

Design issues for hybrid key
exchange in TLS 1.3
draft-stebila-tls-hybrid-design
https://dstebila.github.io/draft-stebila-tls-hybrid-design/

https://dstebila.github.io/draft-stebila-tls-hybrid-design/

● Multiple sources of interest in using multiple key exchange algorithms
simultaneously as part of transition to post-quantum crypto
○ Several Internet-Drafts already:

■ TLS 1.2: Schanck, Whyte, Zhang 2016; Amazon 2019
■ TLS 1.3: Shack, Stebila 2017; Whyte, Zhang, Fluhrer, Garcia-Morchon 2017; Kiefer, Kwiatkowski

2018
○ Experimental implementations: Google CECPQ1, CECPQ2; Open Quantum Safe; …

● Need PQ key exchange before we need PQ authentication because future quantum
computers could retroactively decrypt, but not retroactively impersonate

● Goal: develop experimental framework in which key exchange in TLS 1.3 can
be extended with additional keyshares

Motivation and Goals

Non-Goals

● Selecting one or more post-quantum algorithms to actually use in TLS

Design Parameters
1. How to negotiate which combination of

algorithms to use?
2. How many algorithms can be

combined?
(2? More than 2?)

3. How should public key shares be
transmitted? Combined, or
individually? Where in the TLS
handshake?

4. How should the shared secrets be
combined?

● Backwards compatibility
○ Hybrid-aware client, hybrid-aware

server
○ Hybrid-aware client, non-hybrid

aware server
○ With middle-boxes

● No extra round trips
● No duplicate information
● Minimizing changes to TLS state

machine or processing logic

Evaluating Designs

Negotiate combination together

Options:

1. Add NamedGroups for every desired
combination [KIEFER, CECPQ1,CECPQ2]

2. Use NamedGroup markers combined with an
extension to negotiation combinations
[WHYTE 1.3]

3. Use delimiters in supported_groups
extension

Negotiation

Negotiate each algorithm individually

● Extend the NamedGroup enum to include
identifiers for each individual algorithm

Options:

1. Send two lists of algorithms (2nd list in
extension) [SCHANCK]

2. Send all algorithms in one list, with some
external (IANA) mapping onto traditional vs.
next generation

3. Insert divider in the supported_groups
extension to delineate the “first” list and the
“second” list

Some choices affect backwards compatibility,
add processing logic,

or result in sending duplicate information

Options:

1. Concatenate keys, then feed directly
into TLS 1.3 key schedule.

2. KDF (dualPRF) keys together, then feed
that into key schedule.

3. XOR keys together, then feed directly
into key schedule.

4. Add new stage of key schedule for each
key.

5. Stick 2nd key into a (hopefully unused?)
“0” spot in the key schedule.

Key Combination

Top requirement: needs to provide
“robust” security:

● Final session key should be secure
as long as at least one of the
ingredient keys is unbroken.

● (Most obvious techniques are fine,
though with some subtleties; see
Giacon et al. PKC 2018, Bindel et al.
PQCrypto 2019, … .)

Open Questions
● Should the document also describe requirements for future KEMs and how they’ll be used

for TLS?
● Will any KEM suffice?

○ Passive-secure CPA KEMs not okay with key share reuse
○ Actively-secure CCA KEMs more robust but more expensive
○ How to deal with KEMs which have a non-zero probability of failure?

