TLS: Using Identity as Raw Public Key

draft-wang-tls-raw-public-key-with-ibc

Haiguang Wang (wang.haiguang1@huawei.com)
Yanjiang Yang (yang.Yanjiang@huawei.com)
Xin Kang (kang.xin@huawei.com)
Zhaohui Cheng (chengzh@myibc.net)

IETF 104, March 2019, Prague
Motivation

• TLS 1.3 (RFC 8446) supports using the raw public key in the handshake protocol. The raw public key has following advantages over PKI certificates
 ➢ Simple in authentication
 ➢ Lightweight in communication comparing to a standard certificate.

• Issues with using the raw public key
 ➢ Need to maintain a binding list for public keys and their corresponding identifiers, which has to be provisioned to the server with out of band measures (as stated in the RFC 7250).

• Proposed Solution
 ➢ Using Identity-based cryptography (IBC), i.e. the Identity-based Signature (IBS) to exempt server from provisioning of the binding between public keys and identifiers.
Usage Scenarios

Two potential usage scenarios:
1. Devices perform mutual authentication with network access server using EAP-TLS-IBC
2. Devices perform mutual authentication with service provider’s server with TLS-IBC
IBC Standards

<table>
<thead>
<tr>
<th>#C</th>
<th>Standard</th>
<th>SDO</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IEEE P1363.3</td>
<td>IEEE</td>
<td>IBC</td>
<td>An cryptographic standard based on pairing including IBS/IBE/IBKA</td>
</tr>
<tr>
<td>2</td>
<td>RFC 5091</td>
<td>IETF</td>
<td>IBE</td>
<td>Identity-Based Cryptography Standard (IBCS) #1: Supersingular Curve Implementations of BF and BB1 Cryptosystems</td>
</tr>
<tr>
<td>3</td>
<td>RFC 5408</td>
<td>IETF</td>
<td>IBE</td>
<td>Identity-Based Encryption Architecture and Supporting Data Structure</td>
</tr>
<tr>
<td>4</td>
<td>RFC 5409</td>
<td>IETF</td>
<td>IBE</td>
<td>Using Boneh-Franklin and Boneh-Boyen Identity-Based Encryption Algorithms with the Cryptography Message Syntax (CMS)</td>
</tr>
<tr>
<td>5</td>
<td>RFC 6507</td>
<td>IETF</td>
<td>IBS</td>
<td>Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption (ECCSI)</td>
</tr>
<tr>
<td>6</td>
<td>RFC 6508</td>
<td>IETF</td>
<td>IBE</td>
<td>Using Identity-Based Encryption to exchange a shared secret from a Sender to a Receiver</td>
</tr>
<tr>
<td>7</td>
<td>RFC 6509</td>
<td>IETF</td>
<td>IBE + IBS</td>
<td>Provide a method of key exchange that uses Identity-based Public Key Cryptography (IDPKC) to establish a shared secret value and certificateless signatures to provide source authentication.</td>
</tr>
<tr>
<td>8</td>
<td>SM9</td>
<td>CCSE</td>
<td>IBC</td>
<td>An cryptographic standard based on pairing including IBS/IBE/IBKA</td>
</tr>
<tr>
<td>9</td>
<td>ISO/IEC 15946-5</td>
<td>ISO/IEC</td>
<td>ECC/IBC</td>
<td>Specify how to generate elliptic curve supporting pairing</td>
</tr>
<tr>
<td>10</td>
<td>ISO/IEC 11770-3</td>
<td>ISO/IEC</td>
<td>IBKA</td>
<td>Including two identity-based authenticated key agreement schemes</td>
</tr>
<tr>
<td></td>
<td>(2015)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2018)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ISO/IEC 18033-5</td>
<td>ISO/IEC</td>
<td>IBE</td>
<td>Including three identity-based encryption schemes</td>
</tr>
<tr>
<td></td>
<td>(2015)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Security of Mission Critical Push to Talk over LTE (3GPP TS 33.179)</td>
<td>3GPP</td>
<td>IBE+IBS</td>
<td>Apply IBE and IBS algorithm for secure SIP session key distribution and entity authentication over LTE</td>
</tr>
</tbody>
</table>
TLS-IBC: Using Identity as Raw Public Key

• Raw public key has been specified in the RFC 7250 and is included in the TLS 1.3.

• Extend the TLS 1.3 to support IBS
 - Using identity as the raw public key
 - Using IBS signature algorithm in place of raw public key signature algorithms

• IBS algorithms to be supported
 - ECCSI: specified in RFC 6507, Elliptic Curve based
 - ISO-IBS1: ISO/IEC 14888-3, Bilinear Pairing based
 - ISO-IBS2: ISO/IEC 14888-3, Bilinear Pairing based
 - ISO-ChineseIBS: ISO/IEC 14888-3, Bilinear Pairing based
Data Structure Extended

