
Calendaring extensions N. Jenkins
Internet-Draft R. Stepanek
Intended status: Standards Track FastMail
Expires: December 31, 2019 June 29, 2019

 JSCalendar: A JSON representation of calendar data
 draft-ietf-calext-jscalendar-17

Abstract

 This specification defines a data model and JSON representation of
 calendar data that can be used for storage and data exchange in a
 calendaring and scheduling environment. It aims to be an alternative
 to the widely deployed iCalendar data format and to be unambiguous,
 extendable and simple to process. In contrast to the JSON-based jCal
 format, it is not a direct mapping from iCalendar and expands
 semantics where appropriate.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 31, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Jenkins & Stepanek Expires December 31, 2019 [Page 1]

Internet-Draft JSCalendar June 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Relation to the iCalendar format 4
 1.2. Relation to the jCal format 5
 1.3. Notational Conventions 5
 2. JSCalendar objects . 5
 2.1. JSEvent . 5
 2.2. JSTask . 6
 2.3. JSGroup . 6
 3. Structure of JSCalendar objects 6
 3.1. Type signatures . 6
 3.2. Data Types . 7
 3.2.1. UTCDateTime . 7
 3.2.2. LocalDateTime . 7
 3.2.3. Duration . 7
 3.2.4. PatchObject . 8
 3.2.5. Identifiers . 9
 3.2.6. Time Zones . 9
 3.2.7. Normalization and equivalence 9
 3.3. Custom property extensions and values 10
 4. Common JSCalendar properties 10
 4.1. Metadata properties 10
 4.1.1. @type . 10
 4.1.2. uid . 11
 4.1.3. relatedTo . 11
 4.1.4. prodId . 12
 4.1.5. created . 12
 4.1.6. updated . 12
 4.1.7. sequence . 12
 4.1.8. method . 13
 4.2. What and where properties 13
 4.2.1. title . 13
 4.2.2. description . 13
 4.2.3. descriptionContentType 13
 4.2.4. showWithoutTime 13
 4.2.5. locations . 14
 4.2.6. virtualLocations 15
 4.2.7. links . 15
 4.2.8. locale . 16
 4.2.9. keywords . 17
 4.2.10. categories . 17
 4.2.11. color . 17
 4.3. Recurrence properties 17
 4.3.1. recurrenceRule 17

Jenkins & Stepanek Expires December 31, 2019 [Page 2]

Internet-Draft JSCalendar June 2019

 4.3.2. recurrenceOverrides 23
 4.3.3. excluded . 24
 4.4. Sharing and scheduling properties 24
 4.4.1. priority . 24
 4.4.2. freeBusyStatus 25
 4.4.3. privacy . 25
 4.4.4. replyTo . 26
 4.4.5. participants . 27
 4.5. Alerts properties . 30
 4.5.1. useDefaultAlerts 30
 4.5.2. alerts . 30
 4.6. Multilingual properties 32
 4.6.1. localizations . 32
 4.7. Time zone properties 33
 4.7.1. timeZones . 33
 5. Type-specific JSCalendar properties 35
 5.1. JSEvent properties 35
 5.1.1. start . 35
 5.1.2. timeZone . 35
 5.1.3. duration . 35
 5.1.4. status . 36
 5.2. JSTask properties . 36
 5.2.1. due . 36
 5.2.2. start . 36
 5.2.3. timeZone . 36
 5.2.4. estimatedDuration 36
 5.2.5. statusUpdatedAt 37
 5.2.6. progress . 37
 5.2.7. status . 38
 5.3. JSGroup properties 38
 5.3.1. entries . 39
 5.3.2. source . 39
 6. JSCalendar object examples 39
 6.1. Simple event . 39
 6.2. Simple task . 40
 6.3. Simple group . 40
 6.4. All-day event . 41
 6.5. Task with a due date 41
 6.6. Event with end time-zone 42
 6.7. Floating-time event (with recurrence) 42
 6.8. Event with multiple locations and localization 43
 6.9. Recurring event with overrides 44
 6.10. Recurring event with participants 45
 7. Security Considerations 47
 8. IANA Considerations . 47
 9. Acknowledgments . 48
 10. References . 48
 10.1. Normative References 48

Jenkins & Stepanek Expires December 31, 2019 [Page 3]

Internet-Draft JSCalendar June 2019

 10.2. Informative References 51
 10.3. URIs . 51
 Authors’ Addresses . 51

1. Introduction

 This document defines a data model for calendar event and task
 objects, or groups of such objects, in electronic calendar
 applications and systems. It aims to be unambiguous, extendable and
 simple to process.

 The key design considerations for this data model are as follows:

 o The attributes of the calendar entry represented must be described
 as a simple key-value pair, reducing complexity of its
 representation.

 o The data model should avoid all ambiguities and make it difficult
 to make mistakes during implementation.

 o Most of the initial set of attributes should be taken from the
 iCalendar data format [RFC5545] and [RFC7986] and extensions, but
 the specification should add new attributes or value types, or not
 support existing ones, where appropriate. Conversion between the
 data formats need not fully preserve semantic meaning.

 o Extensions, such as new properties and components, MUST NOT lead
 to requiring an update to this document.

 The representation of this data model is defined in the I-JSON format
 [RFC7493], which is a strict subset of the JavaScript Object Notation
 (JSON) Data Interchange Format [RFC8259]. Using JSON is mostly a
 pragmatic choice: its widespread use makes JSCalendar easier to
 adopt, and the ready availability of production-ready JSON
 implementations eliminates a whole category of parser-related
 interoperability issues.

1.1. Relation to the iCalendar format

 The iCalendar data format [RFC5545], a widely deployed interchange
 format for calendaring and scheduling data, has served calendaring
 vendors for a long while, but contains some ambiguities and pitfalls
 that can not be overcome without backward-incompatible changes.

 For example, iCalendar defines various formats for local times, UTC
 time and dates, which confuses new users. Other sources for errors
 are the requirement for custom time zone definitions within a single
 calendar component, as well as the iCalendar format itself; the

Jenkins & Stepanek Expires December 31, 2019 [Page 4]

Internet-Draft JSCalendar June 2019

 latter causing interoperability issues due to misuse of CR LF
 terminated strings, line continuations and subtle differences between
 iCalendar parsers. Lastly, up until recently the iCalendar format
 did not have a way to express a concise difference between two
 calendar components, which results in verbose exchanges during
 scheduling.

1.2. Relation to the jCal format

 The JSON format for iCalendar data, jCal [RFC7265], is a direct
 mapping between iCalendar and JSON. It does not attempt to extend or
 update iCalendar semantics, and consequently does not address the
 issues outlined in Section 1.1.

 Since the standardization of jCal, the majority of implementations
 and service providers either kept using iCalendar, or came up with
 their own proprietary JSON representation, which often are
 incompatible with each other. JSCalendar is intended to meet this
 demand for JSON formatted calendar data, and to provide a standard
 representation as an alternative to new proprietary formats.

1.3. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The underlying format used for this specification is JSON.
 Consequently, the terms "object" and "array" as well as the four
 primitive types (strings, numbers, booleans, and null) are to be
 interpreted as described in Section 1 of [RFC8259].

 Some examples in this document contain "partial" JSON documents used
 for illustrative purposes. In these examples, three periods "..."
 are used to indicate a portion of the document that has been removed
 for compactness.

2. JSCalendar objects

 This section describes the calendar object types specified by
 JSCalendar.

2.1. JSEvent

 MIME type: "application/jscalendar+json;type=jsevent"

Jenkins & Stepanek Expires December 31, 2019 [Page 5]

Internet-Draft JSCalendar June 2019

 A JSEvent represents a scheduled amount of time on a calendar,
 typically a meeting, appointment, reminder or anniversary. Multiple
 participants may partake in the event at multiple locations.

 The @type (Section 4.1.1) property value MUST be "jsevent".

2.2. JSTask

 MIME type: "application/jscalendar+json;type=jstask"

 A JSTask represents an action-item, assignment, to-do or work item.

 The @type (Section 4.1.1) property value MUST be "jstask".

 A JSTask may start and be due at certain points in time, may take
 some estimated time to complete and may recur; none of which is
 required. This notably differs from JSEvent (Section 2.1) which is
 required to start at a certain point in time and typically takes some
 non-zero duration to complete.

2.3. JSGroup

 MIME type: "application/jscalendar+json;type=jsgroup"

 A JSGroup is a collection of JSEvent (Section 2.1) and JSTask
 (Section 2.2) objects. Typically, objects are grouped by topic (e.g.
 by keywords) or calendar membership.

 The @type (Section 4.1.1) property value MUST be "jsgroup".

3. Structure of JSCalendar objects

 A JSCalendar object is a JSON object, which MUST be valid I-JSON (a
 stricter subset of JSON), as specified in [RFC8259]. Property names
 and values are case-sensitive.

 The object has a collection of properties, as specified in the
 following sections. Properties are specified as being either
 mandatory or optional. Optional properties may have a default value,
 if explicitly specified in the property definition.

3.1. Type signatures

 Types signatures are given for all JSON objects in this document.
 The following conventions are used:

 o "Boolean|String": The value is either a JSON "Boolean" value, or a
 JSON "String" value.

Jenkins & Stepanek Expires December 31, 2019 [Page 6]

Internet-Draft JSCalendar June 2019

 o "Foo": Any name that is not a native JSON type means an object for
 which the properties (and their types) are defined elsewhere
 within this document.

 o "Foo[]": An array of objects of type "Foo".

 o "String[Foo]": A JSON "Object" being used as a map (associative
 array), where all the values are of type "Foo".

