
HTTP R. Polli
Internet-Draft Team Digitale, Italian Government
Obsoletes: 3230 (if approved) L. Pardue
Intended status: Standards Track Cloudflare
Expires: 11 January 2024 10 July 2023

 Digest Fields
 draft-ietf-httpbis-digest-headers-13

Abstract

 This document defines HTTP fields that support integrity digests.
 The Content-Digest field can be used for the integrity of HTTP
 message content. The Repr-Digest field can be used for the integrity
 of HTTP representations. Want-Content-Digest and Want-Repr-Digest
 can be used to indicate a sender’s interest and preferences for
 receiving the respective Integrity fields.

 This document obsoletes RFC 3230 and the Digest and Want-Digest HTTP
 fields.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-ietf-httpbis-digest-headers/.

 Discussion of this document takes place on the HTTP Working Group
 mailing list (mailto:ietf-http-wg@w3.org), which is archived at
 https://lists.w3.org/Archives/Public/ietf-http-wg/. Working Group
 information can be found at https://httpwg.org/.

 Source for this draft and an issue tracker can be found at
 https://github.com/httpwg/http-extensions/labels/digest-headers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Polli & Pardue Expires 11 January 2024 [Page 1]

Internet-Draft Digest Fields July 2023

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 11 January 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Document Structure 4
 1.2. Concept Overview . 5
 1.3. Obsoleting RFC 3230 6
 1.4. Notational Conventions 6
 2. The Content-Digest Field 7
 3. The Repr-Digest Field . 8
 3.1. Using Repr-Digest in State-Changing Requests 10
 3.2. Repr-Digest and Content-Location in Responses 10
 4. Integrity preference fields 10
 5. Hash Algorithm Considerations and Registration 11
 6. Security Considerations 13
 6.1. HTTP Messages Are Not Protected In Full 13
 6.2. End-to-End Integrity 13
 6.3. Usage in Signatures 14
 6.4. Usage in Trailer Fields 14
 6.5. Variations Within Content Encoding 15
 6.6. Algorithm Agility . 15
 6.7. Resource exhaustion 16
 7. IANA Considerations . 16
 7.1. HTTP Field Name Registration 16
 7.2. Establish the Hash Algorithms for HTTP Digest Fields
 Registry . 17
 7.3. Deprecate the Hypertext Transfer Protocol (HTTP) Digest
 Algorithm Values Registry 19

Polli & Pardue Expires 11 January 2024 [Page 2]

Internet-Draft Digest Fields July 2023

 8. References . 19
 8.1. Normative References 19
 8.2. Informative References 20
 Appendix A. Resource Representation and Representation Data . . 22
 Appendix B. Examples of Unsolicited Digest 25
 B.1. Server Returns Full Representation Data 25
 B.2. Server Returns No Representation Data 26
 B.3. Server Returns Partial Representation Data 27
 B.4. Client and Server Provide Full Representation Data . . . 28
 B.5. Client Provides Full Representation Data, Server Provides
 No Representation Data 29
 B.6. Client and Server Provide Full Representation Data . . . 29
 B.7. POST Response does not Reference the Request URI 30
 B.8. POST Response Describes the Request Status 31
 B.9. Digest with PATCH . 32
 B.10. Error responses . 32
 B.11. Use with Trailer Fields and Transfer Coding 33
 Appendix C. Examples of Want-Repr-Digest Solicited Digest . . . 34
 C.1. Server Selects Client’s Least Preferred Algorithm 34
 C.2. Server Selects Algorithm Unsupported by Client 35
 C.3. Server Does Not Support Client Algorithm and Returns an
 Error . 35
 Appendix D. Sample Digest Values 36
 Appendix E. Migrating from RFC 3230 37
 Acknowledgements . 38
 Code Samples . 38
 Changes . 39
 Since draft-ietf-httpbis-digest-headers-12 39
 Since draft-ietf-httpbis-digest-headers-11 40
 Since draft-ietf-httpbis-digest-headers-10 40
 Since draft-ietf-httpbis-digest-headers-09 40
 Since draft-ietf-httpbis-digest-headers-08 40
 Since draft-ietf-httpbis-digest-headers-07 40
 Since draft-ietf-httpbis-digest-headers-06 40
 Since draft-ietf-httpbis-digest-headers-05 40
 Since draft-ietf-httpbis-digest-headers-04 41
 Since draft-ietf-httpbis-digest-headers-03 41
 Since draft-ietf-httpbis-digest-headers-02 41
 Since draft-ietf-httpbis-digest-headers-01 41
 Since draft-ietf-httpbis-digest-headers-00 42
 Authors’ Addresses . 42

Polli & Pardue Expires 11 January 2024 [Page 3]

Internet-Draft Digest Fields July 2023

1. Introduction

 HTTP does not define the means to protect the data integrity of
 content or representations. When HTTP messages are transferred
 between endpoints, lower layer features or properties such as TCP
 checksums or TLS records [TLS] can provide some integrity protection.
 However, transport-oriented integrity provides a limited utility
 because it is opaque to the application layer and only covers the
 extent of a single connection. HTTP messages often travel over a
 chain of separate connections. In between connections there is a
 possibility for data corruption. An HTTP integrity mechanism can
 provide the means for endpoints, or applications using HTTP, to
 detect data corruption and make a choice about how to act on it. An
 example use case is to aid fault detection and diagnosis across
 system boundaries.

 This document defines two digest integrity mechanisms for HTTP.
 First, content integrity, which acts on conveyed content (Section 6.4
 of [HTTP]). Second, representation data integrity, which acts on
 representation data (Section 8.1 of [HTTP]). This supports advanced
 use cases such as validating the integrity of a resource that was
 reconstructed from parts retrieved using multiple requests or
 connections.

 This document obsoletes RFC 3230 and therefore the Digest and Want-
 Digest HTTP fields; see Section 1.3.

1.1. Document Structure

 This document is structured as follows:

 * New request and response header and trailer field definitions.

 - Section 2 (Content-Digest),

 - Section 3 (Repr-Digest), and

 - Section 4 (Want-Content-Digest and Want-Repr-Digest).

 * Considerations specific to representation data integrity.

 - Section 3.1 (State-changing requests),

 - Section 3.2 (Content-Location),

 - Appendix A contains worked examples of Representation data in
 message exchanges, and

Polli & Pardue Expires 11 January 2024 [Page 4]

Internet-Draft Digest Fields July 2023

 - Appendix B and Appendix C contain worked examples of Repr-
 Digest and Want-Repr-Digest fields in message exchanges.

