
Logging, Tooling and Debugging
for Modern Network Protocols

Robin Marx - @programmingart
(Hasselt University – Belgium)

IETF 104 – Prague – March 2019

Disclaimer

▪ 3rd year PhD Student

▪ HTTP/2 and QUIC

▪ Newcomer: not much experience
with wider (IETF) stuff

▪ Please tell me why I’m absolutely
and terribly wrong

https://quic.edm.uhasselt.be/

Let me tell you a story

Image: https://www.nginx.com/blog/http2-module-nginx/

Let me tell you a story

Image: https://www.nginx.com/blog/http2-module-nginx/

HTTP/2 Prioritization: difficult to debug

chrome://net-internals/#http2

https://vanwilgenburg.wordpress.com/2015/11/22/how-to-capture-and-decode-http2-traffic-with-wireshark/

HTTP/2 Prioritization: is clearer when visualized

https://github.com/rmarx/h2vis

16 16 16

Round

Robin

HTTP/2 Prioritization: can be quite complex

https://speeder.edm.uhasselt.be/www18/

time

HTTP/2 Prioritization: Not everything is visible on the wire

▪ No explicit dependency tree sync from server to client

▪ Unclear when/if nodes are removed

▪ Moreover: spec allows server to ignore client!

▪ Rely fully on multiplexing observations to try and deduce actual
prioritization behavior

▪ Or, yes, of course, we could start reading the source code…

HTTP/2 Prioritization issues by example
https://github.com/andydavies/http2-prioritization-issues

https://twitter.com/AndyDavies/status/1065916677408346112

https://blog.cloudflare.com/http-2-prioritization-with-nginx/

webpagetest.org

HTTP/2 Prioritization issues by example
https://github.com/andydavies/http2-prioritization-issues

https://twitter.com/AndyDavies/status/1065916677408346112

https://blog.cloudflare.com/http-2-prioritization-with-nginx/

9 / 34 deployments pass

Unnamed CDN H2O server

Observations

▪ Wire image does not contain all needed information

▪ Internal endpoint state and decisions are important for debugging

▪ Visual tooling can help

▪ Possibly not @ scale, but certainly for debugging individual issues

▪ Note: H2 prioritization is just one example

▪ Will not even attempt to open the can of worms that is Push

The story continues…

“HTTP/2 was too easy, I need a real challenge”

- every member of quicwg

QUIC and HTTP/3

▪ Much more complex than HTTP/2

▪ Congestion control, flow control, handshake, 0-RTT, migration, …

▪ Coming up: multipath, FEC, unreliability, …

▪ Everything is re-implemented from scratch, so

▪ There will be:

▪ Bugs

▪ Suboptimal performance

▪ Incomplete implementations

▪ Consciously differing implementation choices and trade-offs

QUIC timeline: easy to compare different implementations

Believe it or not, this is actually the exact same test case

(blocked by flow control)

QUIC sequence diagram

QUIC sequence diagram

QUIC sequence diagram

▪ Client + Server logs

▪ Exact latency
▪ Flight + processing!

Re-ordering

QUIC sequence diagram

▪ Client + Server logs

▪ Exact latency
▪ Flight + processing!

▪ Many extra goodies

Loss

Retransmits

RTT estimates
▪ QUIC packets aren’t just

retransmitted

▪ At least Packet Number change

▪ At worst: complete re-shuffle

? What data is resent when and why?

QUIC Flow and congestion control logic diagram

https://uclouvain.be/en/research-institutes/icteam/ingi/news/the-superpowers-of-ebpf-in-the-networking-stack.html

Observations

▪ Combining multiple vantage points has major benefits

▪ Not just client + server, but also in-network

▪ Comparing similar logs is also interesting

▪ Endpoint logs contain much additional information

▪ But: none of them look the same…

Observations

“For an organization dedicated to standardization, their output
logs are weirdly inconsistent”

- My poor bachelor student

QUIC logging: The Wild Wild West

The plot thickens!

Store

Process

Aggregate

Visualize

Analyze
Share

(Full) Factorial tests

▪ How about instead: single, standardized schema?

▪ Both format and content

Format

Format type Example

CSV Syslog, SIFTR, Common Log Format,

QUIC logs

JSON(-schema) REST, GraphQL, NetLog

(semantic) XML SOAP, WSDM, HTML

Binary Protocol buffers, Apache thrift, pcap

“It doesn’t really matter”

- Last person in the room

Two main types of logging

▪ Summary
▪ Poll-based

▪ HTTP/2 de-facto standard
“debug state” format

▪ Events / Packets
▪ Stream-based

▪ Chromium NetLog

▪ Quic-trace chrome://net-export

https://netlog-viewer.appspot.com

https://github.com/google/quic-trace

https://tools.ietf.org/html/draft-benfield-http2-debug-state-01

Our proposal: qlog

qlog : simple to filter (both when reading and writing)

“HTTP_STREAM_OPEN” VS “HTTP”, “STREAM_OPEN”

qlog : clear cause and effect

Trigger, reason, cause, … what’s in a name?

qlog : structured metadata

INITIAL 15 1523 VS type=“initial”, nr=15, size=1523

qlog : event-based to the extreme

Something is wrong here, can you spot it?

qlog : event-based to the extreme

TX should use the updated connID immediately not wait until Handshake

qlog : event-based to the extreme

Separate “on change” events are much easier to spot and reason about

qlog : event-based pitfalls

Which frames are in which packet?

qlog : flexibility

▪ Trivial to add new event types per-implementation

▪ Trivial to leave out information
▪ On generation, on read, on transform, …

▪ Easy to combine information
▪ E.g., aggregate: TCP from eBPF, HTTP from app-space

▪ Tools should be built with flexibility in mind
▪ Clearly indicate which data they expect + validate on load

▪ Possibly provide heuristic-based fallbacks if wanted

▪ Combine full logs with partial logs (e.g., endpoint qlog + pcap)

qlog : where to get the logs?

