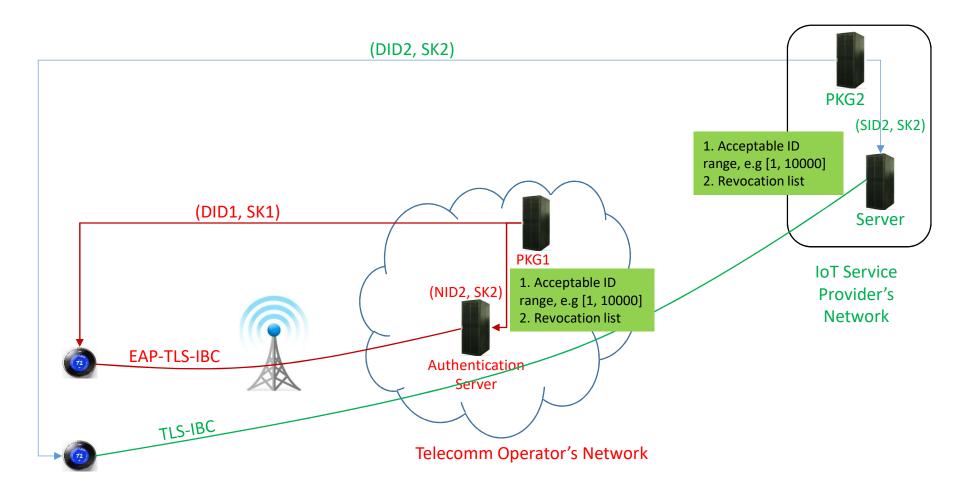
TLS: Using Identity as Raw Public Key

draft-wang-tls-raw-public-key-with-ibc

Haiguang Wang (<u>wang.haiguang1@huawei.com</u>) Yanjiang Yang (<u>yang.Yanjiang@huawei.com</u>) Xin Kang (<u>kang.xin@huawei.com</u>) Zhaohui Cheng (<u>chengzh@myibc.net</u>)

IETF 104, March 2019, Prague


Motivation

- TLS 1.3 (RFC 8446) supports using the raw public key in the handshake protocol. The raw public key has following advantages over PKI certificates
 - Simple in authentication
 - Lightweight in communication comparing to a standard certificate.
- Issues with using the raw public key
 - Need to maintain a binding list for public keys and their corresponding identifiers, which has to be provisioned to the server with out of band measures (as stated in the RFC 7250).
- Proposed Solution
 - Using Identity-based cryptography (IBC), i.e. the Identity-based Signature (IBS) to exempt server from provisioning of the binding between public keys and identifiers.

Usage Scenarios

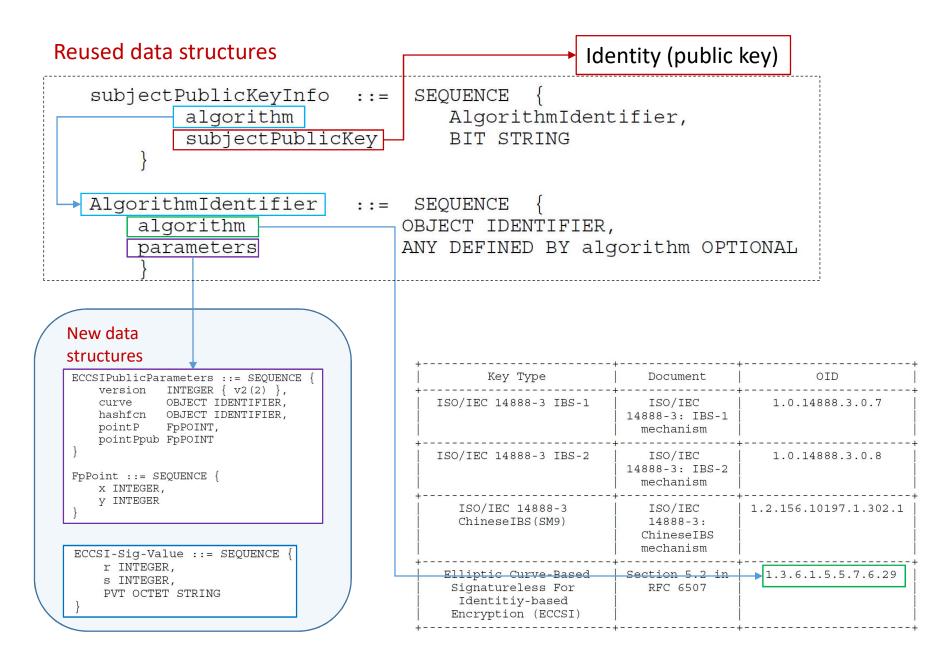
Two potential usage scenarios:

- 1. Devices perform mutual authentication with network access server using EAP-TLS-IBC
- 2. Devices perform mutual authentication with service provider's server with TLS-IBC

