which carries two values:

Segs count: Number of received segs before sending an ACK
Delack timeout: relatively as a fraction of RTT

Value: log2(RTT/Timeout)
based on sRTT or minRTT?



Overhead
● iperf3 transfer over 10 Gbps link
● trigger on every packet

Average Throughput (Gbps)

Sender's CPU usage (%) Receiver's CPU usage (%)



Code Status

Caveats

● Option size <= 4 Bytes, extensible to 16 Bytes

● Decouple from cgroup-v2?



Conclusion
● eBPF makes it easier to extend TCP 

or adapt TCP to various environments.

● More in paper: https://arxiv.org/abs/1901.01863
● Git repository: https://github.com/hoang-tranviet/tcp-options-bpf

Feel free to try and extend it!

https://arxiv.org/abs/1901.01863
https://github.com/hoang-tranviet/tcp-options-bpf


Backup slides



Congestion Control Request Option

Receiver requests the sender to use a 
desired CC algorithm for the connection

E.g. Clients prefer low latency over throughput

Two sides shared the list of CC beforehand



Add new option: 2 steps

One more thing: update current MSS

BPF VM



Parse new option

tcp_parse_options() 

tcp_v4_rcv() 

tcp_v6_rcv() 

ip_rcv()

BPF VM



Extreme (and unrealistic) benchmark

over loopback interface
trigger on every packet

Average Throughput (Gbps) RTT (usecs)