 * Section 5 presents hash algorithm considerations and defines
 registration procedures for future entries.

1.2. Concept Overview

 The HTTP fields defined in this document can be used for HTTP
 integrity. Senders choose a hashing algorithm and calculate a digest
 from an input related to the HTTP message. The algorithm identifier
 and digest are transmitted in an HTTP field. Receivers can validate
 the digest for integrity purposes. Hashing algorithms are registered
 in the "Hash Algorithms for HTTP Digest Fields" registry (see
 Section 7.2).

 Selecting the data on which digests are calculated depends on the use
 case of the HTTP messages. This document provides different fields
 for HTTP representation data and HTTP content.

 There are use cases where a simple digest of the HTTP content bytes
 is required. The Content-Digest request and response header and
 trailer field is defined to support digests of content (Section 6.4
 of [HTTP]); see Section 2.

 For more advanced use cases, the Repr-Digest request and response
 header and trailer field (Section 3) is defined. It contains a
 digest value computed by applying a hashing algorithm to selected
 representation data (Section 8.1 of [HTTP]). Basing Repr-Digest on
 the selected representation makes it straightforward to apply it to
 use cases where the message content requires some sort of
 manipulation to be considered as representation of the resource or
 content conveys a partial representation of a resource, such as Range
 Requests (see Section 14 of [HTTP]).

 Content-Digest and Repr-Digest support hashing algorithm agility.
 The Want-Content-Digest and Want-Repr-Digest fields allow endpoints
 to express interest in Content-Digest and Repr-Digest respectively,
 and to express algorithm preferences in either.

 Content-Digest and Repr-Digest are collectively termed Integrity
 fields. Want-Content-Digest and Want-Repr-Digest are collectively
 termed Integrity preference fields.

 Integrity fields are tied to the Content-Encoding and Content-Type
 header fields. Therefore, a given resource may have multiple
 different digest values when transferred with HTTP.

Polli & Pardue Expires 11 January 2024 [Page 5]

Internet-Draft Digest Fields July 2023

 Integrity fields apply to HTTP message content or HTTP
 representations. They do not apply to HTTP messages or fields.
 However, they can be combined with other mechanisms that protect
 metadata, such as digital signatures, in order to protect the phases
 of an HTTP exchange in whole or in part. For example, HTTP Message
 Signatures [SIGNATURES] could be used to sign Integrity fields, thus
 providing coverage for HTTP content or representation data.

 This specification does not define means for authentication,
 authorization, or privacy.

1.3. Obsoleting RFC 3230

 [RFC3230] defined the Digest and Want-Digest HTTP fields for HTTP
 integrity. It also coined the term "instance" and "instance
 manipulation" in order to explain concepts that are now more
 universally defined, and implemented, as HTTP semantics such as
 selected representation data (Section 8.1 of [HTTP]).

 Experience has shown that implementations of [RFC3230] have
 interpreted the meaning of "instance" inconsistently, leading to
 interoperability issues. The most common issue relates to the
 mistake of calculating the digest using (what we now call) message
 content, rather than using (what we now call) representation data as
 was originally intended. Interestingly, time has also shown that a
 digest of message content can be beneficial for some use cases. So
 it is difficult to detect if non-conformance to [RFC3230] is
 intentional or unintentional.

 In order to address potential inconsistencies and ambiguity across
 implementations of Digest and Want-Digest, this document obsoletes
 [RFC3230]. The Integrity fields (Sections 2 and 3) and Integrity
 preference fields (Section 4) defined in this document are better
 aligned with current HTTP semantics and have names that more clearly
 articulate the intended usages.

1.4. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the Augmented BNF defined in [RFC5234] and updated
 by [RFC7405]. This includes the rules: CR (carriage return), LF
 (line feed), and CRLF (CR LF).

Polli & Pardue Expires 11 January 2024 [Page 6]

Internet-Draft Digest Fields July 2023

 This document uses the following terminology from Section 3 of
 [STRUCTURED-FIELDS] to specify syntax and parsing: Boolean, Byte
 Sequence, Dictionary, Integer, and List.

 The definitions "representation", "selected representation",
 "representation data", "representation metadata", "user agent", and
 "content" in this document are to be interpreted as described in
 [HTTP].

 This document uses the line folding strategies described in
 [FOLDING].

 Hashing algorithm names respect the casing used in their definition
 document (e.g., SHA-1, CRC32c).

 HTTP messages indicate hashing algorithms using an Algorithm Key
 (algorithms). Where the document refers to an Algorithm Key in
 prose, it is quoted (e.g., "sha", "crc32c").

 The term "checksum" describes the output of the application of an
 algorithm to a sequence of bytes, whereas "digest" is only used in
 relation to the value contained in the fields.

 Integrity fields: collective term for Content-Digest and Repr-Digest

 Integrity preference fields: collective term for Want-Repr-Digest and
 Want-Content-Digest

2. The Content-Digest Field

 The Content-Digest HTTP field can be used in requests and responses
 to communicate digests that are calculated using a hashing algorithm
 applied to the actual message content (see Section 6.4 of [HTTP]).
 It is a Dictionary (see Section 3.2 of [STRUCTURED-FIELDS]) where
 each:

 * key conveys the hashing algorithm (see Section 5) used to compute
 the digest;

 * value is a Byte Sequence (Section 3.3.5 of [STRUCTURED-FIELDS]),
 that conveys an encoded version of the byte output produced by the
 digest calculation.

 For example:

Polli & Pardue Expires 11 January 2024 [Page 7]

Internet-Draft Digest Fields July 2023

 NOTE: ’\’ line wrapping per RFC 8792

 Content-Digest: \
 sha-512=:YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP+pgk4vf2aCs\
 yRZOtw8MjkM7iw7yZ/WkppmM44T3qg==:

 The Dictionary type can be used, for example, to attach multiple
 digests calculated using different hashing algorithms in order to
 support a population of endpoints with different or evolving
 capabilities. Such an approach could support transitions away from
 weaker algorithms (see Section 6.6).

 NOTE: ’\’ line wrapping per RFC 8792

 Content-Digest: \
 sha-256=:d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=:,\
 sha-512=:YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP+pgk4vf2aCs\
 yRZOtw8MjkM7iw7yZ/WkppmM44T3qg==:

 A recipient MAY ignore any or all digests. Application-specific
 behavior or local policy MAY set additional constraints on the
 processing and validation practices of the conveyed digests. The
 security considerations covers some of the issues related to ignoring
 digests (see Section 6.6) and validating multiple digests (see
 Section 6.7).

