Some Congestion Experienced

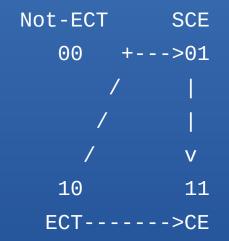
Some Congestion Experienced (SCE) An RFC3168 backward compatible approach to high fidelity ECN signaling and congestion control

https://tools.ietf.org/html/draft-morton-taht-tsvwg-sce-00

Pete Heist Network Analytics Rodney W. Grimes FreeBSD Jonathan Morton Principal Architect: sch_cake and Cobalt AQM systems TekLibre, LLC IETF tsvwg, March 25, 2019

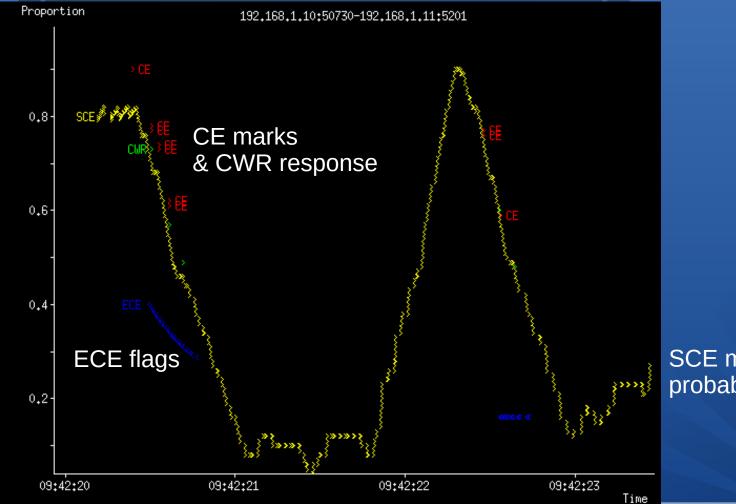
The problem

- Transports spend most of their time either:
 - Building a bottleneck queue \rightarrow high delay
 - Under-utilising the path capacity \rightarrow low goodput
- The network doesn't give them enough information!
 - Binary signal per RTT \rightarrow oscillation
 - Bang-bang control theory


The solution

- Congestion should be explicitly signalled earlier than loss
- ECT(1) is unused, treated identically to ECT(0)
 - RFC 3168, actual measurements in the wild (RFC 8311)
- Rename ECT(1) as SCE, ECT(0) as ECT
 - Some Congestion Experienced
- Other ECN codepoints retain current meaning & semantics

Two Congestion Signals


- SCE (some congestion experienced)
 - High fidelity congestion information
 - 100% marking when CE threshold reached
 - Less marking means less congestion
- CE (congestion experienced)
 - Coarse congestion information
 - Continue using as defined now
 - May be encountered without SCE (existing middleboxes)

State Diagram

Not-ECT: Not ECN Capable Transport ECT: ECN Capable Transport SCE: Some Congestion Experienced CE: Congestion Experienced

SCE marking example

SCE marking probability

Experimental Plan

- Experiment #1 SCE marking basics success!
- Experiment #2 middlebox AQM tests ongoing
- Experiment #3 check our maths
- Experiment #4 integrate with transport protocols
 - Requires a feedback path receiver \rightarrow sender

More details on our web site at: http://www.bufferbloat.net/projects/ecn-sane/wiki/