3.2. Data Types

 In addition to the standard JSON data types, the following data types
 are used in this specification:

3.2.1. UTCDateTime

 This is a string in [RFC3339] "date-time" format, with the further
 restrictions that any letters MUST be in upper-case, the time
 component MUST be included and the time offset MUST be the character
 "Z". Fractional second values MUST NOT be included unless non-zero
 and MUST NOT have trailing zeros, to ensure there is only a single
 representation for each date-time.

 For example "2010-10-10T10:10:10.003Z" is OK, but
 "2010-10-10T10:10:10.000Z" is invalid and MUST be encoded as
 "2010-10-10T10:10:10Z".

 In common notation, it should be of the form "YYYY-MM-DDTHH:MM:SSZ".

3.2.2. LocalDateTime

 This is a date-time string _with no time zone/offset information_.
 It is otherwise in the same format as UTCDateTime, including
 fractional seconds. For example "2006-01-02T15:04:05" and
 "2006-01-02T15:04:05.003" are both valid. The time zone to associate
 the LocalDateTime with comes from an associated property, or if no
 time zone is associated it defines _floating time_. Floating date-
 times are not tied to any specific time zone. Instead, they occur in
 every time zone at the same wall-clock time (as opposed to the same
 instant point in time).

3.2.3. Duration

 A Duration object is represented by a subset of ISO8601 duration
 format, as specified by the following ABNF:

Jenkins & Stepanek Expires December 31, 2019 [Page 7]

Internet-Draft JSCalendar June 2019

 dur-secfrac = "." 1*DIGIT
 dur-second = 1*DIGIT [dur-secfrac] "S"
 dur-minute = 1*DIGIT "M" [dur-second]
 dur-hour = 1*DIGIT "H" [dur-minute]
 dur-time = "T" (dur-hour / dur-minute / dur-second)
 dur-day = 1*DIGIT "D"
 dur-week = 1*DIGIT "W"

 duration = "P" (dur-day [dur-time] / dur-time / dur-week)

 In addition, the duration MUST NOT include fractional second values
 unless the fraction is non-zero.

 A SignedDuration object is represented as a duration, optionally
 preceded by a sign character. It typically is used to express the
 offset of a point in time relative to an associated time. It is
 specified by the following ABNF:

 signed-duration = (["+"] / "-") duration

 A negative sign indicates a point in time at or before the associated
 time, a positive or no sign a time at or after the associated time.

3.2.4. PatchObject

 A PatchObject is of type "String[*|null]", and represents an
 unordered set of patches on a JSON object. The keys are a path in a
 subset of [RFC6901] JSON pointer format, with an implicit leading "/"
 (i.e. prefix each key with "/" before applying the JSON pointer
 evaluation algorithm).

 A patch within a PatchObject is only valid, if all of the following
 conditions apply:

 1. The pointer MUST NOT reference inside an array (i.e. it MUST NOT
 insert/delete from an array; the array MUST be replaced in its
 entirety instead).

 2. When evaluating a path, all parts prior to the last (i.e. the
 value after the final slash) MUST exist.

 3. There MUST NOT be two patches in the PatchObject where the
 pointer of one is the prefix of the pointer of the other, e.g.
 "alerts/foo/offset" and "alerts".

 The value associated with each pointer is either:

Jenkins & Stepanek Expires December 31, 2019 [Page 8]

Internet-Draft JSCalendar June 2019

 o "null": Remove the property from the patched object. If not
 present in the parent, this a no-op.

 o Anything else: The value to replace the inherited property on the
 patch object with (if present) or add to the property (if not
 present).

 Implementations MUST reject a PatchObject if any of its patches are
 invalid.

3.2.5. Identifiers

 If not stated otherwise in the respective property definition,
 properties and object keys that define identifiers MUST be string
 values, MUST be at least 1 character and maximum 256 characters in
 size, and MUST only contain characters from the "URL and Filename
 safe" Base 64 Alphabet, as defined in section 5 of [RFC4648]. This
 is the ASCII alphanumeric characters (A-Za-z0-9), hyphen (-), and
 underscore (_). Note that [RFC7493] requires string values be
 encoded in UTF-8, so the maximum size of an identifier according to
 this definition is 256 octets.

 . Identifiers in object maps need not be universally unique, e.g. two
 calendar objects MAY use the same identifiers in their respective
 "links" properties.

 Nevertheless, a UUID typically is a good choice.

3.2.6. Time Zones

 By default, time zones in JSCalendar are identified by their name in
 the IANA Time Zone Database [1], and the zone rules of the respective
 zone record apply.

 Implementations MAY embed the definition of custom time zones in the
 "timeZones" property (see Section 4.7.1).

3.2.7. Normalization and equivalence

 JSCalendar aims to provide unambiguous definitions for value types
 and properties, but does not define a general normalization or
 equivalence method for JSCalendar objects and types. This is because
 the notion of equivalence might range from byte-level equivalence to
 semantic equivalence, depending on the respective use case (for
 example, the CalDAV protocol [RFC4791] requires octet equivalence of
 the encoded calendar object to determine ETag equivalence).

Jenkins & Stepanek Expires December 31, 2019 [Page 9]

Internet-Draft JSCalendar June 2019

 Normalization of JSCalendar objects is hindered because of the
 following reasons:

 o Custom JSCalendar properties may contain arbitrary JSON values,
 including arrays. However, equivalence of arrays might or might
 not depend on the order of elements, depending on the respective
 property definition.

 o Several JSCalendar property values are defined as URIs and MIME
 types, but normalization of these types is inherently protocol and
 scheme-specific, depending on the use-case of the equivalence
 definition (see section 6 of [RFC3986]).

 Considering this, the definition of equivalence and normalization is
 left to client and server implementations and to be negotiated by a
 calendar exchange protocol or defined by another RFC.

3.3. Custom property extensions and values

 Vendors MAY add additional properties to the calendar object to
 support their custom features. The names of these properties MUST be
 prefixed with a domain name controlled by the vendor to avoid
 conflict, e.g. "example.com/customprop".

 Some JSCalendar properties allow vendor-specific value extensions.
 If so, vendor specific values MUST be prefixed with a domain name
 controlled by the vendor, e.g. "example.com/customrel", unless
 otherwise noted.

4. Common JSCalendar properties

 This section describes the properties that are common to the various
 JSCalendar object types. Specific JSCalendar object types may only
 support a subset of these properties. The object type definitions in
 Section 5 describe the set of supported properties per type.

4.1. Metadata properties

4.1.1. @type

 Type: String (mandatory).

 Specifies the type which this object represents. This MUST be one of
 the following values, registered in a future RFC, or a vendor-
 specific value:

 o "jsevent": a JSCalendar event (Section 2.1).

Jenkins & Stepanek Expires December 31, 2019 [Page 10]

Internet-Draft JSCalendar June 2019

 o "jstask": a JSCalendar task (Section 2.2).

 o "jsgroup": a JSCalendar group (Section 2.3).

4.1.2. uid

 Type: String (mandatory).

 A globally unique identifier, used to associate the object as the
 same across different systems, calendars and views. The value of
 this property MUST be unique across all JSCalendar objects, even if
 they are of different type. [RFC4122] describes a range of
 established algorithms to generate universally unique identifiers
 (UUID), and the random or pseudo-random version is recommended.

 For compatibility with [RFC5545] UIDs, implementations MUST be able
 to receive and persist values of at least 255 octets for this
 property, but they MUST NOT truncate values in the middle of a UTF-8
 multi-octet sequence.

4.1.3. relatedTo

 Type: String[Relation] (optional).

 Relates the object to other JSCalendar objects. This is represented
 as a map of the UIDs of the related objects to information about the
 relation.

 A Relation object has the following properties:

 o relation: String[Boolean] (optional). Describes how the linked
 object is related to this object as a set of relation types. If
 not null, the set MUST NOT be empty.

 Keys in the set MUST be one of the following values, defined in a
 future specification or a vendor-specific value:

 * "first": The linked object is the first in the series this
 object is part of.

 * "next": The linked object is the next in the series this object
 is part of.

 * "child": The linked object is a subpart of this object.

 * "parent": This object is part of the overall linked object.

 The value for each key in the set MUST be "true".

Jenkins & Stepanek Expires December 31, 2019 [Page 11]

Internet-Draft JSCalendar June 2019

 If an object is split to make a "this and future" change to a
 recurrence, the original object MUST be truncated to end at the
 previous occurrence before this split, and a new object created to
 represent all the objects after the split. A "next" relation MUST be
 set on the original object’s relatedTo property for the UID of the
 new object. A "first" relation for the UID of the first object in
 the series MUST be set on the new object. Clients can then follow
 these UIDs to get the complete set of objects if the user wishes to
 modify them all at once.

4.1.4. prodId

 Type: String (optional).

 The identifier for the product that created the JSCalendar object.

 The vendor of the implementation SHOULD ensure that this is a
 globally unique identifier, using some technique such as an FPI
 value, as defined in [ISO.9070.1991]. It MUST only use characters of
 an iCalendar TEXT data value (see section 3.3.11 in [RFC5545]).

 This property SHOULD NOT be used to alter the interpretation of an
 JSCalendar object beyond the semantics specified in this document.
 For example, it is not to be used to further the understanding of
 non-standard properties.

4.1.5. created

 Type: UTCDateTime (optional).