 A sender MAY send a digest without knowing whether the recipient
 supports a given hashing algorithm, or even knowing that the
 recipient will ignore it.

 Content-Digest can be sent in a trailer section. In this case,
 Content-Digest MAY be merged into the header section; see
 Section 6.5.1 of [HTTP].

3. The Repr-Digest Field

 The Repr-Digest HTTP field can be used in requests and responses to
 communicate digests that are calculated using a hashing algorithm
 applied to the entire selected representation data (see Section 8.1
 of [HTTP]).

 Representations take into account the effect of the HTTP semantics on
 messages. For example, the content can be affected by Range Requests
 or methods such as HEAD, while the way the content is transferred "on
 the wire" is dependent on other transformations (e.g., transfer
 codings for HTTP/1.1 - see Section 6.1 of [HTTP/1.1]). To help
 illustrate HTTP representation concepts, several examples are
 provided in Appendix A.

Polli & Pardue Expires 11 January 2024 [Page 8]

Internet-Draft Digest Fields July 2023

 When a message has no representation data it is still possible to
 assert that no representation data was sent by computing the digest
 on an empty string (see Section 6.3).

 Repr-Digest is a Dictionary (see Section 3.2 of [STRUCTURED-FIELDS])
 where each:

 * key conveys the hashing algorithm (see Section 5) used to compute
 the digest;

 * value is a Byte Sequence, that conveys an encoded version of the
 byte output produced by the digest calculation.

 For example:

 NOTE: ’\’ line wrapping per RFC 8792

 Repr-Digest: \
 sha-512=:YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP+pgk4vf2aCs\
 yRZOtw8MjkM7iw7yZ/WkppmM44T3qg==:

 The Dictionary type can be used, for example, to attach multiple
 digests calculated using different hashing algorithms in order to
 support a population of endpoints with different or evolving
 capabilities. Such an approach could support transitions away from
 weaker algorithms (see Section 6.6).

 NOTE: ’\’ line wrapping per RFC 8792

 Repr-Digest: \
 sha-256=:d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=:,\
 sha-512=:YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP+pgk4vf2aCs\
 yRZOtw8MjkM7iw7yZ/WkppmM44T3qg==:

 A recipient MAY ignore any or all digests. Application-specific
 behavior or local policy MAY set additional constraints on the
 processing and validation practices of the conveyed digests. The
 security considerations covers some of the issues related to ignoring
 digests (see Section 6.6) and validating multiple digests (see
 Section 6.7).

 A sender MAY send a digest without knowing whether the recipient
 supports a given hashing algorithm, or even knowing that the
 recipient will ignore it.

 Repr-Digest can be sent in a trailer section. In this case, Repr-
 Digest MAY be merged into the header section; see Section 6.5.1 of
 [HTTP].

Polli & Pardue Expires 11 January 2024 [Page 9]

Internet-Draft Digest Fields July 2023

3.1. Using Repr-Digest in State-Changing Requests

 When the representation enclosed in a state-changing request does not
 describe the target resource, the representation digest MUST be
 computed on the representation data. This is the only possible
 choice because representation digest requires complete representation
 metadata (see Section 3).

 In responses,

 * if the representation describes the status of the request, Repr-
 Digest MUST be computed on the enclosed representation (see
 Appendix B.8);

 * if there is a referenced resource Repr-Digest MUST be computed on
 the selected representation of the referenced resource even if
 that is different from the target resource. That might or might
 not result in computing Repr-Digest on the enclosed
 representation.

 The latter case is done according to the HTTP semantics of the given
 method, for example using the Content-Location header field (see
 Section 8.7 of [HTTP]). In contrast, the Location header field does
 not affect Repr-Digest because it is not representation metadata.

 For example, in PATCH requests, the representation digest will be
 computed on the patch document because the representation metadata
 refers to the patch document and not to the target resource (see
 Section 2 of [PATCH]). In responses, instead, the representation
 digest will be computed on the selected representation of the patched
 resource.

3.2. Repr-Digest and Content-Location in Responses

 When a state-changing method returns the Content-Location header
 field, the enclosed representation refers to the resource identified
 by its value and Repr-Digest is computed accordingly. An example is
 given in Appendix B.7.

4. Integrity preference fields

 Senders can indicate their interest in Integrity fields and hashing
 algorithm preferences using the Want-Content-Digest or Want-Repr-
 Digest fields. These can be used in both requests and responses.

 Want-Content-Digest indicates that the sender would like to receive a
 content digest on messages associated with the request URI and
 representation metadata, using the Content-Digest field.

Polli & Pardue Expires 11 January 2024 [Page 10]

Internet-Draft Digest Fields July 2023

 Want-Repr-Digest indicates that the sender would like to receive a
 representation digest on messages associated with the request URI and
 representation metadata, using the Repr-Digest field.

 If Want-Content-Digest or Want-Repr-Digest are used in a response, it
 indicates that the server would like the client to provide the
 respective Integrity field on future requests.

 Integrity preference fields are only a hint. The receiver of the
 field can ignore it and send an Integrity field using any algorithm
 or omit the field entirely, for example see Appendix C.2. It is not
 a protocol error if preferences are ignored. Applications that use
 Integrity fields and Integrity preferences can define expectations or
 constraints that operate in addition to this specification. Ignored
 preferences are an application-specific concern.

 Want-Content-Digest and Want-Repr-Digest are of type Dictionary where
 each:

 * key conveys the hashing algorithm (see Section 5);

 * value is an Integer (Section 3.3.1 of [STRUCTURED-FIELDS]) that
 conveys an ascending, relative, weighted preference. It must be
 in the range 0 to 10 inclusive. 1 is the least preferred, 10 is
 the most preferred, and a value of 0 means "not acceptable".

 Examples:

 Want-Repr-Digest: sha-256=1
 Want-Repr-Digest: sha-512=3, sha-256=10, unixsum=0
 Want-Content-Digest: sha-256=1
 Want-Content-Digest: sha-512=3, sha-256=10, unixsum=0

5. Hash Algorithm Considerations and Registration

 There are a wide variety of hashing algorithms that can be used for
 the purposes of integrity. The choice of algorithm depends on
 several factors such as the integrity use case, implementation needs
 or constraints, or application design and workflows.

 An initial set of algorithms will be registered with IANA in the
 "Hash Algorithms for HTTP Digest Fields" registry; see Section 7.2.
 Additional algorithms can be registered in accordance with the
 policies set out in this section.

