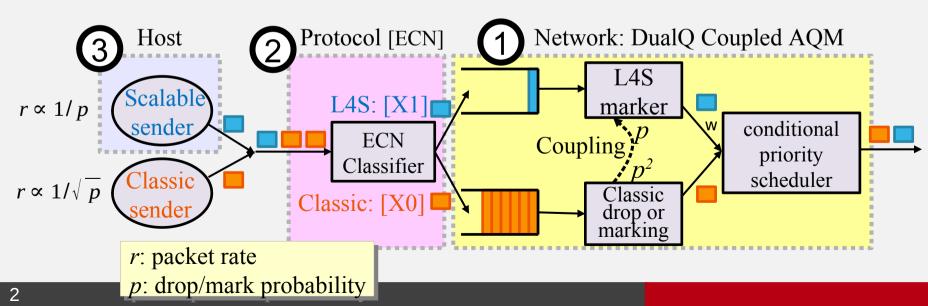
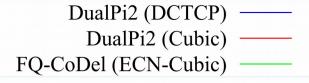
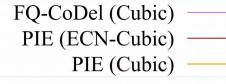
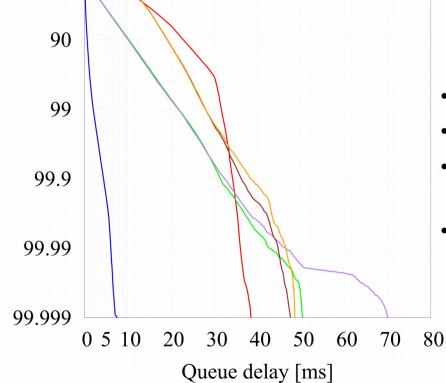
Low Latency Low Loss Scalable Throughput (L4S)


Bob Briscoe, CableLabs*<ietf@bobbriscoe.net>Koen De Schepper, NOKIA Bell Labs<koen.de_schepper@nokia.com>Olga Albisser (née Bondarenko), simula<olgabnd@gmail.com>Ing-jyh (Inton) Tsang, NOKIA<ing-jyh.tsang@nokia.com>TSVWG, IETF-104, Mar 2019




L4S Recap

- Motivation
 - Extremely low queuing delay for *all* Internet traffic, including link saturating (TCP-like)
 - already 1-2 orders better than state of the art
 - 100-200 µs vs 5-15 ms (fq-CoDel or PIE)
- Architecture


50

Performance

- Low delay important at higher %-iles
 - for low latency real-time delivery
- median Q delay: 100-200µs
- 99%ile Q delay: 1-2ms
- ~10x lower delay than best 2nd gen. AQM
 - at all percentiles
 - ...when hammering each AQM
 - fixed Ethernet
 - long-running TCPs: 1 ECN 1 non-ECN
 - web-like flows @ 300/s ECN, 300/s non-ECN
 - exponential arrival process
 - file sizes Pareto distr. α =0.9 1KB min 1MB max
 - 120Mb/s 10ms base RTT

Percentile [%]

Implementation status

pasted from https://riteproject.eu/dctth/#code

Source Code

- Dual Queue Coupled AQM
 - with PI2: Linux repo
 - With Curvy RED (TBA)
- TCP Prague
 - Linux repo
- QUIC Prague
 - <u>General repo</u> (should work for Linux, FreeBSD, Windows)
- SCReAM (Self-Clocked Rate Adaptation for Multimedia) a mobile optimised congestion control algorithm for real-time interactive media, with support for L4S

+DOCSIS 3.1

(next slide)

General repo

particular thanks to Olivier Tilmans for pulling together TCP Prague and the Hackathon team

- Component parts
 - Accurate ECN TCP Feedback (included in TCP Prague above)
 - Linux repo and Linux repo without AccECN TCP Option
 - Paced Chirping
 - for Linux (initial proof-of-concept research code)
 - Data Centre TCP (DCTCP) for
 - · Linux (in the mainline kernel)
 - · FreeBSD (in the mainline kernel)
 - ns2 patch.

Low Latency DOCSIS 3.1

- Low Latency measures mandatory from Jan'19
 - upstream (Cable Modem) & downstream (CMTS)
 - DOCSIS 3.1 MAC and Upper Layer Protocols i/f (MULPI) Spec (i17+)
 - Cable Modem Operations Support System Interface Spec (i14+)
 - CCAP Operations Support System Interface Specification (i14+)
- Cuts 2 main sources of delay -
 - MAC: Request-grant loop
 - Queuing: Mandatory L4S support
- White paper: Low Latency DOCSIS: Technology Overview
 - Also translated into ASCII: draft-white-tsvwg-lld (Informational)
- Certification test plans nearing completion
- Implementation in progress

Queuing					0-	-200
Media Acquisition		2–8				
Serialization/Encoding		0.4–3.5				
Propagation		0.02–0.6				
Switching/Forwarding		<0.04				
	0	50	100	150 La	200 atency in milli	250 seconds

Reviews this IETF cycle

ecn-l4s-id (full)

- Nicolas Kuhn
- Gorry Fairhurst x2
- Richard Scheffenegger
- ecn-l4s-id (focused)
- Michael Abrahamsson
- Ingemar Johansson
- Praveen Balasubramanian
- David Black

aqm-dualq-coupled (full)

