
Benchmarking Working Group M. Konstantynowicz, Ed.
Internet-Draft P. Mikus, Ed.
Intended status: Informational Cisco Systems
Expires: January 9, 2020 July 08, 2019

 NFV Service Density Benchmarking
 draft-mkonstan-nf-service-density-01

Abstract

 Network Function Virtualization (NFV) system designers and operators
 continuously grapple with the problem of qualifying performance of
 network services realised with software Network Functions (NF)
 running on Commercial-Off-The-Shelf (COTS) servers. One of the main
 challenges is getting repeatable and portable benchmarking results
 and using them to derive deterministic operating range that is
 production deployment worthy.

 This document specifies benchmarking methodology for NFV services
 that aims to address this problem space. It defines a way for
 measuring performance of multiple NFV service instances, each
 composed of multiple software NFs, and running them at a varied
 service "packing" density on a single server.

 The aim is to discover deterministic usage range of NFV system. In
 addition specified methodology can be used to compare and contrast
 different NFV virtualization technologies.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 1]

Internet-Draft NFV Service Density Benchmarking July 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Terminology . 3
 2. Motivation . 4
 2.1. Problem Description 4
 2.2. Proposed Solution . 4
 3. NFV Service . 5
 3.1. Topology . 6
 3.2. Configuration . 8
 3.3. Packet Path(s) . 9
 4. Virtualization Technology 12
 5. Host Networking . 13
 6. NFV Service Density Matrix 14
 7. Compute Resource Allocation 15
 8. NFV Service Data-Plane Benchmarking 19
 9. Sample NFV Service Density Benchmarks 19
 9.1. Intrepreting the Sample Results 20
 9.2. Benchmarking MRR Throughput 20
 9.3. VNF Service Chain . 20
 9.4. CNF Service Chain . 21
 9.5. CNF Service Pipeline 22
 9.6. Sample Results: FD.io CSIT 23
 9.7. Sample Results: CNCF/CNFs 24
 9.8. Sample Results: OPNFV NFVbench 26
 10. IANA Considerations . 26
 11. Security Considerations 26
 12. Acknowledgements . 26
 13. References . 27
 13.1. Normative References 27
 13.2. Informative References 27
 Authors’ Addresses . 28

Konstantynowicz & Mikus Expires January 9, 2020 [Page 2]

Internet-Draft NFV Service Density Benchmarking July 2019

1. Terminology

 o NFV: Network Function Virtualization, a general industry term
 describing network functionality implemented in software.

 o NFV service: a software based network service realized by a
 topology of interconnected constituent software network function
 applications.

 o NFV service instance: a single instantiation of NFV service.

 o Data-plane optimized software: any software with dedicated threads
 handling data-plane packet processing e.g. FD.io VPP (Vector
 Packet Processor), OVS-DPDK.

 o Packet Loss Ratio (PLR): ratio of packets received relative to
 packets transmitted over the test trial duration, calculated using
 formula: PLR = (pkts_transmitted - pkts_received) /
 pkts_transmitted. For bi-directional throughput tests aggregate
 PLR is calculated based on the aggregate number of packets
 transmitted and received.

 o Packet Throughput Rate: maximum packet offered load DUT/SUT
 forwards within the specified Packet Loss Ratio (PLR). In many
 cases the rate depends on the frame size processed by DUT/SUT.
 Hence packet throughput rate MUST be quoted with specific frame
 size as received by DUT/SUT during the measurement. For bi-
 directional tests, packet throughput rate should be reported as
 aggregate for both directions. Measured in packets-per-second
 (pps) or frames-per-second (fps), equivalent metrics.

 o Non Drop Rate (NDR): maximum packet/bandwith throughput rate
 sustained by DUT/SUT at PLR equal zero (zero packet loss) specific
 to tested frame size(s). MUST be quoted with specific packet size
 as received by DUT/SUT during the measurement. Packet NDR
 measured in packets-per-second (or fps), bandwidth NDR expressed
 in bits-per-second (bps).

 o Partial Drop Rate (PDR): maximum packet/bandwith throughput rate
 sustained by DUT/SUT at PLR greater than zero (non-zero packet
 loss) specific to tested frame size(s). MUST be quoted with
 specific packet size as received by DUT/SUT during the
 measurement. Packet PDR measured in packets-per-second (or fps),
 bandwidth PDR expressed in bits-per-second (bps).

 o Maximum Receive Rate (MRR): packet/bandwidth rate regardless of
 PLR sustained by DUT/SUT under specified Maximum Transmit Rate
 (MTR) packet load offered by traffic generator. MUST be quoted

Konstantynowicz & Mikus Expires January 9, 2020 [Page 3]

Internet-Draft NFV Service Density Benchmarking July 2019

 with both specific packet size and MTR as received by DUT/SUT
 during the measurement. Packet MRR measured in packets-per-second
 (or fps), bandwidth MRR expressed in bits-per-second (bps).

2. Motivation

2.1. Problem Description

 Network Function Virtualization (NFV) system designers and operators
 continuously grapple with the problem of qualifying performance of
 network services realised with software Network Functions (NF)
 running on Commercial-Off-The-Shelf (COTS) servers. One of the main
 challenges is getting repeatable and portable benchmarking results
 and using them to derive deterministic operating range that is
 production deployment worthy.