 Each algorithm has a status field, which is intended to provide an
 aid to implementation selection.

Polli & Pardue Expires 11 January 2024 [Page 11]

Internet-Draft Digest Fields July 2023

 Algorithms with a status value of "Active" are suitable for many
 purposes and it is RECOMMENDED that applications use these
 algorithms. These can be used in adversarial situations where hash
 functions might need to provide resistance to collision, first-
 preimage and second-preimage attacks. For adversarial situations,
 selecting which of the "Active" algorithms are acceptable will depend
 on the level of protection the circumstances demand. More
 considerations are presented in Section 6.6.

 Algorithms with a status value of "Deprecated" either provide none of
 these properties, or are known to be weak (see [NO-MD5] and
 [NO-SHA]). These algorithms MAY be used to preserve integrity
 against corruption, but MUST NOT be used in a potentially adversarial
 setting; for example, when signing Integrity fields’ values for
 authenticity. Permitting the use of these algorithms can help some
 applications, for example, those that previously used [RFC3230], are
 migrating to this specification (Appendix E), and have existing
 stored collections of computed digest values avoid undue operational
 overhead caused by recomputation using other more-secure algorithms.
 Such applications are not exempt from the requirements in this
 section. Furthermore, applications without such legacy or history
 ought to follow the guidance for using algorithms with the status
 value "Active".

 Discussion of algorithm agility is presented in Section 6.6.

 Registration requests for the "Hash Algorithms for HTTP Digest
 Fields" registry use the Specification Required policy (Section 4.6
 of [RFC8126]). Requests should use the following template:

 * Algorithm Key: the Structured Fields key value used in Content-
 Digest, Repr-Digest, Want-Content-Digest, or Want-Repr-Digest
 field Dictionary member keys

 * Status: the status of the algorithm. The options are:

 - "Active" - for algorithms without known problems,

 - "Provisional" - for unproven algorithms,

 - "Deprecated" - for deprecated or insecure algorithms,

 * Description: a short description of the algorithm

 * Reference(s): pointer(s) to the primary document(s) defining the
 Algorithm Key and technical details of the algorithm

Polli & Pardue Expires 11 January 2024 [Page 12]

Internet-Draft Digest Fields July 2023

 When reviewing registration requests, the designated expert(s) should
 pay attention to the requested status. The status value should
 reflect standardization status and the broad opinion of relevant
 interest groups such as the IETF or security-related SDOs. The
 "Active" status is not suitable for an algorithm that is known to be
 weak, broken, or experimental. If a registration request attempts to
 register such an algorithm as "Active", the designated expert(s)
 should suggest an alternative status of "Deprecated" or
 "Provisional".

 When reviewing registration requests, the designated expert(s) cannot
 use a status of "Deprecated" or "Provisional" as grounds for
 rejection.

 Requests to update or change the fields in an existing registration
 are permitted. For example, this could allow for the transition of
 an algorithm status from "Active" to "Deprecated" as the security
 environment evolves.

6. Security Considerations

6.1. HTTP Messages Are Not Protected In Full

 This document specifies a data integrity mechanism that protects HTTP
 representation data or content, but not HTTP header and trailer
 fields, from certain kinds of corruption.

 Integrity fields are not intended to be a general protection against
 malicious tampering with HTTP messages. In the absence of additional
 security mechanisms, an on-path, malicious actor can remove or
 recalculate and substitute a digest value. This attack can be
 mitigated by combining mechanisms described in this document with
 other approaches such as transport-layer security or digital
 signatures (for example, HTTP Message Signatures [SIGNATURES]).

6.2. End-to-End Integrity

 Integrity fields can help detect representation data or content
 modification due to implementation errors, undesired "transforming
 proxies" (see Section 7.7 of [HTTP]) or other actions as the data
 passes across multiple hops or system boundaries. Even a simple
 mechanism for end-to-end representation data integrity is valuable
 because a user agent can validate that resource retrieval succeeded
 before handing off to an HTML parser, video player, etc. for parsing.

Polli & Pardue Expires 11 January 2024 [Page 13]

Internet-Draft Digest Fields July 2023

 Note that using these mechanisms alone does not provide end-to-end
 integrity of HTTP messages over multiple hops, since metadata could
 be manipulated at any stage. Methods to protect metadata are
 discussed in Section 6.3.

6.3. Usage in Signatures

 Digital signatures are widely used together with checksums to provide
 the certain identification of the origin of a message [NIST800-32].
 Such signatures can protect one or more HTTP fields and there are
 additional considerations when Integrity fields are included in this
 set.

 There are no restrictions placed on the type or format of digital
 signature that Integrity fields can be used with. One possible
 approach is to combine them with HTTP Message Signatures
 [SIGNATURES].

 Digests explicitly depend on the "representation metadata" (e.g., the
 values of Content-Type, Content-Encoding etc.). A signature that
 protects Integrity fields but not other "representation metadata" can
 expose the communication to tampering. For example, an actor could
 manipulate the Content-Type field-value and cause a digest validation
 failure at the recipient, preventing the application from accessing
 the representation. Such an attack consumes the resources of both
 endpoints. See also Section 3.2.

 Signatures are likely to be deemed an adversarial setting when
 applying Integrity fields; see Section 5. Repr-Digest offers an
 interesting possibility when combined with signatures. In the
 scenario where there is no content to send, the digest of an empty
 string can be included in the message and, if signed, can help the
 recipient detect if content was added either as a result of accident
 or purposeful manipulation. The opposite scenario is also supported;
 including an Integrity field for content, and signing it, can help a
 recipient detect where the content was removed.

 Any mangling of Integrity fields, including digests’ de-duplication
 or combining different field values (see Section 5.2 of [HTTP]) might
 affect signature validation.

6.4. Usage in Trailer Fields

 Before sending Integrity fields in a trailer section, the sender
 should consider that intermediaries are explicitly allowed to drop
 any trailer (see Section 6.5.2 of [HTTP]).

Polli & Pardue Expires 11 January 2024 [Page 14]

Internet-Draft Digest Fields July 2023

 When Integrity fields are used in a trailer section, the field-values
 are received after the content. Eager processing of content before
 the trailer section prevents digest validation, possibly leading to
 processing of invalid data.

 One of the benefits of using Integrity fields in a trailer section is
 that it allows hashing of bytes as they are sent. However, it is
 possible to design a hashing algorithm that requires processing of
 content in such a way that would negate these benefits. For example,
 Merkle Integrity Content Encoding [I-D.thomson-http-mice] requires
 content to be processed in reverse order. This means the complete
 data needs to be available, which means there is negligible
 processing difference in sending an Integrity field in a header or
 trailer section.

