OPAQUE IN TLS 1.3

NICK SULLIVAN
CLOUDFLARE
@GRITTYGREASE

H. Krawczyk, IBM Research
R. Barnes, O. Friel, Cisco
N. Sullivan, Cloudflare
MODERN PASSWORD-BASED AUTHENTICATION IN TLS
A SHORT HISTORY

- Password-based authentication
 - * without sending the password to the server
- SRP (Secure Remote Password) – RFC 2945
 - aPAKE (Augmented Password-Authenticated Key Exchange)
 - Widely implemented, used in Apple iCloud, ProtonMail, etc.
- Dragonfly – RFC 8492
 - SPEKE (Simple password exponential key exchange) derived
 - Independent submission
OPAQUE IN TLS 1.3

SRP IN TLS (RFC 5054)

- Salt sent in the clear
 - Leads to pre-computation attack on password database
- Unsatisfying security analysis
- Finite fields only, no ECC
- Awkward fit for TLS 1.3
 - Needs missing messages (challenges outlined in draft-barnes-tls-pake)
 - Post-handshake requires renegotiation
A new methodology for designing secure aPAKEs
Methodology to combine an authenticated key exchange (such as TLS 1.3) with an OPRF (Oblivious Pseudo-Random Function) to get a Secure aPAKE

Desirable properties

- Security proof
- Secure against pre-computation attacks
- Efficient implementation based on ECC
OPAQUE IN TLS 1.3

OPAQUE DEPENDENCIES OVERVIEW

- Underlying cryptographic work in CFRG
 - OPAQUE (draft-krawczyk-cfrg-opaque)
 - OPRF (draft-sullivan-cfrg-voprf)
 - Hash-to-curve (draft-irtf-cfrg-hash-to-curve)
The OPRF protocol allows the client to obtain a value based on the password and the server’s private key without revealing the password to the server.

OPRF(pwd) is used to encrypt an envelope containing OPAQUE keys:
- The client’s TLS 1.3-compatible private key
- The server’s TLS 1.3-compatible public key
Prime order group
- e.g. The group of points on an Elliptic Curve such as P-256
- Group elements will be denoted by capital letters such as P or Q

Scalar multiplication
- Adding a point to itself n times, such as \(P + P + \ldots + P \) is denoted \(nP \)
- Scalars will be represented by lower-case letters

Hash to group element (H2C)
- Function that takes a scalar and outputs a random group element
FUNDAMENTAL COMPONENTS / TERMINOLOGY

- **OPRF Flow**
 - Password → Blinded Password → OPRF Server Operation → Blinded OPRF Out → Unblinded OPRF Out
 - OPRF Private Key
OPRF Flow

pwd \rightarrow b*H2C(pwd) \rightarrow RWD = OPRF_1 \rightarrow s*(RWD) = OPRF_2

s*H2C(pwd) \leftarrow s*b*H2C(pwd) \leftarrow s*(RWD)

OPRF Private Key s
The OPRF protocol allows the client to obtain a value based on the password and the server’s private key without revealing the password to the server.

OPRF(pwd) is used to encrypt an envelope containing OPAQUE keys.
- The client’s TLS 1.3-compatible private key
- The server’s TLS 1.3-compatible public key
EC-OPRF FUNDAMENTALS

FUNDAMENTAL COMPONENTS / TERMINOLOGY

- OPRF Flow

pwd → b*H2C(pwd) → RWD

s*H2C(pwd) → s*b*H2C(pwd) → s*(RWD)

OPRF Private Key s
HIGH-LEVEL OVERVIEW

- User creates the envelope during password registration by running OPRF
- User proves knowledge of the password by being able to open the envelope and use the OPAQUE private key inside
- OPAQUE private keys used to authenticate handshake
 - 1. In place of PKI keys with a new Certificate Type
 - 2. Combined with TLS ephemerals in the key schedule using MQV or 3DH
OPAQUE IN TLS 1.3

IN PLACE OF PKI KEYS: OPAQUE-SIGN

- OPAQUE keys are signature keys
- Client sends identity, OPRF_1
- Server
 - Certificate message with OPRF_2 in extension
 - CertificateRequest with Identity
- Key used for server CertificateVerify is server OPAQUE key
- Key used for client CertificateVerify is client OPAQUE key
OPAQUE keys are TLS 1.3 key shares

Client sends identity, OPRF_1, key_share matching OPAQUE key type

Server

- EncryptedExtensions message with OPRF_2 in extension

Ephemeral-Ephemeral-Static-Static key exchange used as input to key schedule

- K -> HKDF-Extract = Master Secret

Optional certificate auth
Client to Server

- Authenticator Request: Identity, OPRF_1

Server to Client

- Exported Authenticator: OPRF_2, Signature

- Authenticator Request: Identity (linked to previous EA)

Client to Server

- Exported Authenticator: Signature
OPAQUE IN TLS 1.3

PROPERTIES

- OPAQUE-Sign
 - No username privacy without ESNI-like mechanism
 - No simultaneous PKI auth
- OPAQUE-3DH, OPAQUE-MQV
 - No username privacy without ESNI-like mechanism
 - Optional PKI auth
- OPAQUE-Sign in Exported Authenticators
 - Username privacy
 - Optional PKI auth
 - Post-handshake auth through HTTP/2-like mechanisms
 - Extra round-trip
OPAQUE IN TLS 1.3

RECAP

- New password-based authentication mechanism for TLS 1.3
- First Secure aPAKE protocol provably secure against pre-computation attacks
- Multiple constructions with desirable properties
- Interesting for the WG to pursue as an alternative to SRP?
OPAQUE IN TLS 1.3

NICK SULLIVAN
CLOUDFLARE
@GRITTYGREASE

H. Krawczyk, IBM Research
R. Barnes, O. Friel, Cisco
N. Sullivan, Cloudflare