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Brian Petersen of Juniper Networks authored an earlier deck this one was based on.
Spherical Routers

do whatever protocols want them to do;
see also “spherical cows”
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AGENDA
• Router Taxonomy
• Pipeline Characteristics
• Considerations for Protocol Designers
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ROUTER TAXONOMY



The Landscape
Metrics: 

Gbps/$ - include $/RU (rack unit), $/KW (power source, cooling), power for bits (radio)

Where/how does the Control Plane / IETF factor in ?

CPU-forwarding

Low-end/
   IoT

CPU centric
IETF protocol
design

High-End
 Edge/SD-WAN/NFV
Multi-core forward
ODP/OFP/FD.IO/OVS/..

Campus/Industrial
Broadband

L3/L2 switching

Cheap/high-speed
Inflexible ASIC

Future:
Chip combining various elements of control and forwarding

Cores, prog. pipelines, NPU, Inference Accelerators, DSP

Data  Center

Multi-stage programmable forwarding

Open 
consumption / P4

Distribution/Core
Fabric/Multi-chassis

Advanced/Programmable QoS/TM ??

IEEE & Friends

Telemetry ?



…

Reference router model / challenges

Disclaimers
• Just one common type of router

• Non-distributed example
• Distributed adds more challenges

Good reference to start design protocols for
If all the components are designed well

When did a customer last bought a router and asked 
for control plane performance ???

Highly differs by market segment

For the unpredicted future feature ?
RFP & deploy/forget or future proofing ?
SW vs. HW thinking

Control Plane Memory
Network Routing 
Tables
Control Plane CPU

IETF protocols live here

Forwarding plane memory
TCAM, Mtrie,.. On/off-chip,…

Forwarding Chip(s)
CPU cores, ASIC, 
NPU…

Control ⬄ Forwarding
Plane Channel(s)

Same/separate
boxes

Fast but inflexible
Short TCAM length/depth
Fixed processing pipeline
…

e.g: 100 * 100 Gbps external interfaces / 
neighbors

Look! 4 CPU cores (all slow)

Hmm.. 1 Gbps / 100 neighbor IGP updates

You sell memory by the MEGAbyte ?

Forward for difficult packets ??? (punt)
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KEY ELEMENTS
• High-scale routers comprise several key elements:
• Control Plane

• Responsible for managing routing tables, authenticating 
subscribers, configuring interfaces

• Packet Forwarding Engine(s) (PFE) 
• Responsible for forwarding each packet (address 

lookup, queues, access lists, etc)
• Flexibility varies greatly 

(x86.. to ..hyper-optimized)

• Fabric
• Responsible for moving packets from one forwarding 

device (e.g. line-card, NPU, ..) to another

Fabric

Control Plane

PFE PFE
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Route Engine Zero

B
ackplane

Forwarding device  N

Embedded 
Control 

Processor

General 
Purpose CPU Ethernet 

Switch

Route Engine One

General 
Purpose CPU

Ethernet 
Switch PFE

PFE

ROUTER CONTROL PLANE
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FABRIC-BASED ARCHITECTURE
• Most high-scale routers are 

fabric-based
• Multiple line cards, each containing 

PFEs
• A chassis-wide interconnect fabric 

transfers traffic from ingress 
to egress devices/line cards

Lookup chip Queuing chip

Lookup

Lookup

Queuing

Queuing

PFE complex

Fabric
Fabric

Fabric
Fabric

Fabric
Fabric

Fabric
Fabric

…
…

…
.…

..

Forwarding devices

Fabric 
Planes

Lookup

Lookup

Queuing

Queuing

Lookup

Lookup

Queuing

Queuing
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PACKET FORWARDING ENGINE (PFE)
• PFEs do the work to move packets from ingress to egress
• Key functions:

• L2 & L3 analysis & features
• Figure out whose packet it is, what should happen to it, where it should go.

• Packet buffering
• Store the packet in buffer memory until there’s room to transmit it

• Queuing & scheduling
• Decide which packets should go in what order to achieve fairness and real-time delivery 

guarantees.
• PFEs may be micro-programmable, table-driven or hard-coded

• It’s the old cost/performance/flexibility trade-off matrix…
• PFEs may be totally integrated (the features, buffering, and scheduling may 

all be on a single chip) or they may be separated into different physical 
devices
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SOME ROUTER ARCHITECTURE TYPES

• General-Purpose Processor

• Sea of General-Purpose Processors

• Sea of Special-Purpose Processors

• Flexible Multi-Stage / Pipeline

x86
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TRADEOFFS

x86

Flexibility

Efficiency

(not to scale)
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TRADE-OFFs
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HIGH-SCALE ROUTERS VS. GENERAL-PURPOSE 
COMPUTERS
• Traditional computer architectures (e.g., x86) are “infinitely” flexible

• … at a cost

• High-performance routers trade flexibility for other important attributes
• Example tradeoff: Access to packet Data

• General-Purpose Processors are presented with a buffer containing an entire packet
• Pipeline (et al) are presented with the first n bytes of a packet

• The trick is to only trade away flexibility you didn’t need anyway
• But predicting the future is hard (“wait, you want to look how deep?”)
• This is where protocol designers can help
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WHY SPECIFIC FORWARDING HARDWARE?
• If dedicated multi-stage architectures (like e.g. pipelines) are limited, why 

bother?