6.5. Variations Within Content Encoding

 Content coding mechanisms can support different encoding parameters,
 meaning that the same input content can produce different outputs.
 For example, GZIP supports multiple compression levels. Such
 encoding parameters are generally not communicated as representation
 metadata. For instance, different compression levels would all use
 the same "Content-Encoding: gzip" field. Other examples include
 where encoding relies on nonces or timestamps, such as the aes128gcm
 content coding defined in [RFC8188].

 Since it is possible for there to be variation within content coding,
 the checksum conveyed by the integrity fields cannot be used to
 provide a proof of integrity "at rest" unless the whole content is
 persisted.

6.6. Algorithm Agility

 The security properties of hashing algorithms are not fixed.
 Algorithm Agility (see [RFC7696]) is achieved by providing
 implementations with flexibility to choose hashing algorithms from
 the IANA Hash Algorithms for HTTP Digest Fields registry; see
 Section 7.2.

 Transition from weak algorithms is supported by negotiation of
 hashing algorithm using Want-Content-Digest or Want-Repr-Digest (see
 Section 4) or by sending multiple digests from which the receiver
 chooses. A receiver that depends on a digest for security will be
 vulnerable to attacks on the weakest algorithm it is willing to
 accept. Endpoints are advised that sending multiple values consumes
 resources, which may be wasted if the receiver ignores them (see
 Section 3).

Polli & Pardue Expires 11 January 2024 [Page 15]

Internet-Draft Digest Fields July 2023

 While algorithm agility allows the migration to stronger algorithms
 it does not prevent the use of weaker algorithms. Integrity fields
 do not provide any mitigations for downgrade or substitution attacks
 (see Section 1 of [RFC6211]) of the hashing algorithm. To protect
 against such attacks, endpoints could restrict their set of supported
 algorithms to stronger ones and protect the fields value by using TLS
 and/or digital signatures.

6.7. Resource exhaustion

 Integrity fields validation consumes computational resources. In
 order to avoid resource exhaustion, implementations can restrict
 validation of the algorithm types, number of validations, or the size
 of content. In these cases, skipping validation entirely or ignoring
 validation failure of a more-preferred algorithm leaves the
 possibility of a downgrade attack (see Section 6.6).

7. IANA Considerations

7.1. HTTP Field Name Registration

 IANA is asked to update the "Hypertext Transfer Protocol (HTTP) Field
 Name Registry" registry ([HTTP]) according to the table below:

 +=====================+===========+============================+
 | Field Name | Status | Reference |
 +=====================+===========+============================+
 | Content-Digest | permanent | Section 2 of this document |
 +---------------------+-----------+----------------------------+
 | Repr-Digest | permanent | Section 3 of this document |
 +---------------------+-----------+----------------------------+
 | Want-Content-Digest | permanent | Section 4 of this document |
 +---------------------+-----------+----------------------------+
 | Want-Repr-Digest | permanent | Section 4 of this document |
 +---------------------+-----------+----------------------------+
 | Digest | obsoleted | [RFC3230], Section 1.3 of |
 | | | this document |
 +---------------------+-----------+----------------------------+
 | Want-Digest | obsoleted | [RFC3230], Section 1.3 of |
 | | | this document |
 +---------------------+-----------+----------------------------+

 Table 1

Polli & Pardue Expires 11 January 2024 [Page 16]

Internet-Draft Digest Fields July 2023

7.2. Establish the Hash Algorithms for HTTP Digest Fields Registry

 IANA is requested to create the new "Hash Algorithms for HTTP Digest
 Fields" registry at https://www.iana.org/assignments/http-digest-
 hash-alg/ (https://www.iana.org/assignments/http-digest-hash-alg/)
 and populate it with the entries in Table 2. The procedure for new
 registrations is provided in Section 5.

Polli & Pardue Expires 11 January 2024 [Page 17]

Internet-Draft Digest Fields July 2023

 +===========+============+===========================+==============+
 | Algorithm | Status | Description | Reference(s) |
 | Key | | | |
 +===========+============+===========================+==============+
sha-512	Active	The SHA-512	[RFC6234],
		algorithm.	[RFC4648],
			this
			document.
+-----------+------------+---------------------------+--------------+			
sha-256	Active	The SHA-256	[RFC6234],
		algorithm.	[RFC4648],
			this
			document.
+-----------+------------+---------------------------+--------------+			
md5	Deprecated	The MD5 algorithm.	[RFC1321],
		It is vulnerable to	[RFC4648],
		collision attacks;	this
		see [NO-MD5] and	document.
		[CMU-836068]	
+-----------+------------+---------------------------+--------------+			
sha	Deprecated	The SHA-1 algorithm.	[RFC3174],
		It is vulnerable to	[RFC4648],
		collision attacks;	[RFC6234]
		see [NO-SHA] and	this
		[IACR-2020-014]	document.
+-----------+------------+---------------------------+--------------+			
unixsum	Deprecated	The algorithm used	[RFC4648],
		by the UNIX "sum"	[RFC6234],
		command.	[UNIX], this
			document.
+-----------+------------+---------------------------+--------------+			
unixcksum	Deprecated	The algorithm used	[RFC4648],
		by the UNIX "cksum"	[RFC6234],
		command.	[UNIX], this
			document.
+-----------+------------+---------------------------+--------------+			
adler	Deprecated	The ADLER32	[RFC1950],
		algorithm.	this
			document.
+-----------+------------+---------------------------+--------------+			
crc32c	Deprecated	The CRC32c	[RFC9260]
		algorithm.	appendix A,
			this
			document.
 +-----------+------------+---------------------------+--------------+

 Table 2: Initial Hash Algorithms

Polli & Pardue Expires 11 January 2024 [Page 18]

Internet-Draft Digest Fields July 2023

7.3. Deprecate the Hypertext Transfer Protocol (HTTP) Digest Algorithm
 Values Registry

 IANA is requested to deprecate the "Hypertext Transfer Protocol
 (HTTP) Digest Algorithm Values" registry at
 https://www.iana.org/assignments/http-dig-alg/http-dig-alg.xhtml
 (https://www.iana.org/assignments/http-dig-alg/http-dig-alg.xhtml)
 and replace the note on this registry with the following text:

 "This registry is deprecated since it lists the algorithms that
 can be used with the Digest and Want-Digest fields defined in
 [RFC3230]https://www.iana.org/ (https://www.iana.org/), which has
 been obsoleted by [rfc-to-be-this-document]. While registration
 is not closed, new registrations are encouraged to use the [Hash
 Algorithms for HTTP Digest
 Fields]https://www.iana.org/assignments/http-digest-hash-alg/
 (https://www.iana.org/assignments/http-digest-hash-alg/) registry
 instead.

