TLS 1.3 Extension for Certificate-based Authentication with an External Pre-Shared Key

draft-ietf-tls-tls13-cert-with-extern-psk (Experimental)

Russ Housley
TLS WG at IETF 104
March 2019
Reminder: This Extension Adds Another Choice for the Initial Handshake

Initial Handshake:

<table>
<thead>
<tr>
<th>Authentication:</th>
<th>Key Schedule Secret Inputs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature and Certificate</td>
<td>(EC)DHE</td>
</tr>
<tr>
<td>Signature and Certificate</td>
<td>External PSK + (EC)DHE</td>
</tr>
</tbody>
</table>

Subsequent Handshake:

<table>
<thead>
<tr>
<th>Authentication:</th>
<th>Key Schedule Secret Inputs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumption PSK</td>
<td>Resumption PSK + (EC)DHE</td>
</tr>
<tr>
<td>Resumption PSK</td>
<td>(EC)DHE</td>
</tr>
</tbody>
</table>
Reminder: External PSK in Initial Handshake

Client

ClientHello
+ tls_cert_with_psk
+ supported_groups*
+ key_share
+ signature_algorithms*
+ psk_key_exchange_modes (psk_dhe_ke)
+ pre_shared_key

--------->

ServerHello
+ tls_cert_with_psk
 + key_share
 + pre_shared_key
 + {EncryptedExtensions}
 + {CertificateRequest*}
 + {Certificate}
 + {CertificateVerify}

{Certificate*}
{CertificateVerify*}
{Finished} <-------->

[Application Data] <--------> [Application Data]
Extension Syntax

• The successful negotiation of the "tls_cert_withExtern_psk" extension requires the TLS 1.3 key schedule processing to include both the selected external PSK and the (EC)DHE shared secret value; it also requires the server to send the Certificate and CertificateVerify messages in the handshake.

• The "tls_cert_withExtern_psk" extension is always be used along with the already defined "key_share", "psk_key_exchange_modes", and "pre_shared_key" extensions.

• The "psk_key_exchange_modes" extension will always offer psk_dhe_ke.

• The "pre_shared_key" extension used with obfuscated_ticket_age of zero, and only offer external PSKs.

• Inclusion of the extension is willingness to authenticate the server with a certificate and include an external PSK in the key schedule processing:

```c
struct {
    select (Handshake.msg_type) {
        case client_hello: Empty;
        case server_hello: Empty;
    };
} CertWithExternPSK;
```
The external PSK is placed in the usual place in the key schedule. In the initial handshake, the PSK input value is otherwise set to 0.
Informal Reasoning About TLS 1.3 Security

Authentication
The certificate processing is exactly the same. It is not better or worse. No changes.

Key Schedule computation of Early Secret

– Initial Handshake
 Without extension: HKDF-Extract(0, 0)
 With extension: HKDF-Extract(ExternalPSK, 0)

– Subsequent Handshake
 No changes.

Conclusion: Any entropy contributed by the External PSK can only make the Early Secret better; the External PSK cannot make it worse.
Next Steps

• We have been talking about this topic since IETF 101
• Along the way, a bunch of stuff was added, and then it was removed again
• We are essentially back to the original -00 document
• I think the document is ready for WG Last Call for progression as an Experimental document

• PLEASE REVIEW!