
TEEP Architecture Draft
draft-ietf-teep-architecture-02

Mingliang Pei, David Wheeler, Hannes Tschofenig
IETF#104, Prague

https://tools.ietf.org/html/draft-ietf-teep-architecture-02


Agenda

• Document Status
– Changes from the last version

• Issues Update

IETF104 2



Draft Status Update

• v01 published draft-ietf-teep-architecture-02
– Clarified Device Administrator further with added 

“Device User” and “Device Owner”
– TA distribution variations updated
– Multiple TEE illustration
– Multiple TAM consideration
– Attestation specification

IETF104 3

All Closed Issues on GitHub

https://tools.ietf.org/html/draft-ietf-teep-architecture-02


GitHub Open Issues
Issues Ready To Be Closed

Issue # Description
#3 TA Packaging and Distribution

#8 Multiple vs Single TEE in Device

#13 Support for TA-to-TA dependency

#14 Multiple TAMs for Single Client App

Issues Requiring More Work
Issue # Description
#7 Security Domains

#9 Install TA in a single pass

#10 Connection Flow – Device to connect to TAM

#11 Role of Client App

#17 Capabilities of Attestation Mechanism

#30 Cardinality of Key Pair and Certificate

#31 SEED for TAM protocol

#32 Trust Anchor Lifecycle Management

#34 Dependencies between Client App & TA

#35 Coordinate TA updates with Client App

#37 Sample Device Setup flow

#38 Trust Anchor Fingerprint

IETF104 4



#3: Trusted App Distribution

• Discussed in IETF 103

• Added a section to clarify different ways to combine:

– Client Apps, TA, Personalization Data

• Three variations to be supported by TEEP

IETF104 5

Case 1: Case 2: Case 3:

App

TA

Meta-Data

One Bundle

App

TA

Meta-Data

Two Bundles

App

TA

Meta-Data

Three Bundles

Primary issue is the encryption of 
the Meta-Data to preserve Privacy 

for the TA and Device/User.

Creating an encryption key while 

also providing proof-of-source 
from the SP issuing the 

personalized data is needed.

Such keys require the TEE to be 

engaged in creating the keys, and 
many TEEs cannot create such a 

key until the TA itself is 

instantiated on the device.



#8: Multiple TEEs vs. Single TEE

• Multiple TEEs can be supported 
using multiple TEEP Brokers.

• Each TEE has their own TEEP Agent
• App selection of the proper TEEP 

broker selects the TEE that will be 
used. This does not seem to be a 
difficult or burdensome 
requirement on Apps.

• This does not prevent or restrict any 
one TEEP Broker from supporting 
multiple TEEs

IETF104 6



#14: Multiple TAMs for single Client App?
• TAM is associated with a TA, not a Client App
• A Client App may depend on multiple TAs 

– Two different TAs could be from different TAMs when multiple third party TAs are used 
by a Client App

– However, a SP will typically provide the TAs of their own or work to acquire those third 
party TA binary to supply to a TAM on its choice.

• Resolution
– A Client App manifest file can contain all TAMs it may use to get TAs, normally just one
– Go with simple case that single TAM is contacted by a TEEP Broker for a Client App
– A SP provides each TAM that it places in the Client App’s manifest all the TAs that the 

app requires, so any TAM can provide all the TA’s
– For third party TAs that a Client App may depends on, a TAM can reach out to the 

original TAMs for those third party TAs that it is missing, but this would be a TAM 
implementation specialization
• We chose this over alternative approach that let TEEP Broker contact respective TAM per TA for 

simplification of majority case.
IETF104 7



#13: Is it in scope: TA depends on another TA?

• Discussed in interim work sessions
• Concerns
– Complex: very deep dependency
– Circular dependency

• Recommendation
– Defer dependencies to a future version as this is an advanced case

IETF104 8



#17 Capabilities of the Attestation Mechanism

• Changes made to:
– Define attestation
– Describe assumptions required for an attestation
– Identify the need to support both proprietary and standard 

attestation signatures
– Proposed format of attestation (may need more work & discussion)

IETF104 9



TEEP Attestation
• Attestation is the process through which one entity (an attestor) 

presents a series of claims to another entity (a verifier), 
provides sufficient proof that the claims are true. 

• Different verifiers may have different standards for attestation 
proofs and not all attestations are acceptable to every verifier. 

• TEEP attestations are based upon the use of an asymmetric key 
pair under the control of the TEE to create digital signatures 
across a well-defined claim set.

• In TEEP, the primary purpose of an attestation is to allow a 
device to prove to TAMs and SPs that a TEE in the device has 
particular properties, was built by a particular manufacturer, or 
is executing a particular TA. Other claims are possible.

