
Using HTTP/2 as a Transport
for Arbitrary Bytestreams

Eric Kinnear (ekinnear@apple.com)

Tommy Pauly (tpauly@apple.com)

TSVWG

IETF 104, March 2019, Prague

!1

mailto:ekinnear@apple.com
mailto:tpauly@apple.com

Motivation
Generic transport for secure, arbitrary bytestreams

Multiplexed streams

Low setup cost for new streams

Single congestion and recovery context

Peer-to-peer communication

Example: Remote IPC

Share underlying transport with existing infrastructure

!2

Why HTTP/2?
HTTP/2 provides framing layer with many desired transport features

Configuration exchange

Multiplexed streams

Shared congestion control and loss recovery state

Flow control

Stream relationships and priorities

Traverses the internet

Some of these properties from TLS/TCP

!3

Potential Solution
CONNECT allows tunneling to another endpoint

Extended CONNECT allows connecting to server itself

Can also enable proxying of UDP, with additional framing

HTTP headers enable additional negotiation

Coexists with standard HTTP request/response streams

!4

New :protocol Values
Extended CONNECT defines :protocol value for use with WebSocket

Make generic by defining common base not specific to WebSocket

Define additional :protocol values

“bytestream”

Direct stream mapping for arbitrary bytestreams to remote server

“datagram”

Framing for UDP transport, to server and possibly with traditional
CONNECT to another endpoint

!5

Motivation
Generic transport for secure, arbitrary bytestreams

Multiplexed streams

Low setup cost for new streams

Single congestion and recovery context

Peer-to-peer communication

Example: Remote IPC

Share underlying transport with existing infrastructure

!6

Motivation
Generic transport for secure, arbitrary bytestreams

Multiplexed streams

Low setup cost for new streams

Single congestion and recovery context

Peer-to-peer communication

Example: Remote IPC, QUIC

Share underlying transport with existing infrastructure

!7

Why QUIC Transport?
HTTP/3 over QUIC Transport falls back to HTTP/2 over TLS/TCP

What transport abstraction does QUIC Transport alone use over TCP?

HTTP/2 provides framing layer with many desired transport features 
 Configuration exchange 
 Multiplexed streams 
 Flow Control 
 Stream relationships and priorities

TLS/TCP provides shared congestion control and loss recovery state

!8

Solution
Extended CONNECT defines :protocol value for use with WebSocket

Define additional :protocol values

“bytestream”

Direct stream mapping for arbitrary bytestreams to remote server

“datagram”

Framing for UDP transport, to server and possibly with traditional
CONNECT to another endpoint

Define new SETTING to allow bidirectional use of (Extended) CONNECT

!9

Motivation
Add new :protocol values to Extended CONNECT handshake

Sharing multiple connections to server over single underlying transport

Ability to proxy UDP traffic more effectively to (and through) the server

Built in security with low setup cost for new streams

Add new SETTING to allow using Extended CONNECT in both directions

Enables the benefits above for peer-to-peer communications

Provides fallback mechanism for QUIC Transport over HTTP/2 framing

!10

Transport Properties
Sharing underlying transport brings benefits, but also has caveats

Head-of-Line blocking

Connection limits on flow control

Additional items?

Other work on multiplexed transports (SCTP)

How much to reference or include?

!11

Questions?

!12