 Lack of well defined and standardised NFV centric performance
 methodology and metrics makes it hard to address fundamental
 questions that underpin NFV production deployments:

 1. What NFV service and how many instances can run on a single
 compute node?

 2. How to choose the best compute resource allocation scheme to
 maximise service yield per node?

 3. How do different NF applications compare from the service density
 perspective?

 4. How do the virtualisation technologies compare e.g. Virtual
 Machines, Containers?

 Getting answers to these points should allow designers to make data
 based decisions about the NFV technology and service design best
 suited to meet requirements of their use cases. Thereby obtained
 benchmarking data would aid in selection of the most appropriate NFV
 infrastructure design and platform and enable more accurate capacity
 planning, an important element for commercial viability of the NFV
 service.

2.2. Proposed Solution

 The primary goal of the proposed benchmarking methodology is to focus
 on NFV technologies used to construct NFV services. More
 specifically to i) measure packet data-plane performance of multiple
 NFV service instances while running them at varied service "packing"
 densities on a single server and ii) quantify the impact of using

Konstantynowicz & Mikus Expires January 9, 2020 [Page 4]

Internet-Draft NFV Service Density Benchmarking July 2019

 multiple NFs to construct each NFV service instance and introducing
 multiple packet processing hops and links on each packet path.

 The overarching aim is to discover a set of deterministic usage
 ranges that are of interest to NFV system designers and operators.
 In addition, specified methodology can be used to compare and
 contrast different NFV virtualisation technologies.

 In order to ensure wide applicability of the benchmarking
 methodology, the approach is to separate NFV service packet
 processing from the shared virtualisation infrastructure by
 decomposing the software technology stack into three building blocks:

 +-------------------------------+
 | NFV Service |
 +-------------------------------+
 | Virtualization Technology |
 +-------------------------------+
 | Host Networking |
 +-------------------------------+

 Figure 1. NFV software technology stack.

 Proposed methodology is complementary to existing NFV benchmarking
 industry efforts focusing on vSwitch benchmarking [RFC8204], [TST009]
 and extends the benchmarking scope to NFV services.

 This document does not describe a complete benchmarking methodology,
 instead it is focusing on the system under test configuration. Each
 of the compute node configurations identified in this document is to
 be evaluated for NFV service data-plane performance using existing
 and/or emerging network benchmarking standards. This may include
 methodologies specified in [RFC2544], [TST009],
 [draft-vpolak-mkonstan-bmwg-mlrsearch] and/or
 [draft-vpolak-bmwg-plrsearch].

3. NFV Service

 It is assumed that each NFV service instance is built of one or more
 constituent NFs and is described by: topology, configuration and
 resulting packet path(s).

 Each set of NFs forms an independent NFV service instance, with
 multiple sets present in the host.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 5]

Internet-Draft NFV Service Density Benchmarking July 2019

3.1. Topology

 NFV topology describes the number of network functions per service
 instance, and their inter-connections over packet interfaces. It
 includes all point-to-point virtual packet links within the compute
 node, Layer-2 Ethernet or Layer-3 IP, including the ones to host
 networking data-plane.

 Theoretically, a large set of possible NFV topologies can be realised
 using software virtualisation topologies, e.g. ring, partial -/full-
 mesh, star, line, tree, ladder. In practice however, only a few
 topologies are in the actual use as NFV services mostly perform
 either bumps-in-a-wire packet operations (e.g. security filtering/
 inspection, monitoring/telemetry) and/or inter-site forwarding
 decisions (e.g. routing, switching).

 Two main NFV topologies have been identified so far for NFV service
 density benchmarking:

 1. Chain topology: a set of NFs connect to host data-plane with
 minimum of two virtual interfaces each, enabling host data-plane
 to facilitate NF to NF service chain forwarding and provide
 connectivity with external network.

 2. Pipeline topology: a set of NFs connect to each other in a line
 fashion with edge NFs homed to host data-plane. Host data-plane
 provides connectivity with external network.

 In both cases multiple NFV service topologies are running in
 parallel. Both topologies are shown in figures 2. and 3. below.

 NF chain topology:

Konstantynowicz & Mikus Expires January 9, 2020 [Page 6]

Internet-Draft NFV Service Density Benchmarking July 2019

 +---+
 | Host Compute Node |
 | |
 | SmNF1 SmNF2 SmNFn Service-m |
 | |
 | S2NF1 S2NF2 S2NFn Service-2 |
 | +--------+ +--------+ +--------+ |
	S1NF1		S1NF2		S1NFn	
					Service-1
+-+----+-+ +-+----+-+ + + +-+----+-+						
		<-CS->		<-CS->		<-CS->
+-+----+------+----+------+----+------+----+-+						
		CS: Chain				
		Segment				
	Host Data-Plane					
+-+--+----------------------------------+--+-+						
 +---+
 | | | | Physical
 | | | | Interfaces
 +---+--+----------------------------------+--+--------------+
 | |
 | Traffic Generator |
 | |
 +---+

 Figure 2. NF chain topology forming a service instance.