• In a word: efficiency

• Operations per packet per Watt is far higher

• Throughput per unit volume is far higher

• It is not uncommon for a pipeline to sustain 500M–1B packets per second

• That’s 50–100 times faster than an x86
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SO WHAT?
• Okay, multi-stage architectures are a thing. Why should I care?
• Because of their efficiency, multi-stage architectures like pipelines are 

in widespread use
• Multi-stage architectures like pipelines have particular characteristics
• Certain protocol design characteristics are awkward fits
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TRADE-OFFs

FIB

Stats

Flexibility

QoS

Buffer

PPS

Power

BW

What do you use 
your available 
surface for?
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POWER

• Real Money – recurring bill (and carbon footprint)
• Power availability / cost differs by location / total amount
• Power leads to cooling - a downstream design problem
• Power and cooling have physical limits within a platform and a 

given space (at least for forced air)
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MEMORY – QoS / Buffer / FIB

• Memory access (on-chip vs. off-chip / multi-chip);
• Surface for customer interfaces vs. surface for internal ports
• Speed of memory access (on-chip vs. off-chip)
• Amount of memory available at these speeds
• Memory structures for queues – number of operations for 

(hierarchical) queuing
• See “power” (related)
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STATS

• Stats collection
• Collecting stats requires effort;
• Spend gates/ops on collecting stats or to forward packets?
• See BW (related)

• Stats export
• How much, how frequent?
• Aggregated stats?
• Shadow collection infra to identify top talkers requires memory…
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TRADE-OFFs & DEPLOYMENT DOMAINs

FIB

Stats

Flexibility

QoS
Buffer

PPS

Power

BW

SP-Style DC-style
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MULTI-STAGE ARCHITECTURES:
CHARACTERISTICS

Using Pipeline-Architectures As An Example
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PIPELINE ROUTER BLOCK DIAGRAM

MACs

Ingress 
Pipeline

Ingress 
Data Path

B
uffering/

Q
ueuing

Egress 
Pipeline

Egress Data 
Path

MACs

header

body
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HEADER VS. BODY
• Processing

• Lots of stages

• Variable delay, looping, out-of-order execution, etc.

• Expensive (power, area, complexity) to transport long header chains

• Data Path

• RAM-based

• Optimized for temporary storage of variable length byte strings
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PIPELINE STAGES
• Pipelines break down processing into bite-sized chunks

• For example:
• Parsing, receive context, destination lookup, etc.

• Each stage performs a specific operation and delivers results to the next 
stage

• Stages can be made more complex -  at the expense of trading speed for 
complexity

• Ideally, the stages work on header data sequentially 
• Out-of-order parsing or loops in the parse tree (e.g. overloaded next header 

type in MPLS) can pose significant challenges
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INSTRUCTIONS VS. GATES
• Instructions live in RAM and are infinitely flexible, but relatively slow
• Logic gates are fast and massively parallel
• Complex logic and math can operate at a blazing speeds
• But… gates are hard-wired and cannot be changed
• Replacing logic gates with RAM-based tables enables flexibility, but 

decreases efficiency
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HIGHLY SIMPLIFIED HARDWARE VIEW

• PFE design is always a set of tradeoffs between complexity and speed
• Processing with a STACK and loadable instruction sets are really flexible, but 

also really slow.
• Processing everything in a tightly integrated pipeline is really fast, but much 

less flexible (or totally inflexible at the end-case)
• In reality, all NPU designs are a series of tradeoffs trying to optimize 

around some very precious resources:
• Transistor counts: Every gate I use for processing a packet I cannot use for 

another interface (i.e. a port-density for features tradeoff)
• Memory depth (how many whatzits can I store?) and access rate – to 

process a BPPS where each requires 10 lookups means 10 billion memory 
lookups per second.  
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HEADER VOCABULARY
• Pipelines generally have a fixed header vocabulary
• Accommodating new ways of stacking and using headers might be okay

• Though it might well be that even if the NPU knows about the header formats, 
they might be pipelined in a way that differs from the original design, so that 
things become slow or even impossible.

• Accommodating entirely new headers may require new silicon
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AGAIN, SO WHAT?
• Protocol and header design greatly impacts hardware design
• Certain protocol design choices increase hardware complexity and 

delay adoption
• Given the ubiquity of pipeline-based designs, it behooves the protocol 

designer to consider their characteristics to help foster widespread 
adoption and deployment.
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CONSIDERATIONS

Things to keep in mind when designing a new protocol
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HEADER SIZE LIMITS
• Pipelines generally split header data from packet bodies
• A long series of large headers may not fit in the allotted space;

Looking deeper in the packet can slow things down or even make 
things impossible

• Some NPUs have hard limits on how deep they can parse

• Minimize the forwarding address size (48, or 64 bit lookup is much 
nicer than 128)