Review from Latest Draft



11

How will Attestation be Used?
– Prove Identity of a Device or TA to authorize use of keys or secrets

• Attestation is used as the authorization vector for key usages
• Includes use, migration, wrap-and-transport, delete, derive, etc. 

– Prove Identity of a Device or TA to prevent masquerading attacks on services
• Attestation is the authentication mechanism for TEEs
• include TEE-to-Platform-or-Service, TEE-to-TEE, TEE-to-Remote-TAM/SP

– Prevent unauthorized interactions between TAs
• Attestation is the authorization mechanism for TAs

– Prevent unauthorized devices or TEEs from installing/using a TA
• Attestation is the authentication mechanism for environments



Attestation: Cryptographic Properties & Assumptions

• Cryptographic Properties
– Non-repudiation, Unique Proof of Source - the cryptographic digital signature across the attestation, and optionally along 

with information in the attestation itself SHALL uniquely identify a specific TEE in a specific device.

– Integrity of claims - the cryptographic digital signature across the attestation SHALL cover the entire attestation including 
all meta data and all the claims in the attestation, ensuring that the attestation has not be modified since the TEE signed 
the attestation.

• Assumptions
• Regarding the quality of the attestation and the quality and security provided by the TEE, the device, the manufacturer, or 

others involved in the device or TEE ecosystem. Assumptions include:

– the security measures a manufacturer takes when provisioning keys into devices/TEEs;

– what hardware and software components have access to the Attestation keys of the TEE;

– to the source or local verification of claims within an attestation prior to a TEE signing a set of claims;

– the level of protection afforded to attestation keys against exfiltration, modification, and side channel attacks;

– the limitations of use applied to TEE Attestation keys;

– the processes in place to discover or detect TEE breeches; and

– the revocation and recovery process of TEE attestation keys.

• TAMs and SPs must be comfortable with the assumptions that are inherently part of any attestation they accept. 

• Alternatively, any TAM or SP may choose not to accept an attestation generated from a particular manufacturer or device's TEE
based on the inherent assumptions. 

Review from Latest Draft



TEEP Standard Attestation Signatures

• Asymmetric Algorithms include larger sized keys to meet NIST 
recommendations for products that will exist beyond a 2030 
horizon
– RSA-2048 with SHA-256 or SHA-384 in RSASSA-PKCS1-v1_5 or PSS format
– RSA-3072 with SHA-256 or SHA-384 in RSASSA-PKCS1-v1_5 or PSS format 

– ECDSA-256 using NIST P256 curve using SHA-256

– ECDSA-384 using NIST P384 curve using SHA-384
– HashEdDSA using Ed25519 with SHA-512 (Ed25519ph in RFC8032) and 

context="TEEP Attestation"

– EdDSA using Ed448 with SHAK256 (Ed448ph in RFC8032) and 
context="TEEP Attestation"

Recommended

Review from Latest Draft



Attestation Structure
Attestation Type
Signature Type

Version Number

Manufacturer and
Device Unique

Identifiers
TEE Manufacturer and

TEE Type and
Version Numbers

Nonce
And/or

Timestamp

Claims based on 
Attestation Type

In Header

Optional Claims 
required by TEE Type 

or required by 
Requestor

Review from Latest Draft



SGX Attestation Elements

Required Attributes to validate an SGX TEE & Device

DEVICE IDENTIFYING INFO
• ATTRIBUTES – system attributes affecting TEE (debug 

enable, architectural features & extensions like AVX 
instructions, FPU, etc.)

• CPUSVN – Device/TEE security version number 
identifies security release of SGX

TEE IDENTIFYING INFO
• MRENCLAVE – Hash of the TA code

• MRSIGNER – Hash of the TA signing key

• ISVPRODID – Independent SW Vendor’s TA Product 
Identifier, uniquely identifies the TA

• ISVSVN – ISV’s security version number increments only 
on security updates

LINK TO OTHER CLAIMS IN ATTESTATION
• REPORTDATA – other attestation elements

These elements must be in an SGX Attestation, in order to evaluate

the code in the code the enclave and the SGX instance for trust.



Attestation Work still to Complete

• Update format based on feedback
• Provide clear direction for the mapping of Device, TEE, and TA 

attributes in the format
• Provide formats for TEEP standard claims
• Provide examples of real attestation (suggest SGX and ARM TZ)

IETF104 16



WORK IN PROGRESS AND OPEN DISCUSSION

IETF104 17



#7: Clarify meaning of Security Domain (SD)

18

- Problem
- Concern of overhead to manage SDs

- Proposal
- Proposed to allow implicit SD per TA
- Alternate Proposal is to remove the SD altogether and require the TEEP 

Broker/Agent to implement SDs if the underlying TEE requires it
- Background

- What is the SD actually needed for?
- What is the SD’s associated SP AIK (Anonymous Attestation Key) needed for?