 NF pipeline topology:

Konstantynowicz & Mikus Expires January 9, 2020 [Page 7]

Internet-Draft NFV Service Density Benchmarking July 2019

 +---+
 | Host Compute Node |
 | |
 | SmNF1 SmNF2 SmNFn Service-m |
 | |
 | S2NF1 S2NF2 S2NFn Service-2 |
 | +--------+ +--------+ +--------+ |
	S1NF1		S1NF2		S1NFn	
	+--+ +--+ +--+	Service1				
+-+------+ +--------+ +------+-+						
		Virtual				
	<-Pipeline Edge Pipeline Edge->	Interfaces				
+-+--+-+						
	Host Data-Plane					
+-+--+----------------------------------+--+-+						
 +---+
 | | | | Physical
 | | | | Interfaces
 +---+--+----------------------------------+--+--------------+
 | |
 | Traffic Generator |
 | |
 +---+

 Figure 3. NF pipeline topology forming a service instance.

3.2. Configuration

 NFV configuration includes all packet processing functions in NFs
 including Layer-2, Layer-3 and/or Layer-4-to-7 processing as
 appropriate to specific NF and NFV service design. L2 sub- interface
 encapsulations (e.g. 802.1q, 802.1ad) and IP overlay encapsulation
 (e.g. VXLAN, IPSec, GRE) may be represented here too as appropriate,
 although in most cases they are used as external encapsulation and
 handled by host networking data-plane.

 NFV configuration determines logical network connectivity that is
 Layer-2 and/or IPv4/IPv6 switching/routing modes, as well as NFV
 service specific aspects. In the context of NFV density benchmarking
 methodology the initial focus is on logical network connectivity
 between the NFs, and no NFV service specific configurations. NF
 specific functionality is emulated using IPv4/IPv6 routing.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 8]

Internet-Draft NFV Service Density Benchmarking July 2019

 Building on the two identified NFV topologies, two common NFV
 configurations are considered:

 1. Chain configuration:

 * Relies on chain topology to form NFV service chains.

 * NF packet forwarding designs:

 + IPv4/IPv6 routing.

 * Requirements for host data-plane:

 + L2 switching with L2 forwarding context per each NF chain
 segment, or

 + IPv4/IPv6 routing with IP forwarding context per each NF
 chain segment or per NF chain.

 2. Pipeline configuration:

 * Relies on pipeline topology to form NFV service pipelines.

 * Packet forwarding designs:

 + IPv4/IPv6 routing.

 * Requirements for host data-plane:

 + L2 switching with L2 forwarding context per each NF
 pipeline edge link, or

 + IPv4/IPv6 routing with IP forwarding context per each NF
 pipeline edge link or per NF pipeline.

3.3. Packet Path(s)

 NFV packet path(s) describe the actual packet forwarding path(s) used
 for benchmarking, resulting from NFV topology and configuration.
 They are aimed to resemble true packet forwarding actions during the
 NFV service lifecycle.

 Based on the specified NFV topologies and configurations two NFV
 packet paths are taken for benchmarking:

 1. Snake packet path

 * Requires chain topology and configuration.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 9]

Internet-Draft NFV Service Density Benchmarking July 2019

 * Packets enter the NFV chain through one edge NF and progress
 to the other edge NF of the chain.

 * Within the chain, packets follow a zigzagging "snake" path
 entering and leaving host data-plane as they progress through
 the NF chain.

 * Host data-plane is involved in packet forwarding operations
 between NIC interfaces and edge NFs, as well as between NFs in
 the chain.

 2. Pipeline packet path

 * Requires pipeline topology and configuration.

 * Packets enter the NFV chain through one edge NF and progress
 to the other edge NF of the pipeline.

 * Within the chain, packets follow a straight path entering and
 leaving subsequent NFs as they progress through the NF
 pipeline.

 * Host data-plane is involved in packet forwarding operations
 between NIC interfaces and edge NFs only.

 Both packet paths are shown in figures below.

 Snake packet path:

Konstantynowicz & Mikus Expires January 9, 2020 [Page 10]

Internet-Draft NFV Service Density Benchmarking July 2019

 +---+
 | Host Compute Node |
 | |
 | SmNF1 SmNF2 SmNFn Service-m |
 | |
 | S2NF1 S2NF2 S2NFn Service-2 |
 | +--------+ +--------+ +--------+ |
	S1NF1		S1NF2		S1NFn	
					Service1
	XXXX		XXXX		XXXX	
+-+X--X+-+ +-+X--X+-+ +X X+ +-+X--X+-+						
	X X		X X		X X	
	X X		X X		X X	
+-+X--X+------+X--X+------+X--X+------+X--X+-+						
	X XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX X					
	X X					
	X Host Data-Plane X					
+-+X-+----------------------------------+-X+-+						
	X		X			
 +----X--------------------------------------X---------------+
 |X | | X| Physical
 |X | | X| Interfaces
 +---+X-+----------------------------------+-X+--------------+
 | |
 | Traffic Generator |
 | |
 +---+

 Figure 4. Snake packet path thru NF chain topology.