▪ Easy to access + aggregate vantage points

▪ https://example.com/.well-known/h2/state

▪ https://example.com/.well-known/h3/state (this connection)

▪ https://example.com/.well-known/h3/state/{connID} (other connection)

▪ https://example.com/.well-known/h3/state/list (list of all connections)

▪ chrome://net-internals/h3/state/{connID}

▪ about:networking/h3/state/list

▪ WebPageTest
▪ Simply fetch server-log after test is done (vs needing to let browser do it)

▪ Get browser log via devtools integration

qlog : where to get the logs?

▪ Log files or event streams?

▪ Event-based logging is easy to do as on-demand,
live stream
▪ e.g., interactive debugging

▪ Perfect for integration as a web-resource!
▪ Client can POST their logs, GET server logs, incrementally

▪ E.g., use reporting URL

▪ We get 1, all-encompassing log file as output

qlog : easy access means need for security

▪ Secure to access

▪ /h3/state/{connID}?token=53CR3T
▪ Server config file

▪ Passed as QUIC transport parameter?

▪ Disable logging of sensitive info
▪ Only congestion info, no packet contents, keys, …

▪ Interesting for live deployments

▪ Encrypt logs themselves
▪ If attacker obtains logs, cannot access

Summary: Robin’s logging best practices

▪ Event-based

▪ VS summary-based

▪ Triggers / reasons

▪ Multiple vantage points

▪ Combine-able logs

▪ No need for same initial format: transformers can help

▪ Flexible

▪ Easy to combine, filter, extend

▪ Tools have to be built with this in mind

▪ Accessible

▪ Easy to fetch automatically, preferably as a stream

▪ Secure by default

Usually, we stop here

My opinions

▪ QUIC + HTTP/3 implementers are in for a world of pain

▪ Most just don’t realize it yet

▪ Will take longer than needed to solve initial deployment issues

▪ Focus on tooling and logging from the beginning could have helped prevent this

bit.ly/quicsurvey

My opinions

▪ IETF can/SHOULD make recommendations for:

▪ Methods of access and their security

▪ Basic concepts and applicability of logging aspects

▪ Default (high-level) schema (e.g., basis of qlog)

▪ Skeptical about defining full schema in 1 go

▪ Will need per-protocol changes anyway, don’t want to go ~IANA route

▪ More workable: “new proposals SHOULD include logging early on”

▪ Define logging approach based on IETF recommendations

▪ Potentially requiring default (high-level) schema or at least transformations

▪ Implementations SHOULD follow this schema (or write transformations)

What do YOU think?

QUIC visualization: bug/behaviour examples
Extra slides / potential question support

QUICvis examples : connectivity lost

QUICvis examples :
Duplicate packet nr

QUICvis : Flow and congestion control logic

QUICvis : Flow and congestion control logic

Sending data along with BLOCKED, going over the limit

Client sends erroneous

flow control allowances

Server sends BLOCKED,

accompanied by STREAM,

going over the max_data

Keep sending data VS flood of BLOCKED

Server retransmits too much, client answers to each blocked

Pacing (network, not server)

Server sends all at once

Client and network see very spaced-out

Pacing (server, not network)

Server sends interleaved itself

Server sends all at once at first

Extra slides

QUIC and HTTP/3

▪ Many people will be looking into the behavior

▪ Initial implementations + conformance testing (current stage)

▪ Early and at-scale deployments

▪ Academic research (and teaching!)

▪ Cycle starts over with new features in v2

Many use cases

▪ Debugging

▪ Live deployment

▪ Education

▪ New feature development

▪ Large scale verification

In the wild, things start getting hairy real quick: bufferbloat

Image: https://www.incapsula.com/cdn-guide/glossary/reverse-proxy.html

https://blog.cloudflare.com/http-2-prioritization-with-nginx/

https://github.com/andydavies/http2-prioritization-issues

uncached.js?v=xyz

data.json

picture1.jpg

picture2.jpg

uncached.js?v=xyz

data.json

Origin

Expected:

Actual:

Caching

Standard logging: existing alternatives

▪ HTTP/2 debug state

▪ .json response for .well-known/h2/state

▪ High-level summary of internal h2 state

▪ Poll-based, manually diff changes between states

https://tools.ietf.org/html/draft-benfield-http2-debug-state-01

Low overhead

Coarse grained

Standard logging: existing alternatives

▪ NetLog (Chromium)

▪ .json log of full browser window

▪ Medium-level (no congestion stuff, prioritization, loss, …)

▪ Event-based, one entry for every state change

chrome://net-export

https://netlog-viewer.appspot.com

Finer grained

High overhead

▪ Event correlation to “sources”

▪ Event phase: start, end, none

Standard logging: existing alternatives

▪ quic-trace

▪ .json response (from protocolbuffer)

▪ Low-level (focus on congestion control and loss)

▪ Event-based, one entry for every state change

https://github.com/google/quic-trace

Finer grained

High overhead

▪ Reasons logged explicitly

Broader view

▪ Individual tools seem to focus on 1 part of the protocol stack

▪ Things like H2 and especially QUIC span multiple layers

▪ Cross-layer interactions can lead to difficult to debug issues

▪ Looking at separate logs for the same events can be difficult

▪ Really want everything in 1 go, preferably on the two endpoints (and potentially
network!) at the same time

Let’s hear it

▪ Not even sure this should be an IETF standard for QUIC

▪ Let alone for something wider

▪ However

▪ If we continue in this vein, will become more and more important over time

▪ Maybe something like requiring debugging/logging to be part of any new
standard? Possibly in a less-strict way though?

▪ What do people think?