- Issues
- Do we really need separate SP AIK?
- Do we really have a privacy concern?

IETF104

1 of 5



Issue #7 – Security Domain

• From TEEP: “A Security Domain (SD) concept is used as the 
security boundary inside a TEE for trusted applications”.

• The introduction of the Security Domain concept has also side 
effects on the protocol specification:
– First, it requires separate messaging for creating and deleting security domains.
– Second, it requires added protocol elements to reference security domains.
– Third, the Anonymous Attestation Key (AAK) is established and maintained for 

use with security domains.

2 of 5



Issue #7 – Security Domain

Since IETF 103, the following condensed summary of the issue was provided by Hannes:

The options for Security Domain inclusion in TEEP can be one of the following:

1. Make Security Domain mandatory for all exchanges (as it is in current protocol)

2. Make Security Domain implicit, using a default (new) security domain created for each app 
and the requirement to provision a public key per Security Domain.

3. Make Security Domain optional, and defaulting to a single TEE attestation key, which 
avoids the key provisioning round-trip.

4. Remove concept of Security Domain from the document

This boils down to defining what a Security Domain is really used for:
• is it a management component
• Is it an isolation mechanism
• Is it a key provisioning mechanism

3 of 5



#7: Clarify meaning of Security Domain (SD) Cont.

21

- Issue 1: why not single AIK per device instead of one per SP?
- For SP initiated data encryption to a device, the same key provides confidentiality. Source of proof 

can use a signing etc.

- Separate SP AIK for getTAInformation response provides privacy protection, mitigating a Client 

App from collecting TEE certificates.

- Issue 2: is TEE certificate as device identity a privacy concern?

- Argument 1: a device already has unique hardware ID, a MAC address etc. Rich OS can hide.

- Argument 2: this will require Rich OS involved to support hiding for TEE API calls. Also Rich OS 

was considered not at the same security level as TEE for this.

- Central question

- Should TEE certificates be accessible and exposed to any Client 

App that’s allowed to talk to the TEE?

IETF104

4 of 6



Issue #7 – Argument Against Security Domain
Use a separate AIK may not be necessary. The TEE attestation key could be 
used for the key wrapping if we agreed that the separate SP AIK isn’t 
necessary.

The install TA message should know the SP that is being linked, because:
• Client App requests install using a manifest that includes the SP’s public key
• The TAM sends the indication to install the TA, and provides the SP’s public 

key 

RECOMMENDATION:

Remove Security Domain from the protocol, and create security 
mechanisms that provide the required security protections at the right 
place in the protocol and can work under any conceived scenario.

5 of 5



#18 Trust Anchor Update
• Trust Anchor update must be considered for the completeness of the Trust Anchor lifecycle 

management

• Two options

– Part of architecture draft, synchronized with the SUIT definitions

– A separate draft work for the full definition of the Trust Anchor lifecycle (creation/provisioning, use, update)

• Current preference

– Defer complete definition for a separate draft document, but provide basic definitions aligned to SUIT and 

the use of the Trust Anchors in the architecture document.

– A solution discussed was to use a system Manager TA pre-installed in a TEE for check and update of Trust 

Anchors

• A related question

– Trust Anchor format: leave it to TEE implementation or define it in TEEP?

– If defined in TEEP a very comprehensive document with many implementation options must be provided 

(including fuses, one-time-programmable bits (OTP), locked flash, battery backed RAM, PUFs, etc)

IETF104 23



#9: Install TA in Single Pass?

• Not always

• Flow update per Hackathon feedback

– Initial TAM GET call is necessary

• Only provide device signing key information to a trusted TAM, not others

– Optimize to do this Single Pass for a device that has had cached TAM 

information

• David T new draft content

– To be merged back to the core protocol document

IETF104 24



#10: Local TEE signing first
• ISSUE:
– One proposal was put forward to make the TEE connect to the TAM using 

an attestation of the platform and include any “installTA” requests in the 
message

– The objection was stated as: Local TEE signing first would leak the TEE 
signing key to potentially unknown TAM

• DISCUSSION
– However, this can be solved by the TEEP Agent/Broker only sending such 

information to TAMs that are in the Trust Anchor list
• How does the TEEP Agent know the TAM is trusted? 
• The Manifest must include TAM information and the TAM keys
• The TAM info in the manifest is signed with the TAM’s private key and can be verified 

by the TEEP Agent in the TEE.

IETF104 25



#12: Every Rich App talks to TAM?

• Not necessary
• Options Include:
– Adopt support of metadata file and installer (as a service) in REE to 

initiate Broker contact with a TAM
– System library that can be statically/dynamically linked to the Rich 

App to provide TAM communication and message parsing 
– Also discuss the use of an Installer Application.

• See also #9

IETF104 26



Thank you!

Q&A

IETF104 27