IBC Standards

#C	Standard	SDO	Туре	Description
1	IEEE P1363.3	IEEE	IBC	An cryptographic standard based on pairing including IBS/IBE/IBKA
2	RFC 5091	IETF	IBE	Identity-Based Cryptography Standard (IBCS) #1: Supersingular Curve Implementations of BF and BB1 Cryptosystems
3	RFC 5408	IETF	IBE	Identity-Based Encryption Architecture and Supporting Data Structure
4	RFC 5409	IETF	IBE	Using Boneh-Franklin and Boneh-Boyen Identity-Based Encryption Algorithms with the Cryptography Message Syntax (CMS)
5	RFC 6507	IETF	IBS	Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption (ECCSI)
6	RFC 6508	IETF	IBE	Using Identity-Based Encryption to exchange a shared secret from a Sender to a Receiver
7	RFC 6509	IETF	IBE + IBS	Provide a method of key exchange that uses Identity-based Public Key Cryptography (IDPKC) to establish a shared secret value and certificateless signatures to provide source authentication.
8	SM9	CCSE	IBC	An cryptographic standard based on pairing including IBS/IBE/IBKA
9	ISO/IEC 15946-5	ISO/IEC	ECC/IBC	Specify how to generate elliptic curve supporting pairing
10	ISO/IEC 11770-3 (2015)	ISO/IEC	IBKA	Including two ientity-based authenticated key agreement schemes
10	ISO/IEC 14888-3 (2018)	ISO/IEC	IBS	Including three identity-based signature schemes (ISO-IBS1, ISO-IBS2, ISO-ChineseIBS
11	ISO/IEC 18033-5 (2015)	ISO/IEC	IBE	Including three identity-based encryption schemes
12	Security of Mission Critical Push to Talk over LTE (3GPP TS 33.179)	3GPP	IBE+IBS	Apply IBE and IBS algorithm for secure SIP session key distribution and entity authentication over LTE

TLS-IBC: Using Identity as Raw Public Key


- Raw public key has been specified in the RFC 7250 and is included in the TLS 1.3.
- Extend the TLS 1.3 to support IBS
 - ➢ Using identity as the raw public key
 - Using IBS signature algorithm in place of raw public key signature algorithms
- IBS algorithms to be supported
 - ✓ ECCSI: specified in RFC 6507, Elliptic Curve based
 - ✓ ISO-IBS1: ISO/IEC 14888-3, Bilinear Pairing based
 - ✓ ISO-IBS2: ISO/IEC 14888-3, Bilinear Pairing based
 - ✓ ISO-ChineseIBS: ISO/IEC 14888-3, Bilinear Pairing based
 - http://sca.hainan.gov.cn/dt/tzgg/201803/W020180327347630321953.pdf

Data Structure Extended

First of all, we need to extend the Signature Scheme to reserve some values for IBS.

```
enum {
...
/* IBS ECCSI signature algorithm */
eccsi_sha256 (TBD),
iso_ibs1 (TBD),
iso_ibs2 (TBD),
iso_chinese_ibs (TBD),
/* Reserved Code Points */
private_use (0xFE00..0xFFFF),
(0xFFFF)
} SignatureScheme;
```

Data Structure Reused/Newly defined (ECCSI)

TLS-IBC: Handshake Protocols

```
client hello,
 +key share // (1)
 signature algorithm = (eccsi sha256)
                                         //((1))
 client certificate type=(RawPublicKey) // (1)
 server certificate type=(RawPublicKey) // (1)
                       ->
                       <- server hello,
                          + kev share
                          { server_certificate type = RawPublicKey} // (2)
                          {certificate=((1.3.6.1.5.5.7.6.29,
                           ECCSIPublicParameters), serverID) } //(3)
                          {client certificate type = RawPublicKey // (4)
                          {certificate request = (eccsi sha256)} //(5)
                          {CertificateVerify = {ECCSI-Sig-Value} // (6)
                          {Finishaed}
{Certificate=(
(1.3.6.1.5.5.7.6.29)
ECCSIPublicParameters),
ClientID) \} // (7)
{CertificatVerify = (ECCSI-Sig-Value) } //(8)
{Finished }
[Applicateion Data] ---->
[Application Data] <---> [Application Data]
```

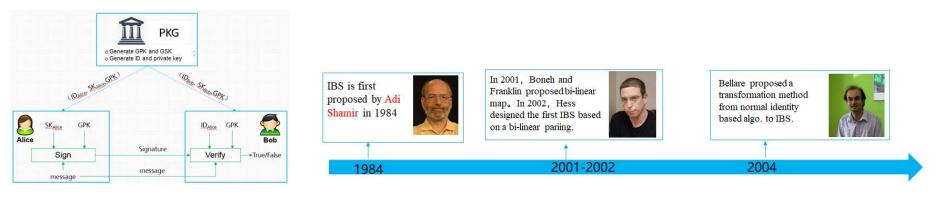
Work in ITU-T SG-17

- ITU-T SG-17 now is developing "security framework for use of identity-based cryptography in support of IoT services over Telecom networks". It covers the following topic:
 - > An overview of IoT services over telecom networks.
 - ➢ Security Requirement when using IBC .
 - Generic Formulation and Supported IBC Algorithms
 - ➢ IBC key data definition
 - Key management operations
 - ➤ Authentication
 - Identity naming

Way Forward

We asked the WG group chairs to reserve following code points for us to use in the implementation and testing.

enum {


```
/* IBS ECCSI signature algorithm */
eccsi_sha256 (TBD),
iso_ibs1 (TBD),
iso_ibs2 (TBD),
iso_chinese_ibs (TBD),
/* Reserved Code Points */
private_use (0xFE00..0xFFFF),
(0xFFFF)
} SignatureScheme;
```

Questions

Identity-based Signature Scheme

- Identity-based Cryptography
 - using identity as public key
 - example: <u>tom@xyz.com</u> can be a public key
 - Identity-based encryption (IBE)/Identity-based Signature (IBS)
- Identity-based Signature (IBS)
 - > Each user has own public and private key pairs, and its public key is its identity
 - User's private key is generated by PKG based on User's ID and PKG's Global Secret Key (GSK);
 - > The signing and signature verification procedure do not involve the PKG;
 - ✓ To verify the signature, only the signature, message, id, and the Global Public Key (GPK) are needed.

ID-based Signature Framework