 The date and time this object was initially created.

4.1.6. updated

 Type: UTCDateTime (mandatory).

 The date and time the data in this object was last modified.

4.1.7. sequence

 Type: Number (optional, default: "0").

 Initially zero, this MUST be a non-negative integer that is
 monotonically incremented each time a change is made to the object.

Jenkins & Stepanek Expires December 31, 2019 [Page 12]

Internet-Draft JSCalendar June 2019

4.1.8. method

 Type: String (optional).

 The iTIP ([RFC5546]) method, in lower-case. Used for scheduling.

4.2. What and where properties

4.2.1. title

 Type: String (optional, default: empty String).

 A short summary of the object.

4.2.2. description

 Type: String (optional, default: empty String).

 A longer-form text description of the object. The content is
 formatted according to the "descriptionContentType" property.

4.2.3. descriptionContentType

 Type: String (optional, default: "text/plain").

 Describes the media type ([RFC6838]) of the contents of the
 "description" property. Media types MUST be sub-types of type
 "text", and SHOULD be "text/plain" or "text/html" ([MIME]). They MAY
 define parameters and the "charset" parameter value MUST be "utf-8",
 if specified. Descriptions of type "text/html" MAY contain "cid"
 URLs ([RFC2392]) to reference links in the calendar object by use of
 the "cid" property of the Link object.

4.2.4. showWithoutTime

 Type: Boolean (optional, default: "false").

 Indicates the time is not important to display to the user when
 rendering this calendar object, for example an event that
 conceptually occurs all day or across multiple days, such as "New
 Year’s Day" or "Italy Vacation". While the time component is
 important for free-busy calculations and checking for scheduling
 clashes, calendars may choose to omit displaying it and/or display
 the object separately to other objects to enhance the user’s view of
 their schedule.

Jenkins & Stepanek Expires December 31, 2019 [Page 13]

Internet-Draft JSCalendar June 2019

4.2.5. locations

 Type: String[Location] (optional).

 A map of location identifiers to Location objects, representing
 locations associated with the object.

 A Location object has the following properties. It must define at
 least one other property than the "relativeTo" property.

 o name: String (optional). The human-readable name of the location.

 o description: String (optional). Human-readable, plain-text
 instructions for accessing this location. This may be an address,
 set of directions, door access code, etc.

 o relativeTo: String (optional). The relation type of this location
 to the JSCalendar object.

 This MUST be either one of the following values, registered in a
 future RFC, or a vendor-specific value. Any value the client or
 server doesn’t understand should be treated the same as if this
 property is omitted.

 * "start": The JSCalendar object starts at this location.

 * "end": The JSCalendar object ends at this location.

 o timeZone: String (optional). A time zone for this location. Also
 see Section 3.2.6.

 o coordinates: String (optional). An [RFC5870] "geo:" URI for the
 location.

 o linkIds: String[Boolean] (optional). A set of link ids for links
 to alternate representations of this location. Each key in the
 set MUST be the identifier of a Link object defined in the "links"
 property of this calendar object. The value for each key in the
 set MUST be "true". This MUST be omitted if none (rather than an
 empty set).

 For example, an alternative representation could be in vCard
 format.

Jenkins & Stepanek Expires December 31, 2019 [Page 14]

Internet-Draft JSCalendar June 2019

4.2.6. virtualLocations

 Type: String[VirtualLocation] (optional).

 A map of identifiers to VirtualLocation objects, representing virtual
 locations, such as video conferences or chat rooms, associated with
 the object.

 A VirtualLocation object has the following properties.

 o name: String (optional, default: empty String). The human-
 readable name of the virtual location.

 o description: String (optional). Human-readable plain-text
 instructions for accessing this location. This may be an address,
 set of directions, door access code, etc.

 o uri: String (mandatory). A URI that represents how to connect to
 this virtual location.

 This may be a telephone number (represented as
 "tel:+1-555-555-555") for a teleconference, a web address for
 online chat, or any custom URI.

4.2.7. links

 Type: String[Link] (optional).

 A map of link identifiers to Link objects, representing external
 resources associated with the object.

 A Link object has the following properties:

 o href: String (mandatory). A URI from which the resource may be
 fetched.

 This MAY be a "data:" URL, but it is recommended that the file be
 hosted on a server to avoid embedding arbitrarily large data in
 JSCalendar object instances.

 o cid: String (optional). This MUST be a valid "content-id" value
 according to the definition of section 2 in [RFC2392]. The
 identifier MUST be unique within this JSCalendar object Link
 objects but has no meaning beyond that. Specifically, it MAY be
 different from the link identifier in the enclosing "links"
 property.

Jenkins & Stepanek Expires December 31, 2019 [Page 15]

Internet-Draft JSCalendar June 2019

 o type: String (optional). The content-type [RFC6838] of the
 resource, if known.

 o size: Number (optional). The size, in bytes, of the resource when
 fully decoded (i.e. the number of bytes in the file the user would
 download), if known.

 o rel: String (optional). Identifies the relation of the linked
 resource to the object. If set, the value MUST be a registered
 relation type (see [RFC8288] and IANA Link Relations [2]).

 Links with a rel of "enclosure" SHOULD be considered by the client
 as attachments for download.

 Links with a rel of "describedby" SHOULD be considered by the
 client to be an alternate representation of the description.

 Links with a rel of "icon" SHOULD be considered by the client to
 be an image that it MAY use when presenting the calendar data to a
 user. The "display" property MAY be set to indicate the purpose
 of this image.

 o display: String (optional). Describes the intended purpose of a
 link to an image. If set, the "rel" property MUST be set to
 "icon". The value MUST be either one of the following values,
 registered in a future RFC, or a vendor-specific value:

 * "badge": an image inline with the title of the object

 * "graphic": a full image replacement for the object itself

 * "fullsize": an image that is used to enhance the object

 * "thumbnail": a smaller variant of "fullsize" to be used when
 space for the image is constrained

 o title: String (optional). A human-readable plain-text description
 of the resource.

4.2.8. locale

 Type: String (optional).

 The [RFC5646] language tag that best describes the locale used for
 the calendar object, if known.

Jenkins & Stepanek Expires December 31, 2019 [Page 16]

Internet-Draft JSCalendar June 2019

4.2.9. keywords

 Type: String[Boolean] (optional).

 A set of keywords or tags that relate to the object. The set is
 represented as a map, with the keys being the keywords. The value
 for each key in the map MUST be "true".

4.2.10. categories

 Type: String[Boolean] (optional).

 A set of categories that relate to the calendar object. The set is
 represented as a map, with the keys being the categories specified as
 URIs. The value for each key in the map MUST be "true".

 In contrast to keywords, categories typically are structured. For
 example, a vendor owning the domain "example.com" might define the
 categories "http://example.com/categories/sports/american-football""
 and "http://example.com/categories/music/r-b".

4.2.11. color

 Type: String (optional).

 Specifies a color clients MAY use when displaying this calendar
 object. The value is a case-insensitive color name taken from the
 CSS3 set of names, defined in Section 4.3 of W3C.REC-
 css3-color-20110607 [3] or a CSS3 RGB color hex value.

4.3. Recurrence properties

4.3.1. recurrenceRule

 Type: Recurrence (optional).

 Defines a recurrence rule (repeating pattern) for recurring calendar
 objects.

 A Recurrence object is a JSON object mapping of a RECUR value type in
 iCalendar, see [RFC5545] and[RFC7529]. A JSEvent recurs by applying
 the recurrence rule to the start date-time. A JSTask recurs by
 applying the recurrence rule to the start date-time, if defined,
 otherwise it recurs by the due date-time, if defined. If the task
 neither defines a start or due date-time, its "recurrenceRule"
 property value MUST be "null".

 A Recurrence object has the following properties:

Jenkins & Stepanek Expires December 31, 2019 [Page 17]

Internet-Draft JSCalendar June 2019

 o frequency: String (mandatory). This MUST be one of the following
 values:

 * "yearly"

 * "monthly"

 * "weekly"

 * "daily"

 * "hourly"

 * "minutely"

 * "secondly"

 To convert from iCalendar, simply lower-case the FREQ part.

 o interval: Number (optional, default: "1"). The INTERVAL part from
 iCalendar. If included, it MUST be an integer "x >= 1".

 o rscale: String (optional, default: ""gregorian""). The RSCALE
 part from iCalendar RSCALE [RFC7529], converted to lower-case.

 o skip: String (optional, default: ""omit""). The SKIP part from
 iCalendar RSCALE [RFC7529], converted to lower-case.

 o firstDayOfWeek: String (optional, default: ""mo""). The WKST part
 from iCalendar, represented as a lower-case abbreviated two-letter
 English day of the week. If included, it MUST be one of the
 following values: ""mo"|"tu"|"we"|"th"|"fr"|"sa"|"su"".

 o byDay: NDay[] (optional). An *NDay* object has the following
 properties:

 * day: String. The day-of-the-week part of the BYDAY value in
 iCalendar, lower-cased. MUST be one of the following values:
 ""mo"|"tu"|"we"|"th"|"fr"|"sa"|"su"".

 * nthOfPeriod: Number (optional). The ordinal part of the BYDAY
 value in iCalendar (e.g. ""+1"" or ""-3""). If present, rather
 than representing every occurrence of the weekday defined in
 the "day" property, it represents only a specific instance
 within the recurrence period. The value can be positive or
 negative, but MUST NOT be zero. A negative integer means nth-
 last of period.

