
QUIC tracing
Victor Vasiliev

IETF 104, tsvarea



Why collect network traces?
1. Transport stack developers: debugging implementation

— Debugging congestion control
— Debugging flow control
— Debugging code that sends ACKs

2. Network operators: debugging network itself
— Diagnosing network problems by examining individual flows
— Monitoring network by analyzing traces in aggregate

3. Server operators: debugging applications
— Application performance may be affected by transport issues
— This includes both failures specific to a network, and general issues with the way application 

uses the network



What is a trace?
A trace is a transcript of events that occur during a connection.

Various kinds of events can be recorded at transport level:

1. Connection-level events (open, closed, migrated, stalled)
2. Packet-level events (packet sent, lost, acked, retransmitted)
3. Stream-level events (stream opened, closed)

Since our focus here is congestion control and loss recovery, we will focus on 
packet-level events.



Where do traces come from?
Three options:

1. Taken at (or very close) the sender
— Congestion control
— Loss detection

2. Taken at the receiver
— Flow control
— ACK policy

3. Taken at a midpoint on the network path
— Has relevant information, but seldom as useful as previous two

In this presentation, all traces are from the sender’s perspective.



What’s in a trace: TCP edition
Usually, a TCP trace is just a recording of TCP packets as seen on the wire, 
together with time recorded.



What’s in a trace: TCP edition (text)
$ tcpdump -r upload.pcap
20:33:50.292870 IP alice.example.42938 > bob.example.443: Flags [S], seq 712278647, win 29200, options [mss 1460,sackOK,TS val 2472050221 ecr 0,nop,wscale 7], length 0
20:33:50.300518 IP bob.example.443 > alice.example.42938: Flags [S.], seq 679305247, ack 712278648, win 60192, options [mss 1380,sackOK,TS val 564023105 ecr 2472050221,nop,wscale 8], 
length 0
20:33:50.300582 IP alice.example.42938 > bob.example.443: Flags [.], ack 1, win 229, options [nop,nop,TS val 2472050229 ecr 564023105], length 0
20:33:50.300953 IP alice.example.42938 > bob.example.443: Flags [P.], seq 1:519, ack 1, win 229, options [nop,nop,TS val 2472050229 ecr 564023105], length 518
20:33:50.307999 IP bob.example.443 > alice.example.42938: Flags [.], ack 519, win 240, options [nop,nop,TS val 564023112 ecr 2472050229], length 0
20:33:50.308236 IP bob.example.443 > alice.example.42938: Flags [P.], seq 1:148, ack 519, win 240, options [nop,nop,TS val 564023112 ecr 2472050229], length 147
20:33:50.308256 IP alice.example.42938 > bob.example.443: Flags [.], ack 148, win 237, options [nop,nop,TS val 2472050236 ecr 564023112], length 0
20:33:50.308489 IP alice.example.42938 > bob.example.443: Flags [P.], seq 519:570, ack 148, win 237, options [nop,nop,TS val 2472050236 ecr 564023112], length 51
20:33:50.309804 IP alice.example.42938 > bob.example.443: Flags [P.], seq 570:1113, ack 148, win 237, options [nop,nop,TS val 2472050238 ecr 564023112], length 543
20:33:50.316842 IP bob.example.443 > alice.example.42938: Flags [.], ack 1113, win 244, options [nop,nop,TS val 564023121 ecr 2472050236], length 0
20:33:50.389196 IP bob.example.443 > alice.example.42938: Flags [P.], seq 148:404, ack 1113, win 244, options [nop,nop,TS val 564023193 ecr 2472050236], length 256
20:33:50.390874 IP alice.example.42938 > bob.example.443: Flags [P.], seq 1113:1517, ack 404, win 245, options [nop,nop,TS val 2472050319 ecr 564023193], length 404
20:33:50.402236 IP bob.example.443 > alice.example.42938: Flags [.], ack 1517, win 248, options [nop,nop,TS val 564023206 ecr 2472050319], length 0
20:33:50.464570 IP bob.example.443 > alice.example.42938: Flags [P.], seq 404:544, ack 1517, win 248, options [nop,nop,TS val 564023269 ecr 2472050319], length 140
20:33:50.465948 IP alice.example.42938 > bob.example.443: Flags [P.], seq 1517:1573, ack 544, win 254, options [nop,nop,TS val 2472050394 ecr 564023269], length 56
20:33:50.472943 IP bob.example.443 > alice.example.42938: Flags [.], ack 1573, win 248, options [nop,nop,TS val 564023277 ecr 2472050394], length 0
20:33:50.480014 IP alice.example.42938 > bob.example.443: Flags [.], seq 1573:4309, ack 544, win 254, options [nop,nop,TS val 2472050408 ecr 564023277], length 2736
20:33:50.480105 IP alice.example.42938 > bob.example.443: Flags [.], seq 4309:7045, ack 544, win 254, options [nop,nop,TS val 2472050408 ecr 564023277], length 2736
20:33:50.480116 IP alice.example.42938 > bob.example.443: Flags [.], seq 7045:9781, ack 544, win 254, options [nop,nop,TS val 2472050408 ecr 564023277], length 2736
20:33:50.480170 IP alice.example.42938 > bob.example.443: Flags [.], seq 9781:12517, ack 544, win 254, options [nop,nop,TS val 2472050408 ecr 564023277], length 2736
20:33:50.480341 IP alice.example.42938 > bob.example.443: Flags [.], seq 12517:15253, ack 544, win 254, options [nop,nop,TS val 2472050408 ecr 564023277], length 2736
20:33:50.487056 IP bob.example.443 > alice.example.42938: Flags [.], ack 2941, win 259, options [nop,nop,TS val 564023291 ecr 2472050408], length 0
20:33:50.487089 IP alice.example.42938 > bob.example.443: Flags [.], seq 15253:17989, ack 544, win 254, options [nop,nop,TS val 2472050415 ecr 564023291], length 2736
20:33:50.487101 IP bob.example.443 > alice.example.42938: Flags [.], ack 4309, win 270, options [nop,nop,TS val 564023291 ecr 2472050408], length 0
20:33:50.487115 IP alice.example.42938 > bob.example.443: Flags [.], seq 17989:20725, ack 544, win 254, options [nop,nop,TS val 2472050415 ecr 564023291], length 2736
20:33:50.487126 IP bob.example.443 > alice.example.42938: Flags [.], ack 5677, win 280, options [nop,nop,TS val 564023291 ecr 2472050408], length 0
20:33:50.487133 IP bob.example.443 > alice.example.42938: Flags [.], ack 7045, win 291, options [nop,nop,TS val 564023291 ecr 2472050408], length 0
20:33:50.487145 IP alice.example.42938 > bob.example.443: Flags [.], seq 20725:24829, ack 544, win 254, options [nop,nop,TS val 2472050415 ecr 564023291], length 4104
20:33:50.487155 IP bob.example.443 > alice.example.42938: Flags [.], ack 8413, win 302, options [nop,nop,TS val 564023291 ecr 2472050408], length 0
20:33:50.487175 IP bob.example.443 > alice.example.42938: Flags [.], ack 9781, win 312, options [nop,nop,TS val 564023291 ecr 2472050408], length 0
[...]