 Pipeline packet path:

Konstantynowicz & Mikus Expires January 9, 2020 [Page 11]

Internet-Draft NFV Service Density Benchmarking July 2019

 +---+
 | Host Compute Node |
 | |
 | SmNF1 SmNF2 SmNFn Service-m |
 | |
 | S2NF1 S2NF2 S2NFn Service-2 |
 | +--------+ +--------+ +--------+ |
	S1NF1		S1NF2		S1NFn	
	+--+ +--+ +--+	Service1				
	XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX					
+--X-----+ +--------+ +-----X--+						
	X X	Virtual				
	X X	Interfaces				
+-+X--------------------------------------X+-+						
	X X					
	X X					
	X Host Data-Plane X					
+-+X-+----------------------------------+-X+-+						
	X		X			
 +----X--------------------------------------X---------------+
 |X | | X| Physical
 |X | | X| Interfaces
 +---+X-+----------------------------------+-X+--------------+
 | |
 | Traffic Generator |
 | |
 +---+

 Figure 5. Pipeline packet path thru NF pipeline topology.

 In all cases packets enter NFV system via shared physical NIC
 interfaces controlled by shared host data-plane, are then associated
 with specific NFV service (based on service discriminator) and
 subsequently are cross- connected/switched/routed by host data-plane
 to and through NF topologies per one of the above listed schemes.

4. Virtualization Technology

 NFV services are built of composite isolated NFs, with virtualisation
 technology providing the workload isolation. Following
 virtualisation technology types are considered for NFV service
 density benchmarking:

 1. Virtual Machines (VMs)

 * Relying on host hypervisor technology e.g. KVM, ESXi, Xen.

 * NFs running in VMs are referred to as VNFs.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 12]

Internet-Draft NFV Service Density Benchmarking July 2019

 2. Containers

 * Relying on Linux container technology e.g. LXC, Docker.

 * NFs running in Containers are referred to as CNFs.

 Different virtual interface types are available to VNFs and CNFs:

 1. VNF

 * virtio-vhostuser: fully user-mode based virtual interface.

 * virtio-vhostnet: involves kernel-mode based backend.

 2. CNF

 * memif: fully user-mode based virtual interface.

 * af_packet: involves kernel-mode based backend.

 * (add more common ones)

5. Host Networking

 Host networking data-plane is the central shared resource that
 underpins creation of NFV services. It handles all of the
 connectivity to external physical network devices through physical
 network connections using NICs, through which the benchmarking is
 done.

 Assuming that NIC interface resources are shared, here is the list of
 widely available host data-plane options for providing packet
 connectivity to/from NICs and constructing NFV chain and pipeline
 topologies and configurations:

 o Linux Kernel-Mode Networking.

 o Linux User-Mode vSwitch.

 o Virtual Machine vSwitch.

 o Linux Container vSwitch.

 o SRIOV NIC Virtual Function - note: restricted support for chain
 and pipeline topologies, as it requires hair-pinning through the
 NIC and oftentimes also through external physical switch.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 13]

Internet-Draft NFV Service Density Benchmarking July 2019

 Analysing properties of each of these options and their Pros/Cons for
 specified NFV topologies and configurations is outside the scope of
 this document.

 From all listed options, performance optimised Linux user-mode
 vswitch deserves special attention. Linux user-mode switch decouples
 NFV service from the underlying NIC hardware, offers rich multi-
 tenant functionality and most flexibility for supporting NFV
 services. But in the same time it is consuming compute resources and
 is harder to benchmark in NFV service density scenarios.

 Following sections focus on using Linux user-mode vSwitch, focusing
 on its performance benchmarking at increasing levels of NFV service
 density.

6. NFV Service Density Matrix

 In order to evaluate performance of multiple NFV services running on
 a compute node, NFV service instances are benchmarked at increasing
 density, allowing to construct an NFV Service Density Matrix.
 Table below shows an example of such a matrix, capturing number of
 NFV service instances (row indices), number of NFs per service
 instance (column indices) and resulting total number of NFs (values).

 NFV Service Density - NF Count View

 SVC 001 002 004 006 008 00N
 001 1 2 4 6 8 1*N
 002 2 4 8 12 16 2*N
 004 4 8 16 24 32 4*N
 006 6 12 24 36 48 6*N
 008 8 16 32 48 64 8*N
 00M M*1 M*2 M*4 M*6 M*8 M*N

 RowIndex: Number of NFV Service Instances, 1..M.
 ColumnIndex: Number of NFs per NFV Service Instance, 1..N.
 Value: Total number of NFs running in the system.

 In order to deliver good and repeatable network data-plane
 performance, NFs and host data-plane software require direct access
 to critical compute resources. Due to a shared nature of all
 resources on a compute node, a clearly defined resource allocation
 scheme is defined in the next section to address this.

 In each tested configuration host data-plane is a gateway between the
 external network and the internal NFV network topologies. Offered
 packet load is generated and received by an external traffic
 generator per usual benchmarking practice.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 14]

Internet-Draft NFV Service Density Benchmarking July 2019

 It is proposed that benchmarks are done with the offered packet load
 distributed equally across all configured NFV service instances.
 This approach should provide representative benchmarking data for
 each tested topology and configuraiton, and a good guesstimate of
 maximum performance required for capacity planning.

 Following sections specify compute resource allocation, followed by
 examples of applying NFV service density methodology to VNF and CNF
 benchmarking use cases.