Jenkins & Stepanek Expires December 31, 2019 [Page 18]

Internet-Draft JSCalendar June 2019

 o byMonthDay: Number[] (optional). The BYMONTHDAY part from
 iCalendar. The array MUST have at least one entry if included.

 o byMonth: String[] (optional). The BYMONTH part from iCalendar.
 Each entry is a string representation of a number, starting from
 "1" for the first month in the calendar (e.g. ""1" " means
 ""January"" with Gregorian calendar), with an optional ""L""
 suffix (see [RFC7529]) for leap months (this MUST be upper-case,
 e.g. ""3L""). The array MUST have at least one entry if included.

 o byYearDay: Number[] (optional). The BYYEARDAY part from
 iCalendar. The array MUST have at least one entry if included.

 o byWeekNo: Number[] (optional). The BYWEEKNO part from iCalendar.
 The array MUST have at least one entry if included.

 o byHour: Number[] (optional). The BYHOUR part from iCalendar. The
 array MUST have at least one entry if included.

 o byMinute: Number[] (optional). The BYMINUTE part from iCalendar.
 The array MUST have at least one entry if included.

 o bySecond: Number[] (optional). The BYSECOND part from iCalendar.
 The array MUST have at least one entry if included.

 o bySetPosition: Number[] (optional). The BYSETPOS part from
 iCalendar. The array MUST have at least one entry if included.

 o count: Number (optional). The COUNT part from iCalendar. This
 MUST NOT be included if an "until" property is specified.

 o until: LocalDateTime (optional). The UNTIL part from iCalendar.
 This MUST NOT be included if a "count" property is specified.
 Note: if not specified otherwise for a specific JSCalendar object,
 this date is presumed to be in the time zone specified in
 "timeZone". As in iCalendar, the until value bounds the
 recurrence rule inclusively.

 A recurrence rule specifies a set of set of date-times for recurring
 calendar objects. A recurrence rule has the following semantics.
 Note, wherever "year", "month" or "day of month" is used, this is
 within the calendar system given by the "rscale" property, which
 defaults to gregorian if omitted.

 1. A set of candidates is generated. This is every second within a
 period defined by the frequency property value:

Jenkins & Stepanek Expires December 31, 2019 [Page 19]

Internet-Draft JSCalendar June 2019

 * "yearly": every second from midnight on the 1st day of a year
 (inclusive) to midnight the 1st day of the following year
 (exclusive).

 If skip is not "omit", the calendar system has leap months and
 there is a byMonth property, generate candidates for the leap
 months even if they don’t occur in this year.

 If skip is not "omit" and there is a byMonthDay property,
 presume each month has the maximum number of days any month
 may have in this calendar system when generating candidates,
 even if it’s more than this month actually has.

 * "monthly": every second from midnight on the 1st day of a
 month (inclusive) to midnight on the 1st of the following
 month (exclusive).

 If skip is not "omit" and there is a byMonthDay property,
 presume the month has the maximum number of days any month may
 have in this calendar system when generating candidates, even
 if it’s more than this month actually has.

 * "weekly": every second from midnight (inclusive) on the first
 day of the week (as defined by the firstDayOfWeek property, or
 Monday if omitted), to midnight 7 days later (exclusive).

 * "daily": every second from midnight at the start of the day
 (inclusive) to midnight at the end of the day (exclusive).

 * "hourly": every second from the beginning of the hour
 (inclusive) to the beginning of the next hour (exclusive).

 * "minutely": every second from the beginning of the minute
 (inclusive) to the beginning of the next minute (exclusive).

 * "secondly": the second itself, only.

 2. Each date-time candidate is compared against all of the byX
 properties of the rule except bySetPosition. If any property in
 the rule does not match the date-time, it is eliminated. Each
 byX property is an array; the date-time matches the property if
 it matches any of the values in the array. The properties have
 the following semantics:

 * byMonth: the date-time is in the given month.

 * byWeekNo: the date-time is in the nth week of the year.
 Negative numbers mean the nth last week of the year. This

Jenkins & Stepanek Expires December 31, 2019 [Page 20]

Internet-Draft JSCalendar June 2019

 corresponds to weeks according to week numbering as defined in
 ISO.8601.2004, with a week defined as a seven day period,
 starting on the firstDayOfWeek property value or Monday if
 omitted. Week number one of the calendar year is the first
 week that contains at least four days in that calendar year.

 If the date-time is not valid (this may happen when generating
 candidates with a skip property in effect), it is always
 eliminated by this property.

 * byYearDay: the date-time is on the nth day of year. Negative
 numbers mean the nth last day of the year.

 If the date-time is not valid (this may happen when generating
 candidates with a skip property in effect), it is always
 eliminated by this property.

 * byMonthDay: the date-time is on the given day of the month.
 Negative numbers mean the nth last day of the month.

 * byDay: the date-time is on the given day of the week. If the
 day is prefixed by a number, it is the nth occurrence of that
 day of the week within the month (if frequency is monthly) or
 year (if frequency is yearly). Negative numbers means nth
 last occurrence within that period.

 * byHour: the date-time has the given hour value.

 * byMinute: the date-time has the given minute value.

 * bySecond: the date-time has the given second value.

 If a skip property is defined and is not "omit", there may be
 candidates that do not correspond to valid dates (e.g. 31st
 February in the gregorian calendar). In this case, the
 properties MUST be considered in the order above and:

 1. After applying the byMonth filter, if the candidate’s month
 is invalid for the given year increment it (if skip is
 "forward") or decrement it (if skip is "backward") until a
 valid month is found, incrementing/decrementing the year as
 well if you pass through the beginning/end of the year. This
 only applies to calendar systems with leap months.

 2. After applying the byMonthDay filter, if the day of the month
 is invalid for the given month and year, change the date to
 the first day of the next month (if skip == "forward") or the
 last day of the current month (if skip == "backward").

Jenkins & Stepanek Expires December 31, 2019 [Page 21]

Internet-Draft JSCalendar June 2019

 3. If any valid date produced after applying the skip is already
 a candidate, eliminate the duplicate. (For example after
 adjusting, 30th February and 31st February would both become
 the same "real" date, so one is eliminated as a duplicate.)

 3. If a bySetPosition property is included, this is now applied to
 the ordered list of remaining dates (this property specifies the
 indexes of date-times to keep; all others should be eliminated.
 Negative numbers are indexes from the end of the list, with -1
 being the last item).

 4. Any date-times before the start date of the event are eliminated
 (see below for why this might be needed).

 5. If a skip property is included and is not "omit", eliminate any
 date-times that have already been produced by previous iterations
 of the algorithm. (This is not possible if skip == "omit".)

 6. If further dates are required (we have not reached the until
 date, or count limit) skip the next (interval - 1) sets of
 candidates, then continue from step 1.

 When determining the set of occurrence dates for an event or task,
 the following extra rules must be applied:

 1. The start date-time is always the first occurrence in the
 expansion (and is counted if the recurrence is limited by a
 "count" property), even if it would normally not match the rule.

 2. The first set of candidates to consider is that which would
 contain the start date-time. This means the first set may
 include candidates before the start; such candidates are
 eliminated from the results in step (4) as outlined before.

 3. The following properties MUST be implicitly added to the rule
 under the given conditions:

 * If frequency > "secondly" and no bySecond property: Add a
 bySecond property with the sole value being the seconds value
 of the start date-time.

 * If frequency > "minutely" and no byMinute property: Add a
 byMinute property with the sole value being the minutes value
 of the start date-time.

 * If frequency > "hourly" and no byHour property: Add a byHour
 property with the sole value being the hours value of the
 start date-time.

Jenkins & Stepanek Expires December 31, 2019 [Page 22]

Internet-Draft JSCalendar June 2019

 * If frequency is "weekly" and no byDay property: Add a byDay
 property with the sole value being the day-of-the-week of the
 start date-time.

 * If frequency is "monthly" and no byDay property and no
 byMonthDay property: Add a byMonthDay property with the sole
 value being the day-of-the-month of the start date-time.

 * If frequency is "yearly" and no byYearDay property:

 + if there are no byMonth or byWeekNo properties, and either
 there is a byMonthDay property or there is no byDay
 property: Add a byMonth property with the sole value being
 the month of the start date-time.

 + if there is no byMonthDay, byWeekNo or byDay properties:
 Add a byMonthDay property with the sole value being the
 day-of-the-month of the start date-time.

 + if there is a byWeekNo property and no byMonthDay or byDay
 properties: Add a byDay property with the sole value being
 the day-of-the-week of the start date-time.

4.3.2. recurrenceOverrides

 Type: LocalDateTime[PatchObject] (optional).

 A map of the recurrence-ids (the date-time of the start of the
 occurrence) to an object of patches to apply to the generated
 occurrence object.

 If the recurrence-id does not match an expanded start date from a
 recurrence rule, it is to be treated as an additional occurrence
 (like an RDATE from iCalendar). The patch object may often be empty
 in this case.

 If the patch object defines the "excluded" property value to be
 "true", then the recurring calendar object does not occur at the
 recurrence-id date-time (like an EXDATE from iCalendar). Such a
 patch object MUST NOT patch any other property.

 By default, an occurrence inherits all properties from the main
 object except the start (or due) date-time, which is shifted to the
 new start time of the LocalDateTime key. However, individual
 properties of the occurrence can be modified by a patch, or multiple
 patches. It is valid to patch the start property value, and this
 patch takes precedence over the LocalDateTime key. Both the

Jenkins & Stepanek Expires December 31, 2019 [Page 23]

Internet-Draft JSCalendar June 2019

 LocalDateTime key as well as the patched start date-time may occur
 before the original JSCalendar object’s start or due date.