- David Pullen
- Greg White

aqm-dualq-coupled (focused)

• Gabi Bracha

non-supportive

- Jonathan Morton
- Dave Täht

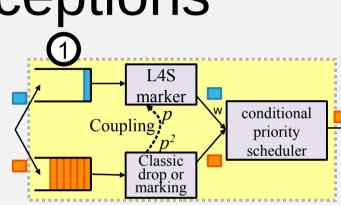
questioning codepoints

- Roland Bless
- Jake Holland

(many apologies if you've contributed a review and I've omitted you) no implication that reviews not categorised as non-supportive are supportive

Technical issues #1: Classic bottleneck

Drop detection


- fixed Linux DCTCP bug for TCP Prague 2yrs ago
 - no response to fast re-xmt, only RTO
 - compound reduction of ECN and loss: halves
 - returns to ECN EWMA after loss episode
- submitted DCTCP patch
 - now picked up by Yuchung Cheng & Larry Brackmo
- · loss detection in time units
 - clarified: links will only relax ordering up to most ssensitive transport

Classic CE detection

- raised implementation/test priority was lowest
 - all studies except Apple's, no evidence of appreciable CE on Internet
 - Apple 2017 data
 - Large numbers of Apple devices (e.g. 30% Argentina) at least 1 CE in 12 hrs
 - helping dig into their ongoing stats
 - Jan 2019, Trammel: still little sign (~13 CE)
- if CE is solely from FQ, no problem
 - designed test to distinguish FQ v. FIFO CE

Technical issues #2: Scheduler misconceptions

- WRR scheduler?
 - coupling negates bandwidth priority (but not latency priority)
- FQ as alternative to DualQ
 - emphasis on DualQ has eclipsed this L4S solution
- Technical non-issues
 - text needed in l4s-arch to explain both

Intellectual Property

- Nokia IPR declaration on DualQ Coupled AQM
 - FRAND terms

 GPLv2 licence on Linux implementation of DualQ Coupled AQM

Next Steps for 3 core L4S drafts

- Classic ECN bottleneck
- Minor text updates to all three

- Once satisfactorily resolved (ASAP), WGLC all three
- L4S experiment can start

Low Latency Low Loss Scalable Throughput (L4S)

L4S status update: IETF specs (2/2) Deltas since last IETF in Red

tsvwg

- L4S Internet Service: Architecture <draft-ietf-tsvwg-l4s-arch-03> [stable]
- Identifying Modified ECN Semantics for Ultra-Low Queuing Delay (L4S) <draft-ietf-tsvwg-ecn-l4s-id-05> [2 UPDATES]
- DualQ Coupled AQMs for L4S: : <draft-ietf-tsvwg-aqm-dualq-coupled-08> [2 UPDATES]
- Interactions of L4S with Diffserv <draft-briscoe-tsvwg-l4s-diffserv-02> [UPDATE]
- Identifying and Handling Non-Queue-Building Flows in a bottleneck link draft-white-tsvwg-nqb-00 [NEW]
- enabled by <RFC8311> [RFC published]

tcpm

- scalable TCP algorithms, e.g. Data Centre TCP (DCTCP) <RFC8257>, TCP Prague
- Accurate ECN: <draft-ietf-tcpm-accurate-ecn-07>
- ECN++ Adding ECN to TCP control packets: <draft-ietf-tcpm-generalized-ecn-03> [UPDATE] Other
- ECN support in trill <draft-ietf-trill-ecn-support-07>, motivated by L4S [RFC Ed Q]
- ECN in QUIC <draft-ietf-quic-transport-16>, [motivated by L4S 3 Updates, but not ECN part]
- ECN and Congestion Feedback Using the Network Service Header (NSH) <draft-eastlake-sfc-nsh-ecn-support-02> [UPDATE] [supports L4S-ECN]

ECN transitions

- RFC3168 & RFC8311
 - ECT(0) → CE
 - ECT(1) \rightarrow CE
- RFC6040 added support for RFC6660
 - ECT(0) \rightarrow ECT(1)
- Many encapsulations will still be pre-RFC6040
 - decap will revert ECT(1)
- Ambiguity of CE
 - ECT(0) → CE early on path CE → L4S queue later on path
 - 5 unlikely scenarios have to coincide to cause an occasional spurious re-xmt

incoming	incoming outer				
inner	Not-ECT	ECT(0)	ECT(1)	CE	
Not-ECT	Not-ECT	Not-ECT	Not-ECT	drop Not-ECT	
ECT(0)	ECT(0)	ECT(0)	ECT(0)	CE	
ECT(1)	ECT(1)	ECT(1)	ECT(1)	CE	
CE	CE	CE		CE	

Outgoing header (RFC4301 \ RFC3168)

incoming inner	incoming outer					
	Not-ECT	ECT(0)	ECT(1)	CE		
Not-ECT	Not-ECT	Not-ECT	Not-ECT	drop		
ECT(0)	ECT(0)	ECT(0)	ECT(1)	CE		
ECT(1)	ECT(1)	ECT(1)	ECT(1)	CE		
CE	CE	CE	CE	CE		
	Outgoing header (RFC6040) (bold = change for all IP in IP)					