7. Compute Resource Allocation

 Performance optimized NF and host data-plane software threads require
 timely execution of packet processing instructions and are very
 sensitive to any interruptions (or stalls) to this execution e.g. cpu
 core context switching, or cpu jitter. To that end, NFV service
 density methodology treats controlled mapping ratios of data plane
 software threads to physical processor cores with directly allocated
 cache hierarchies as the first order requirement.

 Other compute resources including memory bandwidth and PCIe bandwidth
 have lesser impact and as such are subject for further study. For
 more detail and deep-dive analysis of software data plane performance
 and impact on different shared compute resources is available in
 [BSDP].

 It is assumed that NFs as well as host data-plane (e.g. vswitch) are
 performance optimized, with their tasks executed in two types of
 software threads:

 o data-plane - handling data-plane packet processing and forwarding,
 time critical, requires dedicated cores. To scale data-plane
 performance, most NF apps use multiple data-plane threads and rely
 on NIC RSS (Receive Side Scaling), virtual interface multi-queue
 and/or integrated software hashing to distribute packets across
 the data threads.

 o main-control - handling application management, statistics and
 control-planes, less time critical, allows for core sharing. For
 most NF apps this is a single main thread, but often statistics
 (counters) and various control protocol software are run in
 separate threads.

 Core mapping scheme described below allocates cores for all threads
 of specified type belonging to each NF app instance, and separately
 lists number of threads to a number of logical/physical core mappings
 for processor configurations with enabled/disabled Symmetric Multi-
 Threading (SMT) (e.g. AMD SMT, Intel Hyper-Threading).

Konstantynowicz & Mikus Expires January 9, 2020 [Page 15]

Internet-Draft NFV Service Density Benchmarking July 2019

 If NFV service density benchmarking is run on server nodes with
 Symmetric Multi-Threading (SMT) (e.g. AMD SMT, Intel Hyper-
 Threading) for higher performance and efficiency, logical cores
 allocated to data- plane threads should be allocated as pairs of
 sibling logical cores corresponding to the hyper-threads running on
 the same physical core.

 Separate core ratios are defined for mapping threads of vSwitch and
 NFs. In order to get consistent benchmarking results, the mapping
 ratios are enforced using Linux core pinning.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 16]

Internet-Draft NFV Service Density Benchmarking July 2019

 +-------------+--------+----------+----------------+----------------+
application	thread	app:core	threads/pcores	threads/lcores
	type	ratio	(SMT disabled)	map (SMT
				enabled)
+-------------+--------+----------+----------------+----------------+				
vSwitch-1c	data	1:1	1DT/1PC	2DT/2LC
	main	1:S2	1MT/S2PC	1MT/1LC
vSwitch-2c	data	1:2	2DT/2PC	4DT/4LC
	main	1:S2	1MT/S2PC	1MT/1LC
vSwitch-4c	data	1:4	4DT/4PC	8DT/8LC
	main	1:S2	1MT/S2PC	1MT/1LC
NF-0.5c	data	1:S2	1DT/S2PC	1DT/1LC
	main	1:S2	1MT/S2PC	1MT/1LC
NF-1c	data	1:1	1DT/1PC	2DT/2LC
	main	1:S2	1MT/S2PC	1MT/1LC
NF-2c	data	1:2	2DT/2PC	4DT/4LC
	main	1:S2	1MT/S2PC	1MT/1LC
 +-------------+--------+----------+----------------+----------------+

 o Legend to table

 * Header row

 + application - network application with optimized data-plane,
 a vSwitch or Network Function (NF) application.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 17]

Internet-Draft NFV Service Density Benchmarking July 2019

 + thread type - either "data", short for data-plane; or
 "main", short for all main-control threads.

 + app:core ratio - ratio of per application instance threads
 of specific thread type to physical cores.

 + threads/pcores (SMT disabled) - number of threads of
 specific type (DT for data-plane thread, MT for main thread)
 running on a number of physical cores, with SMT disabled.

 + threads/lcores map (SMT enabled) - number of threads of
 specific type (DT, MT) running on a number of logical cores,
 with SMT enabled. Two logical cores per one physical core.

 * Content rows

 + vSwitch-(1c|2c|4c) - vSwitch with 1 physical core (or 2, or
 4) allocated to its data-plane software worker threads.

 + NF-(0.5c|1c|2c) - NF application with half of a physical
 core (or 1, or 2) allocated to its data-plane software
 worker threads.

 + Sn - shared core, sharing ratio of (n).

 + DT - data-plane thread.

 + MT - main-control thread.

 + PC - physical core, with SMT/HT enabled has many (mostly 2
 today) logical cores associated with it.

 + LC - logical core, if more than one lc get allocated in sets
 of two sibling logical cores running on the same physical
 core.

 + SnPC - shared physical core, sharing ratio of (n).

 + SnLC - shared logical core, sharing ratio of (n).

 Maximum benchmarked NFV service densities are limited by a number of
 physical cores on a compute node.

 A sample physical core usage view is shown in the matrix below.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 18]

Internet-Draft NFV Service Density Benchmarking July 2019

 NFV Service Density - Core Usage View
 vSwitch-1c, NF-1c

 SVC 001 002 004 006 008 010
 001 2 3 6 9 12 15
 002 3 6 12 18 24 30
 004 6 12 24 36 48 60
 006 9 18 36 54 72 90
 008 12 24 48 72 96 120
 010 15 30 60 90 120 150

 RowIndex: Number of NFV Service Instances, 1..10.
 ColumnIndex: Number of NFs per NFV Service Instance, 1..10.
 Value: Total number of physical processor cores used for NFs.