 A pointer in the PatchObject MUST be ignored if it starts with one of
 the following prefixes:

 o @type

 o uid

 o relatedTo

 o prodId

 o method

 o recurrenceRule

 o recurrenceOverrides

 o replyTo

4.3.3. excluded

 Type: Boolean (optional, default: "false").

 Defines if this object is an overridden, excluded instance of a
 recurring JSCalendar object (also see Section 4.3.2). If this
 property value is "true", this calendar object instance MUST be
 removed from the occurrence expansion. The absence of this property
 or its default value "false" indicates that this instance MUST be
 added to the occurrence expansion.

4.4. Sharing and scheduling properties

4.4.1. priority

 Type: Number (optional, default: "0").

 Specifies a priority for the calendar object. This may be used as
 part of scheduling systems to help resolve conflicts for a time
 period.

 The priority is specified as an integer in the range 0 to 9. A value
 of 0 specifies an undefined priority. A value of 1 is the highest
 priority. A value of 2 is the second highest priority. Subsequent
 numbers specify a decreasing ordinal priority. A value of 9 is the
 lowest priority. Other integer values are reserved for future use.

Jenkins & Stepanek Expires December 31, 2019 [Page 24]

Internet-Draft JSCalendar June 2019

4.4.2. freeBusyStatus

 Type: String (optional, default: "busy").

 Specifies how this property should be treated when calculating free-
 busy state. The value MUST be one of:

 o ""free"": The object should be ignored when calculating whether
 the user is busy.

 o ""busy"": The object should be included when calculating whether
 the user is busy.

4.4.3. privacy

 Type: String (optional, default: "public").

 Calendar objects are normally collected together and may be shared
 with other users. The privacy property allows the object owner to
 indicate that it should not be shared, or should only have the time
 information shared but the details withheld. Enforcement of the
 restrictions indicated by this property are up to the
 implementations.

 This property MUST NOT affect the information sent to scheduled
 participants; it is only interpreted when the object is shared as
 part of a shared calendar.

 The value MUST be either one of the following values, registered in a
 future RFC, or a vendor-specific value. Vendor specific values MUST
 be prefixed with a domain name controlled by the vendor, e.g.
 "example.com/topsecret". Any value the client or server doesn’t
 understand should be preserved but treated as equivalent to
 "private".

 o "public": The full details of the object are visible to those whom
 the object’s calendar is shared with.

 o "private": The details of the object are hidden; only the basic
 time and metadata is shared. The following properties MAY be
 shared, any other properties MUST NOT be shared:

 * @type

 * created

 * due

Jenkins & Stepanek Expires December 31, 2019 [Page 25]

Internet-Draft JSCalendar June 2019

 * duration

 * estimatedDuration

 * freeBusyStatus

 * privacy

 * recurrenceOverrides. Only patches whose keys are prefixed with
 one of the above properties are allowed to be shared.

 * sequence

 * showWithoutTime

 * start

 * timeZone

 * timeZones

 * uid

 * updated

 o "secret": The object is hidden completely (as though it did not
 exist) when the object is shared.

4.4.4. replyTo

 Type: String[String] (optional).

 Represents methods by which participants may submit their RSVP
 response to the organizer of the calendar object. The keys in the
 property value are the available methods and MUST only contain ASCII
 alphanumeric characters (A-Za-z0-9). The value is a URI to use that
 method. Future methods may be defined in future specifications; a
 calendar client MUST ignore any method it does not understand, but
 MUST preserve the method key and URI. This property MUST be omitted
 if no method is defined (rather than an empty object). If this
 property is set, the "participants" property of this calendar object
 MUST contain at least one participant.

 The following methods are defined:

 o "imip": The organizer accepts an iMIP [RFC6047] response at this
 email address. The value MUST be a "mailto:" URI.

Jenkins & Stepanek Expires December 31, 2019 [Page 26]

Internet-Draft JSCalendar June 2019

 o "web": Opening this URI in a web browser will provide the user
 with a page where they can submit a reply to the organizer.

 o "other": The organizer is identified by this URI but the method
 how to submit the RSVP is undefined.

4.4.5. participants

 Type: String[Participant] (optional).

 A map of participant identifiers to participants, describing their
 participation in the calendar object.

 If this property is set, then the "replyTo" property of this calendar
 object MUST define at least one reply method.

 A Participant object has the following properties:

 o name: String (optional). The display name of the participant
 (e.g. "Joe Bloggs").

 o email: String (optional). The email address for the participant.

 o sendTo: String[String]. Represents methods by which the
 participant may receive the invitation and updates to the calendar
 object.

 The keys in the property value are the available methods and MUST
 only contain ASCII alphanumeric characters (A-Za-z0-9). The value
 is a URI to use that method. Future methods may be defined in
 future specifications; a calendar client MUST ignore any method it
 does not understand, but MUST preserve the method key and URI.
 This property MUST be omitted if no method is defined (rather than
 an empty object).

 The following methods are defined:

 * "imip": The participant accepts an iMIP [RFC6047] request at
 this email address. The value MUST be a "mailto:" URI. It MAY
 be different from the value of the participant’s "email"
 property.

 * "other": The participant is identified by this URI but the
 method how to submit the invitation or update is undefined.

 o kind: String (optional). What kind of entity this participant is,
 if known.

Jenkins & Stepanek Expires December 31, 2019 [Page 27]

Internet-Draft JSCalendar June 2019

 This MUST be either one of the following values, registered in a
 future RFC, or a vendor-specific value. Any value the client or
 server doesn’t understand should be treated the same as if this
 property is omitted.

 * "individual": a single person

 * "group": a collection of people invited as a whole

 * "resource": a non-human resource, e.g. a projector

 * "location": a physical location involved in the calendar object
 that needs to be scheduled, e.g. a conference room.

 o roles: String[Boolean]. A set of roles that this participant
 fulfills.

 At least one role MUST be specified for the participant. The keys
 in the set MUST be either one of the following values, registered
 in a future RFC, or a vendor-specific value:

 * "owner": The participant is an owner of the object.

 * "attendee": The participant is an attendee of the calendar
 object.

 * "chair": The participant is in charge of the calendar object
 when it occurs.

 The value for each key in the set MUST be "true". Roles that are
 unknown to the implementation MUST be preserved and MAY be
 ignored.

 o locationId: String (optional). The location at which this
 participant is expected to be attending.

 If the value does not correspond to any location id in the
 "locations" property of the instance, this MUST be treated the
 same as if the participant’s locationId were omitted.

 o participationStatus: String (optional, default: "needs-action").
 The participation status, if any, of this participant.

 The value MUST be either one of the following values, registered
 in a future RFC, or a vendor-specific value:

 * "needs-action": No status yet set by the participant.

Jenkins & Stepanek Expires December 31, 2019 [Page 28]

Internet-Draft JSCalendar June 2019

 * "accepted": The invited participant will participate.

 * "declined": The invited participant will not participate.

 * "tentative": The invited participant may participate.

 o attendance: String (optional, default: "required"). The required
 attendance of this participant.

 The value MUST be either one of the following values, registered
 in a future RFC, or a vendor-specific value. Any value the client
 or server doesn’t understand should be treated the same as
 "required".

 * "none": Indicates a participant who is copied for information
 purposes only.

 * "optional": Indicates a participant whose attendance is
 optional.

 * "required": Indicates a participant whose attendance is
 required.

 o expectReply: Boolean (optional, default: "false"). If true, the
 organizer is expecting the participant to notify them of their
 status.

 o scheduleSequence: Number (optional, default: "0"). The sequence
 number of the last response from the participant. If defined,
 this MUST be a non-negative integer.

 This can be used to determine whether the participant has sent a
 new RSVP following significant changes to the calendar object, and
 to determine if future responses are responding to a current or
 older view of the data.

 o scheduleUpdated: UTCDateTime (optional). The "updated" property
 of the last iMIP response from the participant.

 This can be compared to the "updated" property timestamp in future
 iMIP responses to determine if the response is older or newer than
 the current data.

 o invitedBy: String (optional). The participant id of the
 participant who invited this one, if known.

 o delegatedTo: String[Boolean] (optional). A set of participant ids
 that this participant has delegated their participation to. Each

Jenkins & Stepanek Expires December 31, 2019 [Page 29]

Internet-Draft JSCalendar June 2019

 key in the set MUST be the identifier of a participant. The value
 for each key in the set MUST be "true". This MUST be omitted if
 none (rather than an empty set).

 o delegatedFrom: String[Boolean] (optional). A set of participant
 ids that this participant is acting as a delegate for. Each key
 in the set MUST be the identifier of a participant. The value for
 each key in the set MUST be "true". This MUST be omitted if none
 (rather than an empty set).

 o memberOf: String[Boolean] (optional). A set of group participants
 that were invited to this calendar object, which caused this
 participant to be invited due to their membership of the group(s).
 Each key in the set MUST be the identifier of a participant. The
 value for each key in the set MUST be "true". This MUST be
 omitted if none (rather than an empty set).

 o linkIds: String[Boolean] (optional). A set of links to more
 information about this participant, for example in vCard format.
 The keys in the set MUST be the identifier of a Link object in the
 calendar object’s "links" property. The value for each key in the
 set MUST be "true". This MUST be omitted if none (rather than an
 empty set).