8. References

8.1. Normative References

 [FOLDING] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/rfc/rfc8792>.

 [HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9110>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/rfc/rfc1321>.

 [RFC1950] Deutsch, P. and J. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950,
 DOI 10.17487/RFC1950, May 1996,
 <https://www.rfc-editor.org/rfc/rfc1950>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

Polli & Pardue Expires 11 January 2024 [Page 19]

Internet-Draft Digest Fields July 2023

 [RFC3174] Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001,
 <https://www.rfc-editor.org/rfc/rfc3174>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/rfc/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/rfc/rfc5234>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/rfc/rfc6234>.

 [RFC7405] Kyzivat, P., "Case-Sensitive String Support in ABNF",
 RFC 7405, DOI 10.17487/RFC7405, December 2014,
 <https://www.rfc-editor.org/rfc/rfc7405>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/rfc/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [STRUCTURED-FIELDS]
 Nottingham, M. and P. Kamp, "Structured Field Values for
 HTTP", RFC 8941, DOI 10.17487/RFC8941, February 2021,
 <https://www.rfc-editor.org/rfc/rfc8941>.

8.2. Informative References

 [CMU-836068]
 Carnegie Mellon University, Software Engineering
 Institute, "MD5 Vulnerable to collision attacks", 31
 December 2008, <https://www.kb.cert.org/vuls/id/836068/>.

 [HTTP/1.1] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112,
 June 2022, <https://www.rfc-editor.org/rfc/rfc9112>.

Polli & Pardue Expires 11 January 2024 [Page 20]

Internet-Draft Digest Fields July 2023

 [I-D.thomson-http-mice]
 Thomson, M. and J. Yasskin, "Merkle Integrity Content
 Encoding", Work in Progress, Internet-Draft, draft-
 thomson-http-mice-03, 13 August 2018,
 <https://datatracker.ietf.org/doc/html/draft-thomson-http-
 mice-03>.

 [IACR-2020-014]
 Leurent, G. and T. Peyrin, "SHA-1 is a Shambles", 5
 January 2020, <https://eprint.iacr.org/2020/014.pdf>.

 [NIST800-32]
 National Institute of Standards and Technology, U.S.
 Department of Commerce, "Introduction to Public Key
 Technology and the Federal PKI Infrastructure", February
 2001, <https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
 nistspecialpublication800-32.pdf>.

 [NO-MD5] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
 RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <https://www.rfc-editor.org/rfc/rfc6151>.

 [NO-SHA] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
 Considerations for the SHA-0 and SHA-1 Message-Digest
 Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
 <https://www.rfc-editor.org/rfc/rfc6194>.

 [PATCH] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
 RFC 5789, DOI 10.17487/RFC5789, March 2010,
 <https://www.rfc-editor.org/rfc/rfc5789>.

 [RFC3230] Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",
 RFC 3230, DOI 10.17487/RFC3230, January 2002,
 <https://www.rfc-editor.org/rfc/rfc3230>.

 [RFC6211] Schaad, J., "Cryptographic Message Syntax (CMS) Algorithm
 Identifier Protection Attribute", RFC 6211,
 DOI 10.17487/RFC6211, April 2011,
 <https://www.rfc-editor.org/rfc/rfc6211>.

 [RFC7396] Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,
 DOI 10.17487/RFC7396, October 2014,
 <https://www.rfc-editor.org/rfc/rfc7396>.

Polli & Pardue Expires 11 January 2024 [Page 21]

Internet-Draft Digest Fields July 2023

 [RFC7696] Housley, R., "Guidelines for Cryptographic Algorithm
 Agility and Selecting Mandatory-to-Implement Algorithms",
 BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
 <https://www.rfc-editor.org/rfc/rfc7696>.

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
 <https://www.rfc-editor.org/rfc/rfc7807>.

 [RFC8188] Thomson, M., "Encrypted Content-Encoding for HTTP",
 RFC 8188, DOI 10.17487/RFC8188, June 2017,
 <https://www.rfc-editor.org/rfc/rfc8188>.

 [RFC9260] Stewart, R., Tüxen, M., and K. Nielsen, "Stream Control
 Transmission Protocol", RFC 9260, DOI 10.17487/RFC9260,
 June 2022, <https://www.rfc-editor.org/rfc/rfc9260>.

 [SIGNATURES]
 Backman, A., Richer, J., and M. Sporny, "HTTP Message
 Signatures", Work in Progress, Internet-Draft, draft-ietf-
 httpbis-message-signatures-17, 2 May 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-
 message-signatures-17>.

 [TLS] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [UNIX] The Open Group, "The Single UNIX Specification, Version 2
 - 6 Vol Set for UNIX 98", February 1997.

Appendix A. Resource Representation and Representation Data

 This section following examples show how representation metadata,
 content transformations, and method impacts on the message and
 content. These examples a not exhaustive.

 Unless otherwise indicated, the examples are based on the JSON object
 {"hello": "world"} followed by an LF. When the content contains non-
 printable characters (e.g., when it is encoded) it is shown as a
 sequence of hex-encoded bytes.

 Consider a client that wishes to upload a JSON object using the PUT
 method. It could do this using the application/json content type
 without any content coding.

Polli & Pardue Expires 11 January 2024 [Page 22]

Internet-Draft Digest Fields July 2023

 PUT /entries/1234 HTTP/1.1
 Host: foo.example
 Content-Type: application/json
 Content-Length: 19

 {"hello": "world"}

 Figure 1: Request containing a JSON object without any content coding

 However, the use of content coding is quite common. The client could
 also upload the same data with a gzip coding (Section 8.4.1.3 of
 [HTTP]). Note that in this case, the Content-Length contains a
 larger value due to the coding overheads.

 PUT /entries/1234 HTTP/1.1
 Host: foo.example
 Content-Type: application/json
 Content-Encoding: gzip
 Content-Length: 39

 1F 8B 08 00 88 41 37 64 00 FF
 AB 56 CA 48 CD C9 C9 57 B2 52
 50 2A CF 2F CA 49 51 AA E5 02
 00 D9 E4 31 E7 13 00 00 00

 Figure 2: Request containing a gzip-encoded JSON object

 Sending the gzip coded data without indicating it via Content-
 Encoding means that the content is malformed. In this case, the
 server can reply with an error.