What’s in a trace: TCP edition
Many graphs to draw:

● Throughput graph
● Goodput graph
● RTT graph
● Loss rate
● rwin graph
● Time-sequence graph



What’s in a trace: TCP edition
Many graphs to draw:

● Throughput graph
● Goodput graph
● RTT graph
● Loss rate
● rwin graph
● Time-sequence graph ← actually has everything



Time-sequence plot
● X axis is time (usually from the first event)
● Y axis is TCP sequence number (usually adjusted to start with zero)
● Each sent packet is marked with a vertical line
● A solid line represents the graph of the last sequence number fully acked
● SACK representations can vary greatly from tool to tool
● Sometimes, a line representing rwin is drawn.



xplot



Wireshark



Wireshark (zoomed in)



Wireshark (zoomed in)

segments
sent

cumulative
ACK line



Idealized time-sequence plot of a TCP connection

seq

time

CWND

RTT

ack line (slope is goodput)

send line (slope is send rate)



Time-sequence plot with losses: SACK for sb:sc causes retransmission of sa:sb

seq

time

SACK causing retransmission

sa

sb

sc

t



● QUIC packets do not have a sequence number
● How do we replace them?
● General idea: keep a counter of all bytes sent.
● Provides same graph as TCP would if there are no losses

What’s in a trace: QUIC edition



● Byte counter provides a TCP-like time sequence plot when there are no 
losses.

● Two approaches to showing a retransmission.
● Approach #1: map retransmissions to original stream data

○ Matches TCP worldview closely
○ Doesn’t match what QUIC does; retransmissions are of stream data, not of individual packets
○ If some data is never retransmitted, TCP renderers get confused

● Approach #2: assume retransmissions are just new data
○ Matches what QUIC does closely
○ Doesn’t look anything like TCP

What’s in a trace: QUIC edition



Approach #1 (repeated diagram)

seq

time

SACK causing retransmission

sa

sb

sc

t



Approach #2

seq

time

sa

sb

sc

t

Data lost Data maybe retransmitted here
(or maybe not, who cares?)



Rich data logging
● In traditional TCP tracing flow, the trace is derived from the TCP headers on 

the wire
● For QUIC, this is still possible (provided decryption keys are available), but 

suboptimal
● Logging happens within the endpoint
● The endpoint can export the exact values it makes decisions about sending



Rich data logging: variables to log
● Congestion window
● RTT measurement (min RTT, average RTT, etc)
● ssthresh
● Frames sent in the packet
● Flow control windows
● Bytes in flight
● Pacing rate



Rich data logging: success stories



Success story: CUBIC Quiescence bug, discovered thanks to CWND logging

http://bitsup.blogspot.com/2015/09/thanks-google-tcp-team-for-open-source.html


● BBR has rich internal state (10+ variables)
● During the development of QUIC implementation, we actively exported a lot of 

those variables per packet
● BBR relies heavily on app-limited markings, which are unobvious from the 

trace
● TCP BBRv1 also exported BBR mode for all development simulations

Success stories: QUIC BBRv1 