First of all, we need to extend the Signature Scheme to reserve some values for IBS.

```c
enum {
    ... /* IBS ECCSI signature algorithm */
    eccsi_sha256 (TBD),
    iso_ibs1 (TBD),
    iso_ibs2 (TBD),
    iso_chinese_ibs (TBD),
    /* Reserved Code Points */
    private_use (0xFE00..0xFFFF),
    (0xFFFF)
} SignatureScheme;
```
Data Structure Reused/Newly defined (ECCSI)

Reused data structures

```
subjectPublicKeyInfo ::= SEQUENCE {
  algorithm AlgorithmIdentifier,
  subjectPublicKey      .Bit STRING
}
```

AlgorithmIdentifier

```
AlgorithmIdentifier ::= SEQUENCE {
  algorithm algorithm,
  parameters          ANY DEFINED BY algorithm OPTIONAL
}
```

New data structures

```
ECCSIParameters ::= SEQUENCE {
  version INTEGER { v2(2) },
  curve  OBJECT IDENTIFIER,
  hashfcn OBJECT IDENTIFIER,
  pointP  FpPoint,
  pointPpub FpPoint,
}
```

```
PpPoint ::= SEQUENCE {
  x INTEGER,
  y INTEGER
}
```

```
ECCSI-Sig-Value ::= SEQUENCE {
  r INTEGER,
  s INTEGER,
  PVK OCTET STRING
}
```

Identity (public key)

```

data: SEQUENCE {
  AlgorithmIdentifier,
  BIT STRING
}
```

Table: Key Type, Document, OID

<table>
<thead>
<tr>
<th>Key Type</th>
<th>Document</th>
<th>OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO/IEC 14888-3 IBS-1</td>
<td>ISO/IEC 14888-3: IBS-1 mechanism</td>
<td>1.0.14888.3.0.7</td>
</tr>
<tr>
<td>ISO/IEC 14888-3 IBS-2</td>
<td>ISO/IEC 14888-3: IBS-2 mechanism</td>
<td>1.0.14888.3.0.8</td>
</tr>
<tr>
<td>ISO/IEC 14888-3 ChineseIBS(SM9)</td>
<td>ISO/IEC 14888-3: ChineseIBS mechanism</td>
<td>1.2.156.10197.1.302.1</td>
</tr>
</tbody>
</table>

Elliptic Curve Based Signatureless For Identity-based Encryption (ECCSI)

Section 5.2 in RFC 6507

OID for Signatureless For Identity-based Encryption (ECCSI)

1.3.6.1.5.5.7.6.29
TLS-IBC: Handshake Protocols

client_hello,
 +key_share // (1)
signature_algorithm = (eccsi_sha256) // (1)
client_certificate_type=(RawPublicKey) // (1)
server_certificate_type=(RawPublicKey) // (1)

<- server_hello,
 +key_share

{ server_certificate_type = RawPublicKey } // (2)
{ certificate=((1.3.6.1.5.5.7.6.29,
 ECCSIPublicParameters), serverID) } // (3)
{ client_certificate_type = RawPublicKey } // (4)
{ certificate_request = (eccsi_sha256) } // (5)
{ CertificateVerify = { ECCSI-Sig-Value } } // (6)
{ Finished }

{Certificate=(
 (1.3.6.1.5.5.7.6.29,
 ECCSIPublicParameters),
 ClientID)) } // (7)

{CertificateVerify = (ECCSI-Sig-Value) } // (8)

[Application Data] ----->
[Application Data] <---- [Application Data]
Work in ITU-T SG-17

• ITU-T SG-17 now is developing “security framework for use of identity-based cryptography in support of IoT services over Telecom networks”. It covers the following topic:
 - An overview of IoT services over telecom networks.
 - Security Requirement when using IBC.
 - Generic Formulation and Supported IBC Algorithms
 - IBC key data definition
 - Key management operations
 - Authentication
 - Identity naming
Way Forward

We asked the WG group chairs to reserve following code points for us to use in the implementation and testing.

```c
enum {
    ...
    /* IBS ECCSI signature algorithm */
    eccsi_sha256 (TBD),
    iso_ibs1 (TBD),
    iso_ibs2 (TBD),
    iso_chinese_ibs (TBD),
    /* Reserved Code Points */
    private_use (0xFE00..0xFFFF),
    (0xFFFF)
} SignatureScheme;
```
Questions
Identity-based Signature Scheme

• Identity-based Cryptography
 ➢ using identity as public key
 ➢ example: tom@xyz.com can be a public key
 ➢ Identity-based encryption (IBE)/Identity-based Signature (IBS)

• Identity-based Signature (IBS)
 ➢ Each user has own public and private key pairs, and its public key is its identity
 ➢ User’s private key is generated by PKG based on User’s ID and PKG’s Global Secret Key (GSK);
 ➢ The signing and signature verification procedure do not involve the PKG;
 ✓ To verify the signature, only the signature, message, id, and the Global Public Key (GPK) are needed.

ID-based Signature Framework

IBS is first proposed by Adi Shamir in 1984
In 2001, Boneh and Franklin proposed bi-linear map. In 2002, Hess designed the first IBS based on a bi-linear pairing.
Bellare proposed a transformation method from normal identity based algo. to IBS.

1984 2001-2002 2004