 PUT /entries/1234 HTTP/1.1
 Host: foo.example
 Content-Type: application/json

 Content-Length: 39

 1F 8B 08 00 88 41 37 64 00 FF
 AB 56 CA 48 CD C9 C9 57 B2 52
 50 2A CF 2F CA 49 51 AA E5 02
 00 D9 E4 31 E7 13 00 00 00

 Figure 3: Request containing malformed JSON

 HTTP/1.1 400 Bad Request

 Figure 4: An error response for a malformed content

Polli & Pardue Expires 11 January 2024 [Page 23]

Internet-Draft Digest Fields July 2023

 A Range-Request affects the transferred message content. In this
 example, the client is accessing the resource at /entries/1234, which
 is the JSON object {"hello": "world"} followed by an LF. However,
 the client has indicated a preferred content coding and a specific
 byte range.

 GET /entries/1234 HTTP/1.1
 Host: foo.example
 Accept-Encoding: gzip
 Range: bytes=1-7

 Figure 5: Request for partial content

 The server satisfies the client request by responding with a partial
 representation (equivalent to the first 10 of the JSON object
 displayed in whole in Figure 2).

 HTTP/1.1 206 Partial Content
 Content-Encoding: gzip
 Content-Type: application/json
 Content-Range: bytes 0-9/39

 1F 8B 08 00 A5 B4 BD 62 02 FF

 Figure 6: Partial response from a gzip-encoded representation

 Aside from content coding or range requests, the method can also
 affect the transferred message content. For example, the response to
 a HEAD request does not carry content but in this example case does
 include a Content-Length; see Section 8.6 of [HTTP].

 HEAD /entries/1234 HTTP/1.1
 Host: foo.example
 Accept: application/json
 Accept-Encoding: gzip

 Figure 7: HEAD request

 HTTP/1.1 200 OK
 Content-Type: application/json
 Content-Encoding: gzip
 Content-Length: 39

 Figure 8: Response to HEAD request (empty content)

 Finally, the semantics of a response might decouple the target URI
 from the enclosed representation. In the example below, the client
 issues a POST request directed to /authors/ but the response includes

Polli & Pardue Expires 11 January 2024 [Page 24]

Internet-Draft Digest Fields July 2023

 a Content-Location header field that indicates the enclosed
 representation refers to the resource available at /authors/123.
 Note that Content-Length is not sent in this example.

 POST /authors/ HTTP/1.1
 Host: foo.example
 Accept: application/json
 Content-Type: application/json

 {"author": "Camilleri"}

 Figure 9: POST request

 HTTP/1.1 201 Created
 Content-Type: application/json
 Content-Location: /authors/123
 Location: /authors/123

 {"id": "123", "author": "Camilleri"}

 Figure 10: Response with Content-Location header

Appendix B. Examples of Unsolicited Digest

 The following examples demonstrate interactions where a server
 responds with a Content-Digest or Repr-Digest fields even though the
 client did not solicit one using Want-Content-Digest or Want-Repr-
 Digest.

 Some examples include JSON objects in the content. For presentation
 purposes, objects that fit completely within the line-length limits
 are presented on a single line using compact notation with no leading
 space. Objects that would exceed line-length limits are presented
 across multiple lines (one line per key-value pair) with 2 spaces of
 leading indentation.

 Checksum mechanisms defined in this document are media-type agnostic
 and do not provide canonicalization algorithms for specific formats.
 Examples are calculated inclusive of any space. While examples can
 include both fields, Content-Digest and Repr-Digest can be returned
 independently.

B.1. Server Returns Full Representation Data

 In this example, the message content conveys complete representation
 data. This means that in the response, Content-Digest and Repr-
 Digest are both computed over the JSON object {"hello": "world"}
 followed by an LF, and thus have the same value.

Polli & Pardue Expires 11 January 2024 [Page 25]

Internet-Draft Digest Fields July 2023

 GET /items/123 HTTP/1.1
 Host: foo.example

 Figure 11: GET request for an item

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 200 OK
 Content-Type: application/json
 Content-Length: 19
 Content-Digest: \
 sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:
 Repr-Digest: \
 sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:

 {"hello": "world"}

 Figure 12: Response with identical Repr-Digest and Content-Digest

B.2. Server Returns No Representation Data

 In this example, a HEAD request is used to retrieve the checksum of a
 resource.

 The response Content-Digest field-value is computed on empty content.
 Repr-Digest is calculated over the JSON object {"hello": "world"}
 followed by an LF, which is not shown because there is no content.

 HEAD /items/123 HTTP/1.1
 Host: foo.example

 Figure 13: HEAD request for an item

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 200 OK
 Content-Type: application/json
 Content-Digest: \
 sha-256=:47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=:
 Repr-Digest: \
 sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:

 Figure 14: Response with both Content-Digest and Digest; empty
 content

Polli & Pardue Expires 11 January 2024 [Page 26]

Internet-Draft Digest Fields July 2023

B.3. Server Returns Partial Representation Data

 In this example, the client makes a range request and the server
 responds with partial content.

 GET /items/123 HTTP/1.1
 Host: foo.example
 Range: bytes=10-18

 Figure 15: Request for partial content

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 206 Partial Content
 Content-Type: application/json
 Content-Range: bytes 10-18/19
 Content-Digest: \
 sha-256=:jjcgBDWNAtbYUXI37CVG3gRuGOAjaaDRGpIUFsdyepQ=:
 Repr-Digest: \
 sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:

 "world"}

 Figure 16: Partial response with both Content-Digest and Repr-Digest

 In the response message above, note that the Repr-Digest and Content-
 Digests are different. The Repr-Digest field-value is calculated
 across the entire JSON object {"hello": "world"} followed by an LF,
 and the field is

 NOTE: ’\’ line wrapping per RFC 8792

 Repr-Digest: \
 sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:

 However, since the message content is constrained to bytes 10-18, the
 Content-Digest field-value is calculated over the sequence "world"}
 followed by an LF, thus resulting in

 NOTE: ’\’ line wrapping per RFC 8792

 Content-Digest: \
 sha-256=:jjcgBDWNAtbYUXI37CVG3gRuGOAjaaDRGpIUFsdyepQ=:

Polli & Pardue Expires 11 January 2024 [Page 27]

Internet-Draft Digest Fields July 2023

B.4. Client and Server Provide Full Representation Data

 The request contains a Repr-Digest field-value calculated on the
 enclosed representation. It also includes an Accept-Encoding: br
 header field that advertises the client supports Brotli encoding.