8. NFV Service Data-Plane Benchmarking

 NF service density scenarios should have their data-plane performance
 benchmarked using existing and/or emerging network benchmarking
 standards as noted earlier.

 Following metrics should be measured (or calculated) and reported:

 o Packet throughput rate (packets-per-second)

 * Specific to tested packet size or packet sequence (e.g. some
 type of packet size mix sent in recurrent sequence).

 * Applicable types of throughput rate: NDR, PDR, MRR.

 o (Calculated) Bandwidth throughput rate (bits-per-second)
 corresponding to the measured packet throughput rate.

 o Packet one-way latency (seconds)

 * Measured at different packet throughput rates load e.g. light,
 medium, heavy.

 Listed metrics should be itemized per service instance and per
 direction (e.g. forward/reverse) for latency.

9. Sample NFV Service Density Benchmarks

 To illustrate defined NFV service density applicability, following
 sections describe three sets of NFV service topologies and
 configurations that have been benchmarked in open-source: i) in
 [LFN-FDio-CSIT], a continuous testing and data-plane benchmarking

Konstantynowicz & Mikus Expires January 9, 2020 [Page 19]

Internet-Draft NFV Service Density Benchmarking July 2019

 project, ii) as part of CNCF CNF Testbed initiative
 [CNCF-CNF-Testbed] and iii) in OPNFV NFVbench project.

 In the first two cases each NFV service instance definition is based
 on the same set of NF applications, and varies only by network
 addressing configuration to emulate multi-tenant operating
 environment.

 OPNFV NFVbench project is focusing on benchmarking the actual
 production deployments that are aligned with OPNFV specifications.

9.1. Intrepreting the Sample Results

 TODO How to interpret and avoid misreading included results? And how
 to avoid falling into the trap of using these results to draw
 generilized conclusions about performance of different virtualization
 technologies, e.g. VM and Containers, irrespective of deployment
 scenarios and what VNFs and CNFs are in the actual use.

9.2. Benchmarking MRR Throughput

 Initial NFV density throughput benchmarks have been performed using
 Maximum Receive Rate (MRR) test methodology defined and used in FD.io
 CSIT.

 MRR tests measure the packet forwarding rate under specified Maximum
 Transmit Rate (MTR) packet load offered by traffic generator over a
 set trial duration, regardless of packet loss ratio (PLR). MTR for
 specified Ethernet frame size was set to the bi-directional link
 rate, 2x 10GbE in referred results.

 Tests were conducted with two traffic profiles: i) continuous stream
 of 64B frames, ii) continuous stream of IMIX sequence of (7x 64B, 4x
 570B, 1x 1518B), all sizes are L2 untagged Ethernet.

 NFV service topologies tested include: VNF service chains, CNF
 service chains and CNF service pipelines.

9.3. VNF Service Chain

 VNF Service Chain (VSC) topology is tested with KVM hypervisor
 (Ubuntu 18.04-LTS), with NFV service instances consisting of NFs
 running in VMs (VNFs). Host data-plane is provided by FD.io VPP
 vswitch. Virtual interfaces are virtio-vhostuser. Snake forwarding
 packet path is tested using [TRex] traffic generator, see figure.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 20]

Internet-Draft NFV Service Density Benchmarking July 2019

 +---+
 | Host Compute Node |
 | |
 | +--------+ +--------+ +--------+ |
	S1VNF1		S1VNF2		S1VNFn	
					Service1
	XXXX		XXXX		XXXX	
+-+X--X+-+ +-+X--X+-+ +-+X--X+-+						
	X X		X X		X X	Virtual
	X X		X X		X X	
+-+X--X+------+X--X+------+X--X+------+X--X+-+						
	X XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX X					
	X X					
	X FD.io VPP vSwitch X					
+-+X-+----------------------------------+-X+-+						
	X		X			
 +----X--------------------------------------X---------------+
 |X | | X| Physical
 |X | | X| Interfaces
 +---+X-+----------------------------------+-X+--------------+
 | |
 | Traffic Generator (TRex) |
 | |
 +---+

 Figure 6. VNF service chain test setup.

9.4. CNF Service Chain

 CNF Service Chain (CSC) topology is tested with Docker containers
 (Ubuntu 18.04-LTS), with NFV service instances consisting of NFs
 running in Containers (CNFs). Host data-plane is provided by FD.io
 VPP vswitch. Virtual interfaces are memif. Snake forwarding packet
 path is tested using [TRex] traffic generator, see figure.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 21]

Internet-Draft NFV Service Density Benchmarking July 2019

 +---+
 | Host Compute Node |
 | |
 | +--------+ +--------+ +--------+ |
	S1CNF1		S1CNF2		S1CNFn	
					Service1
	XXXX		XXXX		XXXX	
+-+X--X+-+ +-+X--X+-+ +-+X--X+-+						
	X X		X X		X X	Virtual
	X X		X X		X X	
+-+X--X+------+X--X+------+X--X+------+X--X+-+						
	X XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX X					
	X X					
	X FD.io VPP vSwitch X					
+-+X-+----------------------------------+-X+-+						
	X		X			
 +----X--------------------------------------X---------------+
 |X | | X| Physical
 |X | | X| Interfaces
 +---+X-+----------------------------------+-X+--------------+
 | |
 | Traffic Generator (TRex) |
 | |
 +---+

 Figure 7. CNF service chain test setup.