4.5. Alerts properties

4.5.1. useDefaultAlerts

 Type: Boolean (optional, default: "false").

 If "true", use the user’s default alerts and ignore the value of the
 "alerts" property. Fetching user defaults is dependent on the API
 from which this JSCalendar object is being fetched, and is not
 defined in this specification. If an implementation cannot determine
 the user’s default alerts, or none are set, it MUST process the
 alerts property as if useDefaultAlerts is set to "false".

4.5.2. alerts

 Type: String[Alert] (optional).

 A map of alert identifiers to Alert objects, representing alerts/
 reminders to display or send the user for this calendar object.

 An Alert Object has the following properties:

 o trigger: OffsetTrigger|UnknownTrigger. Defines when to trigger
 the alert.

Jenkins & Stepanek Expires December 31, 2019 [Page 30]

Internet-Draft JSCalendar June 2019

 An *OffsetTrigger* object has the following properties:

 * type: String (mandatory). The value of this property MUST be
 "offset".

 * offset: SignedDuration (mandatory). Defines to trigger the
 alert relative to the time property defined in the "relativeTo"
 property. If the calendar object does not define a time zone,
 the user’s default time zone SHOULD be used when determining
 the offset, if known. Otherwise, the time zone to use is
 implementation specific.

 * relativeTo: String (optional, default: "start"). Specifies the
 time property which the alert offset is relative to. The value
 MUST be one of:

 + "start": triggers the alert relative to the start of the
 calendar object

 + "end": triggers the alert relative to the end/due time of
 the calendar object

 An *UnknownTrigger* object is an object that contains a *type*
 property whose value is not "offset", plus zero or more other
 properties. This is for compatibility with client extensions and
 future RFCs. Implementations SHOULD NOT trigger for trigger types
 they do not understand, but MUST preserve them.

 o acknowledged: UTCDateTime (optional).

 When the user has permanently dismissed the alert the client MUST
 set this to the current time in UTC. Other clients which sync
 this property can then automatically dismiss or suppress duplicate
 alerts (alerts with the same alert id that triggered on or before
 this date-time).

 For a recurring calendar object, the "acknowledged" property of
 the parent object MUST be updated, unless the alert is already
 overridden in the "recurrenceOverrides" property.

 o snoozed: UTCDateTime (optional).

 If the user temporarily dismisses the alert, this is the UTC date-
 time after which it should trigger again. Setting this property
 on an instance of a recurring calendar object MUST update the
 alarm on the top-level object, unless the respective instance
 already is defined in "recurrenceOverrides". It MUST NOT generate
 an override for the sole use of snoozing an alarm.

Jenkins & Stepanek Expires December 31, 2019 [Page 31]

Internet-Draft JSCalendar June 2019

 o action: String (optional, default: "display"). Describes how to
 alert the user.

 The value MUST be at most one of the following values, registered
 in a future RFC, or a vendor-specific value:

 * "display": The alert should be displayed as appropriate for the
 current device and user context.

 * "email": The alert should trigger an email sent out to the
 user, notifying about the alert. This action is typically only
 appropriate for server implementations.

4.6. Multilingual properties

4.6.1. localizations

 Type: String[PatchObject] (optional).

 A map of [RFC5646] language tags to patch objects, which localize the
 calendar object into the locale of the respective language tag.

 See the description of PatchObject (Section 3.2.4) for the structure
 of the PatchObject. The patches are applied to the top-level object.
 In addition to all the restrictions on patches specified there, the
 pointer also MUST NOT start with one of the following prefixes; any
 patch with a such a key MUST be ignored:

 o @type

 o due

 o duration

 o freeBusyStatus

 o localization

 o method

 o participants

 o prodId

 o progress

 o relatedTo

Jenkins & Stepanek Expires December 31, 2019 [Page 32]

Internet-Draft JSCalendar June 2019

 o sequence

 o start

 o status

 o timeZone

 o uid

 o useDefaultAlerts

 Note that this specification does not define how to maintain validity
 of localized content. For example, a client application changing a
 JSCalendar object’s title property might also need to update any
 localizations of this property. Client implementations SHOULD
 provide the means to manage localizations, but how to achieve this is
 specific to the application’s workflow and requirements.

4.7. Time zone properties

4.7.1. timeZones

 Type: String[TimeZone] (optional).

 Maps identifiers of custom time zones to their time zone definition.
 The following restrictions apply for each key in the map:

 o It MUST start with the "/" character (ASCII decimal 47; also see
 sections 3.2.19 of [RFC5545] and 3.6. of [RFC7808] for discussion
 of the forward slash character in time zone identifiers).

 o It MUST be a valid "paramtext" value as specified in section 3.1.
 of [RFC5545].

 o At least one other property in the same JSCalendar object MUST
 reference a time zone using this identifier (i.e. orphaned time
 zones are not allowed).

 An identifier need only be unique to this JSCalendar object.

 A TimeZone object maps a VTIMEZONE component from iCalendar
 ([RFC5545]). A valid time zone MUST define at least one transition
 rule in the "standard" or "daylight" property. Its properties are:

 o tzId: String (mandatory). The TZID property from iCalendar.

Jenkins & Stepanek Expires December 31, 2019 [Page 33]

Internet-Draft JSCalendar June 2019

 o lastModified: UTCDateTime (optional). The LAST-MODIFIED property
 from iCalendar.

 o url: String (optional). The TZURL property from iCalendar.

 o validUntil: UTCDateTime (optional). The TZUNTIL property from
 iCalendar specified in [RFC7808].

 o aliases: String[Boolean] (optional). Maps the TZID-ALIAS-OF
 properties from iCalendar specified in [RFC7808] to a JSON set of
 aliases. The set is represented as an object, with the keys being
 the aliases. The value for each key in the set MUST be "true".

 o standard: TimeZoneRule[] (optional). The STANDARD sub-components
 from iCalendar. The order MUST be preserved during conversion.

 o daylight: TimeZoneRule[] (optional). The DAYLIGHT sub-components
 from iCalendar. The order MUST be preserved during conversion.

 A TimeZoneRule object maps a STANDARD or DAYLIGHT sub-component from
 iCalendar, with the restriction that at most one recurrence rule is
 allowed per rule. It has the following properties:

 o start: LocalDateTime (mandatory). The DTSTART property from
 iCalendar.

 o offsetTo: String (mandatory). The TZOFFSETTO property from
 iCalendar.

 o offsetFrom: String (mandatory). The TZOFFSETFROM property from
 iCalendar.

 o recurrenceRule: RecurrenceRule (optional). The RRULE property
 mapped as specified in Section 4.3.1. During recurrence rule
 evaluation, the "until" property value MUST be interpreted as a
 local time in the UTC time zone.

 o recurrenceDates: LocalDateTime[Boolean] (optional). Maps the
 RDATE properties from iCalendar to a JSON set. The set is
 represented as an object, with the keys being the recurrence
 dates. The value for each key in the set MUST be "true".

 o names: String[Boolean] (optional). Maps the TZNAME properties
 from iCalendar to a JSON set. The set is represented as an
 object, with the keys being the names. The value for each key in
 the set MUST be "true".

Jenkins & Stepanek Expires December 31, 2019 [Page 34]

Internet-Draft JSCalendar June 2019

 o comments: String[] (optional). Maps the COMMENT properties from
 iCalendar. The order MUST be preserved during conversion.

5. Type-specific JSCalendar properties

5.1. JSEvent properties

 In addition to the common JSCalendar object properties (Section 4) a
 JSEvent has the following properties:

5.1.1. start

 Type: LocalDateTime (mandatory).

 The date/time the event would start in the event’s time zone.

5.1.2. timeZone

 Type: String|null (optional, default: "null").

 Identifies the time zone the event is scheduled in, or "null" for
 floating time. If omitted, this MUST be presumed to be "null" (i.e.
 floating time). Also see Section 3.2.6.

5.1.3. duration

 Type: Duration (optional, default: "PT0S").

 The zero or positive duration of the event in the event’s start time
 zone. The same rules as for the iCalendar DURATION value type
 ([RFC5545]) apply: The duration of a week or a day in hours/minutes/
 seconds may vary if it overlaps a period of discontinuity in the
 event’s time zone, for example a change from standard time to
 daylight-savings time. Leap seconds MUST NOT be considered when
 computing an exact duration. When computing an exact duration, the
 greatest order time components MUST be added first, that is, the
 number of days MUST be added first, followed by the number of hours,
 number of minutes, and number of seconds. Fractional seconds MUST be
 added last.

 A JSEvent MAY involve start and end locations that are in different
 time zones (e.g. a trans-continental flight). This can be expressed
 using the "relativeTo" and "timeZone" properties of the JSEvent’s
 "location" objects.

Jenkins & Stepanek Expires December 31, 2019 [Page 35]

Internet-Draft JSCalendar June 2019

5.1.4. status

 Type: String (optional, default: "confirmed").

 The scheduling status (Section 4.4) of a JSEvent. If set, it MUST be
 one of:

 o "confirmed": Indicates the event is definite.

 o "cancelled": Indicates the event is cancelled.

 o "tentative": Indicates the event is tentative.

5.2. JSTask properties

 In addition to the common JSCalendar object properties (Section 4) a
 JSTask has the following properties:

5.2.1. due

 Type: LocalDateTime (optional).

 The date/time the task is due in the task’s time zone.

5.2.2. start

 Type: LocalDateTime (optional).

 The date/time the task should start in the task’s time zone.