• Smaller, byte-aligned header formats are almost always faster/easier for 
hardware 
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HEADER SPACING
• Fixed header lengths make parsing easier
• Fields lengths aren’t an issue (up to a point), but making header 

lengths multiples of 32 bits improve hardware efficiency
• But don’t inflate a 16 bit header to 32 bits just for the sake of it
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RESPECT THE HIERARCHY
• Ideally, headers are processed in the order that they appear in the packet

• Out-of-order header processing adds significant hardware complexity;
Minimize header manipulation like reordering headers within a header stack

• Processing that spans multiple headers increases complexity and 
eliminates opportunities for optimizations

• Make headers self-contained units of information

• Specifically disallow using fields from other layers in processing the current 
layer
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USE EXISTING HEADERS, TUNNELS
• Whenever possible, use an existing header instead of inventing a new 

one
• However, avoid using well-defined fields in ways that are unrelated to 

the header’s original definition
• Tunnel entry and exit – find ways to minimize going twice through the 

forwarding pipe for tunnel entry and exit
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FLOW IDENTIFICATION
• Flow identification is necessary for ECMP and LAG load balancing
• Make it clear which fields are reliable for flow identification
• Provide a robust means for carrying flow entropy fields to obviate deep 

parsing
• The further apart your hash inputs are, both from a literal number of 

bits and in terms of the protocol stack, the harder or more expensive it 
is to hash these things

• Future: Can we avoid flow identification and accept packets and 
fragments reordering?
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CHECK VALUES
• Make checksums optional/experimental
• Don’t have header checksums span multiple headers
• Avoid checksums that span the entire packet
• Don’t require nested CRCs
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STATE ON FORWARDING DEVICES

• Avoid or minimize keeping state in a forwarding node
• Consider degrading Multicast to Unicast as early as possible
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IN CONCLUSION…
• Quite simply, don’t assume complete processing flexibility.

• Trade-offs differ between “deployment domains”, though “deployment 
domains” might change

• what is niche today, can be broad tomorrow
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Personal Perspective

Bad code, bad specs, simple vs. intelligent forwarding planes...



Example: Router Alert experience
• Router Alert: RFC2113(IPv4)/RFC2711(IPv6)

Hop-by-hop “inspect” packet by routers

• Example: PGM – reliable multicast transport (RFC3208)
PGM-router-assist: Signaling and retransmitted data packets use router alert
for constrained retransmission to receivers who missed the original data.
Problem: punted of router-alert packets with distinguishing by next-protocol or Value
Entirely killed PGM router-assist: No-PGM router punted PGM RA packets and died
Host stacks introduced (non PGM RFC compliant) messaging without router-alert

• IMHO: Router Alert would perfectly work
• But IETF was/is? unwilling to write “internal behavior” requirements to make it work

• Routers supporting router alert MUST process RA packets for any combination of
 (next-protocol/value) that it does not support or not currently enables at the same speed as 
packets without RA (IPv4) or with unsupported hop-by-hop-header (IPv6)

• Aka: MUST only punt/slow-path on a per (next-proto,value) basis, or not support RA at all.
• But: Would need new ext-header today to do this now

• Existing RA burned by bad code in the field. Old routers must ignore new version.



The trend for simpler fastpath and control-plane
• Punting =    packets passed from fastpath to slowpath

• Fastpath = accelerated forwarding plane

• Slowpath = control plane CPU abused for data path operations
 that are too difficult for accelerated forwarding plane

• Slowpath became ever more useless with growing fastpath speed

• E.g.: Terrabit DC switches have “atom class” CPU. 

• Push back on “Difficult packets/processing”

• RA / hop-by-hop headers, fragmentation/reassembly,…

• “Data-triggered-events”

• Data-packet proceeds in fastpath, but control plane needs notification

• “punt signalling” ?!

• “Netflow forwarding”, BEHAVE “state build/refresh”, Firewall behavior,...

• IP Multicast protocols 20 year evolution to minimize data-triggered-events

• DVMRP -> PIM-DM -> PIM-SM -> PIM-SSM -> Bidir-PIM (good implementation: none)

• Overall: this did NOT necessarily lead to easier to use protocols

• Just easier to support / scale across variety of HW



How about intelligent fastpaths ?
• Many fast-paths can be ever more intelligent (CPU/NPU/”P4”/...)

• IMHO: Future value in programmable forwarding is to run ”protocols” in fast-path
• But those protocols need e.g.: simpler state processing to allow this

• Therefore sometimes better called “actions” than “protocols”
• Examples: 

• Class of “iOAM” solutions
• “NPU based reservation setup/maintenance” draft-han-tsvwg-ip-transport-qos

• How to deal with this conflict in further IETF work ?
• Not all solutions will be best supporting whole spectrum of fastpaths

• Lowest common denominator (fixed asic) fastpath hardware
• Intelligent fastpath hardware… Multicore CPU fastpath.

• Data-triggered-events can lead to elegant solutions
• Example: MAC-address learning in IEEE 802.1,  Interesting SPF research/work in that area too.
• Could IETF even standardize something like this ? (visible protocol on wire ?)