9.5. CNF Service Pipeline

 CNF Service Pipeline (CSP) topology is tested with Docker containers
 (Ubuntu 18.04-LTS), with NFV service instances consisting of NFs
 running in Containers (CNFs). Host data-plane is provided by FD.io
 VPP vswitch. Virtual interfaces are memif. Pipeline forwarding
 packet path is tested using [TRex] traffic generator, see figure.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 22]

Internet-Draft NFV Service Density Benchmarking July 2019

 +---+
 | Host Compute Node |
 | |
 | +--------+ +--------+ +--------+ |
	S1NF1		S1NF2		S1NFn	
	+--+ +--+ +--+	Service1				
	XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX					
+--X-----+ +--------+ +-----X--+						
	X X	Virtual				
	X X	Interfaces				
+-+X--------------------------------------X+-+						
	X X					
	X X					
	X FD.io VPP vSwitch X					
+-+X-+----------------------------------+-X+-+						
	X		X			
 +----X--------------------------------------X---------------+
 |X | | X| Physical
 |X | | X| Interfaces
 +---+X-+----------------------------------+-X+--------------+
 | |
 | Traffic Generator (TRex) |
 | |
 +---+

 Figure 8. CNF service chain test setup.

9.6. Sample Results: FD.io CSIT

 FD.io CSIT project introduced NFV density benchmarking in release
 CSIT-1904 and published results for the following NFV service
 topologies and configurations:

 1. VNF Service Chains

 * VNF: DPDK-L3FWD v19.02

 + IPv4 forwarding

 + NF-1c

 * vSwitch: VPP v19.04-release

 + L2 MAC switching

 + vSwitch-1c, vSwitch-2c

 * frame sizes: 64B, IMIX

Konstantynowicz & Mikus Expires January 9, 2020 [Page 23]

Internet-Draft NFV Service Density Benchmarking July 2019

 2. CNF Service Chains

 * CNF: VPP v19.04-release

 + IPv4 routing

 + NF-1c

 * vSwitch: VPP v19.04-release

 + L2 MAC switching

 + vSwitch-1c, vSwitch-2c

 * frame sizes: 64B, IMIX

 3. CNF Service Pipelines

 * CNF: VPP v19.04-release

 + IPv4 routing

 + NF-1c

 * vSwitch: VPP v19.04-release

 + L2 MAC switching

 + vSwitch-1c, vSwitch-2c

 * frame sizes: 64B, IMIX

 More information is available in FD.io CSIT-1904 report, with
 specific references listed below:

 o Testbed: [CSIT-1904-testbed-2n-skx]

 o Test environment: [CSIT-1904-test-enviroment]

 o Methodology: [CSIT-1904-nfv-density-methodology]

 o Results: [CSIT-1904-nfv-density-results]

9.7. Sample Results: CNCF/CNFs

 CNCF CI team introduced a CNF testbed initiative focusing on
 benchmaring NFV density with open-source network applications running

Konstantynowicz & Mikus Expires January 9, 2020 [Page 24]

Internet-Draft NFV Service Density Benchmarking July 2019

 as VNFs and CNFs. Following NFV service topologies and
 configurations have been tested to date:

 1. VNF Service Chains

 * VNF: VPP v18.10-release

 + IPv4 routing

 + NF-1c

 * vSwitch: VPP v18.10-release

 + L2 MAC switching

 + vSwitch-1c, vSwitch-2c

 * frame sizes: 64B, IMIX

 2. CNF Service Chains

 * CNF: VPP v18.10-release

 + IPv4 routing

 + NF-1c

 * vSwitch: VPP v18.10-release

 + L2 MAC switching

 + vSwitch-1c, vSwitch-2c

 * frame sizes: 64B, IMIX

 3. CNF Service Pipelines

 * CNF: VPP v18.10-release

 + IPv4 routing

 + NF-1c

 * vSwitch: VPP v18.10-release

 + L2 MAC switching

 + vSwitch-1c, vSwitch-2c

Konstantynowicz & Mikus Expires January 9, 2020 [Page 25]

Internet-Draft NFV Service Density Benchmarking July 2019

 * frame sizes: 64B, IMIX

 More information is available in CNCF CNF Testbed github, with
 summary test results presented in summary markdown file, references
 listed below:

 o Results: [CNCF-CNF-Testbed-Results]

9.8. Sample Results: OPNFV NFVbench

 TODO Add short NFVbench based test description, and NFVbench sweep
 chart with single VM per service instance: Y-axis packet throughput
 rate or bandwidth throughput rate, X-axis number of concurrent
 service instances.

10. IANA Considerations

 No requests of IANA.

11. Security Considerations

 Benchmarking activities as described in this memo are limited to
 technology characterization of a DUT/SUT using controlled stimuli in
 a laboratory environment, with dedicated address space and the
 constraints specified in the sections above.