5.2.3. timeZone

 Type: String|null (optional, default: "null").

 Identifies the time zone the task is scheduled in, or "null" for
 floating time. If omitted, this MUST be presumed to be "null" (i.e.
 floating time). Also see Section 3.2.6.

5.2.4. estimatedDuration

 Type: Duration (optional).

 Specifies the estimated positive duration of time the task takes to
 complete.

Jenkins & Stepanek Expires December 31, 2019 [Page 36]

Internet-Draft JSCalendar June 2019

5.2.5. statusUpdatedAt

 Type: UTCDateTime (optional).

 Specifies the date/time the task status properties was last updated.

 If the task is recurring and has future instances, a client may want
 to keep track of the last status update timestamp of a specific task
 recurrence, but leave other instances unchanged. One way to achieve
 this is by overriding the statusUpdatedAt property in the task
 "recurrenceOverrides" property. However, this could produce a long
 list of timestamps for regularly recurring tasks. An alternative
 approach is to split the JSTask into a current, single instance of
 JSTask with this instance status update time and a future recurring
 instance. Also see Section 4.1.3 on splitting.

5.2.6. progress

 In addition to the common properties of a Participant object
 (Section 4.4.5), a Participant within a JSTask supports the following
 property:

 o progress: ParticipantProgress (optional). The progress of the
 participant for this task, if known. This property MUST NOT be
 set if the "participationStatus" of this participant is any other
 value but "accepted".

 A ParticipantProgress object has the following properties:

 o status: String (mandatory). Describes the completion status of
 the participant’s progress.

 The value MUST be at most one of the following values, registered
 in a future RFC, or a vendor-specific value:

 * "completed": The participant completed their task.

 * "in-process": The participant has started this task.

 * "failed": The participant failed to complete their task.

 o timestamp: UTCDateTime (mandatory). Describes the last time when
 the participant progress got updated.

Jenkins & Stepanek Expires December 31, 2019 [Page 37]

Internet-Draft JSCalendar June 2019

5.2.7. status

 Type: String (optional).

 Defines the overall status of this task. If omitted, the default
 status (Section 4.4) of a JSTask is defined as follows (in order of
 evaluation):

 o "completed": if the "status" property value of all participant
 progresses is "completed".

 o "failed": if at least one "status" property value of the
 participant progresses is "failed".

 o "in-process": if at least one "status" property value of the
 participant progresses is "in-process".

 o "needs-action": If none of the other criteria match.

 If set, it MUST be one of:

 o "needs-action": Indicates the task needs action.

 o "completed": Indicates the task is completed.

 o "in-process": Indicates the task is in process.

 o "cancelled": Indicates the task is cancelled.

 o "pending": Indicates the task has been created and accepted for
 processing, but not yet started.

 o "failed": Indicates the task failed.

5.3. JSGroup properties

 JSGroup supports the following JSCalendar properties (Section 4):

 o @type

 o uid

 o created

 o updated

 o categories

Jenkins & Stepanek Expires December 31, 2019 [Page 38]

Internet-Draft JSCalendar June 2019

 o keywords

 o name

 o description

 o color

 o links

 as well as the following JSGroup-specific properties:

5.3.1. entries

 Type: String[JSTask|JSEvent] (mandatory).

 A collection of group members. This is represented as a map of the
 "uid" property value to the JSCalendar object member having that uid.
 Implementations MUST ignore entries of unknown type.

5.3.2. source

 Type: String (optional).

 The source from which updated versions of this group may be retrieved
 from. The value MUST be a URI.

6. JSCalendar object examples

 The following examples illustrate several aspects of the JSCalendar
 data model and format. The examples may omit mandatory or additional
 properties, which is indicated by a placeholder property with key
 "...". While most of the examples use calendar event objects, they
 are also illustrative for tasks.

6.1. Simple event

 This example illustrates a simple one-time event. It specifies a
 one-time event that begins on January 15, 2018 at 1pm New York local
 time and ends after 1 hour.

Jenkins & Stepanek Expires December 31, 2019 [Page 39]

Internet-Draft JSCalendar June 2019

 {
 "@type": "jsevent",
 "uid": "2a358cee-6489-4f14-a57f-c104db4dc2f1",
 "updated": "2018-01-15T18:00:00Z",
 "title": "Some event",
 "start": "2018-01-15T13:00:00",
 "timeZone": "America/New_York",
 "duration": "PT1H"
 }

6.2. Simple task

 This example illustrates a simple task for a plain to-do item.

 {
 "@type": "jstask",
 "uid": "2a358cee-6489-4f14-a57f-c104db4dc2f2",
 "updated": "2018-01-15T18:00:00Z",
 "title": "Do something"
 }

6.3. Simple group

 This example illustrates a simple calendar object group that contains
 an event and a task.

Jenkins & Stepanek Expires December 31, 2019 [Page 40]

Internet-Draft JSCalendar June 2019

 {
 "@type": "jsgroup",
 "uid": "2a358cee-6489-4f14-a57f-c104db4dc343",
 "updated": "2018-01-15T18:00:00Z",
 "name": "A simple group",
 "entries": [
 {
 "@type": "jsevent",
 "uid": "2a358cee-6489-4f14-a57f-c104db4dc2f1",
 "updated": "2018-01-15T18:00:00Z",
 "title": "Some event",
 "start": "2018-01-15T13:00:00",
 "timeZone": "America/New_York",
 "duration": "PT1H"
 },
 {
 "@type": "jstask",
 "uid": "2a358cee-6489-4f14-a57f-c104db4dc2f2",
 "updated": "2018-01-15T18:00:00Z",
 "title": "Do something"
 }
]
 }

6.4. All-day event

 This example illustrates an event for an international holiday. It
 specifies an all-day event on April 1 that occurs every year since
 the year 1900.

 {
 "...": "",
 "title": "April Fool’s Day",
 "showWithoutTime": true,
 "start": "1900-04-01T00:00:00",
 "duration": "P1D",
 "recurrenceRule": {
 "frequency": "yearly"
 }
 }

6.5. Task with a due date

 This example illustrates a task with a due date. It is a reminder to
 buy groceries before 6pm Vienna local time on January 19, 2018. The
 calendar user expects to need 1 hour for shopping.

Jenkins & Stepanek Expires December 31, 2019 [Page 41]

Internet-Draft JSCalendar June 2019

 {
 "...": "",
 "title": "Buy groceries",
 "due": "2018-01-19T18:00:00",
 "timeZone": "Europe/Vienna",
 "estimatedDuration": "PT1H"
 }

6.6. Event with end time-zone

 This example illustrates the use of end time-zones by use of an
 international flight. The flight starts on April 1, 2018 at 9am in
 Berlin local time. The duration of the flight is scheduled at 10
 hours 30 minutes. The time at the flights destination is in the same
 time-zone as Tokyo. Calendar clients could use the end time-zone to
 display the arrival time in Tokyo local time and highlight the time-
 zone difference of the flight. The location names can serve as input
 for navigation systems.

 {
 "...": "",
 "title": "Flight XY51 to Tokyo",
 "start": "2018-04-01T09:00:00",
 "timeZone": "Europe/Berlin",
 "duration": "PT10H30M",
 "locations": {
 "2a358cee-6489-4f14-a57f-c104db4dc2f1": {
 "rel": "start",
 "name": "Frankfurt Airport (FRA)"
 },
 "c2c7ac67-dc13-411e-a7d4-0780fb61fb08": {
 "rel": "end",
 "name": "Narita International Airport (NRT)",
 "timeZone": "Asia/Tokyo"
 }
 }
 }

6.7. Floating-time event (with recurrence)

 This example illustrates the use of floating-time. Since January 1,
 2018, a calendar user blocks 30 minutes every day to practice Yoga at
 7am local time, in whatever time-zone the user is located on that
 date.

Jenkins & Stepanek Expires December 31, 2019 [Page 42]

Internet-Draft JSCalendar June 2019

 {
 "...": "",
 "title": "Yoga",
 "start": "2018-01-01T07:00:00",
 "duration": "PT30M",
 "recurrenceRule": {
 "frequency": "daily"
 }
 }

6.8. Event with multiple locations and localization

 This example illustrates an event that happens at both a physical and
 a virtual location. Fans can see a live convert on premises or
 online. The event title and descriptions are localized.

 {
 "...": "",
 "title": "Live from Music Bowl: The Band",
 "description": "Go see the biggest music event ever!",
 "locale": "en",
 "start": "2018-07-04T17:00:00",
 "timeZone": "America/New_York",
 "duration": "PT3H",
 "locations": {
 "c0503d30-8c50-4372-87b5-7657e8e0fedd": {
 "name": "The Music Bowl",
 "description": "Music Bowl, Central Park, New York",
 "coordinates": "geo:40.7829,73.9654"
 }
 },
 "virtualLocations": {
 "6f3696c6-1e07-47d0-9ce1-f50014b0041a": {
 "name": "Free live Stream from Music Bowl",
 "uri": "https://stream.example.com/the_band_2018"
 }
 },
 "localizations": {
 "de": {
 "title": "Live von der Music Bowl: The Band!",
 "description": "Schau dir das groesste Musikereignis an!",
 "virtualLocations/6f3696c6-1e07-47d0-9ce1-f50014b0041a/name":
 "Gratis Live-Stream aus der Music Bowl"
 }
 }
 }

Jenkins & Stepanek Expires December 31, 2019 [Page 43]

Internet-Draft JSCalendar June 2019

6.9. Recurring event with overrides

 This example illustrates the use of recurrence overrides. A math
 course at a University is held for the first time on January 8, 2018
 at 9am London time and occurs every week until June 25, 2018. Each
 lecture lasts for one hour and 30 minutes and is located at the
 Mathematics department. This event has exceptional occurrences: at
 the last occurrence of the course is an exam, which lasts for 2 hours
 and starts at 10am. Also, the location of the exam differs from the
 usual location. On April 2 no course is held. On January 5 at 2pm
 is an optional introduction course, that occurs before the first
 regular lecture.