 The benchmarking network topology will be an independent test setup
 and MUST NOT be connected to devices that may forward the test
 traffic into a production network or misroute traffic to the test
 management network.

 Further, benchmarking is performed on a "black-box" basis, relying
 solely on measurements observable external to the DUT/SUT.

 Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
 benchmarking purposes. Any implications for network security arising
 from the DUT/SUT SHOULD be identical in the lab and in production
 networks.

12. Acknowledgements

 Thanks to Vratko Polak of FD.io CSIT project and Michael Pedersen of
 the CNCF Testbed initiative for their contributions and useful
 suggestions. Extended thanks to Alec Hothan of OPNFV NFVbench
 project for numerous comments, suggestions and references to his/team
 work in the OPNFV/NVFbench project.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 26]

Internet-Draft NFV Service Density Benchmarking July 2019

13. References

13.1. Normative References

 [RFC2544] Bradner, S. and J. McQuaid, "Benchmarking Methodology for
 Network Interconnect Devices", RFC 2544,
 DOI 10.17487/RFC2544, March 1999,
 <https://www.rfc-editor.org/info/rfc2544>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13.2. Informative References

 [BSDP] "Benchmarking Software Data Planes Intel(R) Xeon(R)
 Skylake vs. Broadwell", March 2019, <https://fd.io/wp-
 content/uploads/sites/34/2019/03/
 benchmarking_sw_data_planes_skx_bdx_mar07_2019.pdf>.

 [CNCF-CNF-Testbed]
 "Cloud native Network Function (CNF) Testbed", July 2019,
 <https://github.com/cncf/cnf-testbed/>.

 [CNCF-CNF-Testbed-Results]
 "CNCF CNF Testbed: NFV Service Density Benchmarking",
 December 2018, <https://github.com/cncf/cnf-
 testbed/blob/master/comparison/doc/
 cncf-cnfs-results-summary.md>.

 [CSIT-1904-nfv-density-methodology]
 "FD.io CSIT Test Methodology: NFV Service Density", June
 2019,
 <https://docs.fd.io/csit/rls1904/report/introduction/
 methodology_nfv_service_density.html>.

 [CSIT-1904-nfv-density-results]
 "FD.io CSIT Test Results: NFV Service Density", June 2019,
 <https://docs.fd.io/csit/rls1904/report/vpp_performance_te
 sts/nf_service_density/index.html>.

 [CSIT-1904-test-enviroment]
 "FD.io CSIT Test Environment", June 2019,
 <https://docs.fd.io/csit/rls1904/report/
 vpp_performance_tests/test_environment.html>.

Konstantynowicz & Mikus Expires January 9, 2020 [Page 27]

Internet-Draft NFV Service Density Benchmarking July 2019

 [CSIT-1904-testbed-2n-skx]
 "FD.io CSIT Test Bed", June 2019,
 <https://docs.fd.io/csit/rls1904/report/introduction/
 physical_testbeds.html#node-xeon-skylake-2n-skx>.

 [draft-vpolak-bmwg-plrsearch]
 "Probabilistic Loss Ratio Search for Packet Throughput
 (PLRsearch)", July 2019,
 <https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch>.

 [draft-vpolak-mkonstan-bmwg-mlrsearch]
 "Multiple Loss Ratio Search for Packet Throughput
 (MLRsearch)", July 2019, <https://tools.ietf.org/html/
 draft-vpolak-mkonstan-bmwg-mlrsearch>.

 [LFN-FDio-CSIT]
 "Fast Data io, Continuous System Integration and Testing
 Project", July 2019, <https://wiki.fd.io/view/CSIT>.

 [NFVbench]
 "NFVbench Data Plane Performance Measurement Features",
 July 2019, <https://opnfv-
 nfvbench.readthedocs.io/en/latest/testing/user/userguide/
 readme.html>.

 [RFC8204] Tahhan, M., O’Mahony, B., and A. Morton, "Benchmarking
 Virtual Switches in the Open Platform for NFV (OPNFV)",
 RFC 8204, DOI 10.17487/RFC8204, September 2017,
 <https://www.rfc-editor.org/info/rfc8204>.

 [TRex] "TRex Low-Cost, High-Speed Stateful Traffic Generator",
 July 2019, <https://github.com/cisco-system-traffic-
 generator/trex-core>.

 [TST009] "ETSI GS NFV-TST 009 V3.1.1 (2018-10), Network Functions
 Virtualisation (NFV) Release 3; Testing; Specification of
 Networking Benchmarks and Measurement Methods for NFVI",
 October 2018, <https://www.etsi.org/deliver/etsi_gs/NFV-
 TST/001_099/009/03.01.01_60/gs_NFV-TST009v030101p.pdf>.

Authors’ Addresses

 Maciek Konstantynowicz (editor)
 Cisco Systems

 Email: mkonstan@cisco.com

Konstantynowicz & Mikus Expires January 9, 2020 [Page 28]

Internet-Draft NFV Service Density Benchmarking July 2019

 Peter Mikus (editor)
 Cisco Systems

 Email: pmikus@cisco.com

Konstantynowicz & Mikus Expires January 9, 2020 [Page 29]