Jenkins & Stepanek Expires December 31, 2019 [Page 44]

Internet-Draft JSCalendar June 2019

 {
 "...": "",
 "title": "Calculus I",
 "start": "2018-01-08T09:00:00",
 "timeZone": "Europe/London",
 "duration": "PT1H30M",
 "locations": {
 "2a358cee-6489-4f14-a57f-c104db4dc2f1": {
 "title": "Math lab room 1",
 "description": "Math Lab I, Department of Mathematics"
 }
 },
 "recurrenceRule": {
 "frequency": "weekly",
 "until": "2018-06-25T09:00:00"
 },
 "recurrenceOverrides": {
 "2018-01-05T14:00:00": {
 "title": "Introduction to Calculus I (optional)"
 },
 "2018-04-02T09:00:00": {
 "excluded": "true"
 },
 "2018-06-25T09:00:00": {
 "title": "Calculus I Exam",
 "start": "2018-06-25T10:00:00",
 "duration": "PT2H",
 "locations": {
 "2a358cee-6489-4f14-a57f-c104db4dc2f1": {
 "title": "Big Auditorium",
 "description": "Big Auditorium, Other Road"
 }
 }
 }
 }
 }

6.10. Recurring event with participants

 This example illustrates scheduled events. A team meeting occurs
 every week since January 8, 2018 at 9am Johannesburg time. The event
 owner also chairs the event. Participants meet in a virtual meeting
 room. An attendee has accepted the invitation, but on March 8, 2018
 he is unavailable and declined participation for this occurrence.

 {
 "...": "",
 "title": "FooBar team meeting",

Jenkins & Stepanek Expires December 31, 2019 [Page 45]

Internet-Draft JSCalendar June 2019

 "start": "2018-01-08T09:00:00",
 "timeZone": "Africa/Johannesburg",
 "duration": "PT1H",
 "virtualLocations": {
 "2a358cee-6489-4f14-a57f-c104db4dc2f1": {
 "name": "ChatMe meeting room",
 "uri": "https://chatme.example.com?id=1234567"
 }
 },
 "recurrenceRule": {
 "frequency": "weekly"
 },
 "replyTo": {
 "imip": "mailto:6489-4f14-a57f-c1@schedule.example.com"
 },
 "participants": {
 "dG9tQGZvb2Jhci5leGFtcGxlLmNvbQ": {
 "name": "Tom Tool",
 "email": "tom@foobar.example.com",
 "sendTo": {
 "imip": "mailto:6489-4f14-a57f-c1@calendar.example.com"
 },
 "participationStatus": "accepted",
 "roles": {
 "attendee": true
 }
 },
 "em9lQGZvb2Jhci5leGFtcGxlLmNvbQ": {
 "name": "Zoe Zelda",
 "email": "zoe@foobar.example.com",
 "sendTo": {
 "imip": "mailto:zoe@foobar.example.com"
 },
 "participationStatus": "accepted",
 "roles": {
 "owner": true,
 "attendee": true,
 "chair": true
 }
 },
 "...": ""
 },
 "recurrenceOverrides": {
 "2018-03-08T09:00:00": {
 "participants/dG9tQGZvb2Jhci5leGFtcGxlLmNvbQ/participationStatus":
 "declined"
 }
 }

Jenkins & Stepanek Expires December 31, 2019 [Page 46]

Internet-Draft JSCalendar June 2019

 }

7. Security Considerations

 The use of JSON as a format does have its own inherent security risks
 as discussed in Section 12 of [RFC8259]. Even though JSON is
 considered a safe subset of JavaScript, it should be kept in mind
 that a flaw in the parser processing JSON could still impose a
 threat, which doesn’t arise with conventional iCalendar data.

 With this in mind, a parser for JSON data aware of the security
 implications should be used for the format described in this
 document. For example, the use of JavaScript’s "eval()" function is
 considered an unacceptable security risk, as described in Section 12
 of[RFC8259]. A native parser with full awareness of the JSON format
 should be preferred.

 Several JSCalendar properties contain URIs as values, and processing
 these properties requires extra care. Section 7 of [RFC3986]
 discusses security risk related to URIs.

8. IANA Considerations

 This document defines a MIME media type for use with JSCalendar data
 formatted in JSON.

 Type name: application

 Subtype name: jscalendar+json

 Required parameters: type

 The "type" parameter conveys the type of the JSCalendar data in
 the body part, with the value being one of "jsevent", "jstask", or
 "jsgroup". The parameter MUST NOT occur more than once. It MUST
 match the value of the "@type" property of the JSON-formatted
 JSCalendar object in the body.

 Optional parameters: none

 Encoding considerations: Same as encoding considerations of
 application/json as specified in RFC8529, Section 11 [RFC8259].

 Security considerations: See Section 7 of this document.

 Interoperability considerations: This media type provides an
 alternative to iCalendar, jCal and proprietary JSON-based
 calendaring data formats.

Jenkins & Stepanek Expires December 31, 2019 [Page 47]

Internet-Draft JSCalendar June 2019

 Published specification: This specification.

 Applications that use this media type: Applications that currently
 make use of the text/calendar and application/calendar+json media
 types can use this as an alternative. Similarly, applications
 that use the application/json media type to transfer calendaring
 data can use this to further specify the content.

 Fragment identifier considerations: N/A

 Additional information:

 Magic number(s): N/A

 File extensions(s): N/A

 Macintosh file type code(s): N/A

 Person & email address to contact for further
 information:
 calext@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See the "Author’s Address" section of this document.

 Change controller: IETF

9. Acknowledgments

 The authors would like to thank the members of CalConnect for their
 valuable contributions. This specification originated from the work
 of the API technical committee of CalConnect, the Calendaring and
 Scheduling Consortium.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Jenkins & Stepanek Expires December 31, 2019 [Page 48]

Internet-Draft JSCalendar June 2019

 [RFC2392] Levinson, E., "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2392, DOI 10.17487/RFC2392, August 1998,
 <https://www.rfc-editor.org/info/rfc2392>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC4791] Daboo, C., Desruisseaux, B., and L. Dusseault,
 "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
 DOI 10.17487/RFC4791, March 2007,
 <https://www.rfc-editor.org/info/rfc4791>.

 [RFC5545] Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <https://www.rfc-editor.org/info/rfc5545>.

 [RFC5546] Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <https://www.rfc-editor.org/info/rfc5546>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC5870] Mayrhofer, A. and C. Spanring, "A Uniform Resource
 Identifier for Geographic Locations (’geo’ URI)",
 RFC 5870, DOI 10.17487/RFC5870, June 2010,
 <https://www.rfc-editor.org/info/rfc5870>.

Jenkins & Stepanek Expires December 31, 2019 [Page 49]

Internet-Draft JSCalendar June 2019

 [RFC6047] Melnikov, A., Ed., "iCalendar Message-Based
 Interoperability Protocol (iMIP)", RFC 6047,
 DOI 10.17487/RFC6047, December 2010,
 <https://www.rfc-editor.org/info/rfc6047>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC7265] Kewisch, P., Daboo, C., and M. Douglass, "jCal: The JSON
 Format for iCalendar", RFC 7265, DOI 10.17487/RFC7265, May
 2014, <https://www.rfc-editor.org/info/rfc7265>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC7529] Daboo, C. and G. Yakushev, "Non-Gregorian Recurrence Rules
 in the Internet Calendaring and Scheduling Core Object
 Specification (iCalendar)", RFC 7529,
 DOI 10.17487/RFC7529, May 2015,
 <https://www.rfc-editor.org/info/rfc7529>.

 [RFC7808] Douglass, M. and C. Daboo, "Time Zone Data Distribution
 Service", RFC 7808, DOI 10.17487/RFC7808, March 2016,
 <https://www.rfc-editor.org/info/rfc7808>.

 [RFC7986] Daboo, C., "New Properties for iCalendar", RFC 7986,
 DOI 10.17487/RFC7986, October 2016,
 <https://www.rfc-editor.org/info/rfc7986>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

Jenkins & Stepanek Expires December 31, 2019 [Page 50]

Internet-Draft JSCalendar June 2019

10.2. Informative References

 [MIME] "IANA Media Types", <https://www.iana.org/assignments/
 media-types/media-types.xhtml>.

10.3. URIs

 [1] https://www.iana.org/time-zones

 [2] https://www.iana.org/assignments/link-relations/link-
 relations.xhtml

 [3] https://www.w3.org/TR/2011/REC-css3-color-20110607/#svg-color

Authors’ Addresses

 Neil Jenkins
 FastMail
 PO Box 234
 Collins St West
 Melbourne VIC 8007
 Australia

 Email: neilj@fastmailteam.com
 URI: https://www.fastmail.com

 Robert Stepanek
 FastMail
 PO Box 234
 Collins St West
 Melbourne VIC 8007
 Australia

 Email: rsto@fastmailteam.com
 URI: https://www.fastmail.com

Jenkins & Stepanek Expires December 31, 2019 [Page 51]