 The response includes a Content-Encoding: br that indicates the
 selected representation is Brotli-encoded. The Repr-Digest field-
 value is therefore different compared to the request.

 For presentation purposes, the response body is displayed as a
 sequence of hex-encoded bytes because it contains non-printable
 characters.

 NOTE: ’\’ line wrapping per RFC 8792

 PUT /items/123 HTTP/1.1
 Host: foo.example
 Content-Type: application/json
 Accept-Encoding: br
 Repr-Digest: \
 sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=:

 {"hello": "world"}

 Figure 17: PUT Request with Digest

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 200 OK
 Content-Type: application/json
 Content-Location: /items/123
 Content-Encoding: br
 Content-Length: 23
 Repr-Digest: \
 sha-256=:d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=:

 8B 08 80 7B 22 68 65 6C 6C 6F
 22 3A 20 22 77 6F 72 6C 64 22
 7D 0A 03

 Figure 18: Response with Digest of encoded response

Polli & Pardue Expires 11 January 2024 [Page 28]

Internet-Draft Digest Fields July 2023

B.5. Client Provides Full Representation Data, Server Provides No
 Representation Data

 The request Repr-Digest field-value is calculated on the enclosed
 content, which is the JSON object {"hello": "world"} followed by an
 LF

 The response Repr-Digest field-value depends on the representation
 metadata header fields, including Content-Encoding: br even when the
 response does not contain content.

 NOTE: ’\’ line wrapping per RFC 8792

 PUT /items/123 HTTP/1.1
 Host: foo.example
 Content-Type: application/json
 Content-Length: 19
 Accept-Encoding: br
 Repr-Digest: \
 sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg==:

 {"hello": "world"}

 HTTP/1.1 204 No Content
 Content-Type: application/json
 Content-Encoding: br
 Repr-Digest: sha-256=:d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=:

 Figure 19: Empty response with Digest

B.6. Client and Server Provide Full Representation Data

 The response contains two digest values using different algorithms.

 For presentation purposes, the response body is displayed as a
 sequence of hex-encoded bytes because it contains non-printable
 characters.

 NOTE: ’\’ line wrapping per RFC 8792

 PUT /items/123 HTTP/1.1
 Host: foo.example
 Content-Type: application/json
 Accept-Encoding: br
 Repr-Digest: \
 sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg==:

 {"hello": "world"}

Polli & Pardue Expires 11 January 2024 [Page 29]

Internet-Draft Digest Fields July 2023

 Figure 20: PUT Request with Digest

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 200 OK
 Content-Type: application/json
 Content-Encoding: br
 Content-Location: /items/123
 Repr-Digest: \
 sha-256=:d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=:,\
 sha-512=:db7fdBbgZMgX1Wb2MjA8zZj+rSNgfmDCEEXM8qLWfpfoNY0sCpHAzZbj\
 09X1/7HAb7Od5Qfto4QpuBsFbUO3dQ==:

 8B 08 80 7B 22 68 65 6C 6C 6F
 22 3A 20 22 77 6F 72 6C 64 22
 7D 0A 03

 Figure 21: Response with Digest of Encoded Content

B.7. POST Response does not Reference the Request URI

 The request Repr-Digest field-value is computed on the enclosed
 representation (see Section 3.1), which is the JSON object {"title":
 "New Title"} followed by an LF.

 The representation enclosed in the response is a multiline JSON
 object followed by an LF. It refers to the resource identified by
 Content-Location (see Section 6.4.2 of [HTTP]); an application can
 thus use Repr-Digest in association with the resource referenced by
 Content-Location.

 POST /books HTTP/1.1
 Host: foo.example
 Content-Type: application/json
 Accept: application/json
 Accept-Encoding: identity
 Repr-Digest: sha-256=:mEkdbO7Srd9LIOegftO0aBX+VPTVz7/CSHes2Z27gc4=:

 {"title": "New Title"}

 Figure 22: POST Request with Digest

Polli & Pardue Expires 11 January 2024 [Page 30]

Internet-Draft Digest Fields July 2023

 HTTP/1.1 201 Created
 Content-Type: application/json
 Content-Location: /books/123
 Location: /books/123
 Repr-Digest: sha-256=:uVSlinTTdQUwm2On4k8TJUikGN1bf/Ds8WPX4oe0h9I=:

 {
 "id": "123",
 "title": "New Title"
 }

 Figure 23: Response with Digest of Resource

B.8. POST Response Describes the Request Status

 The request Repr-Digest field-value is computed on the enclosed
 representation (see Section 3.1), which is the JSON object {"title":
 "New Title"} followed by an LF.

 The representation enclosed in the response describes the status of
 the request, so Repr-Digest is computed on that enclosed
 representation. It is a multiline JSON object followed by an LF.

 Response Repr-Digest has no explicit relation with the resource
 referenced by Location.

 POST /books HTTP/1.1
 Host: foo.example
 Content-Type: application/json
 Accept: application/json
 Accept-Encoding: identity
 Repr-Digest: sha-256=:mEkdbO7Srd9LIOegftO0aBX+VPTVz7/CSHes2Z27gc4=:

 {"title": "New Title"}

 Figure 24: POST Request with Digest

 HTTP/1.1 201 Created
 Content-Type: application/json
 Repr-Digest: sha-256=:yXIGDTN5VrfoyisKlXgRKUHHMs35SNtyC3szSz1dbO8=:
 Location: /books/123

 {
 "status": "created",
 "id": "123",
 "ts": 1569327729,
 "instance": "/books/123"
 }

Polli & Pardue Expires 11 January 2024 [Page 31]

Internet-Draft Digest Fields July 2023

 Figure 25: Response with Digest of Representation

B.9. Digest with PATCH

 This case is analogous to a POST request where the target resource
 reflects the target URI.

 The PATCH request uses the application/merge-patch+json media type
 defined in [RFC7396]. Repr-Digest is calculated on the content,
 which corresponds to the patch document and is the JSON object
 {"title": "New Title"} followed by an LF.

 The response Repr-Digest field-value is computed on the complete
 representation of the patched resource. It is a multiline JSON
 object followed by an LF.

 PATCH /books/123 HTTP/1.1
 Host: foo.example
 Content-Type: application/merge-patch+json
 Accept: application/json
 Accept-Encoding: identity
 Repr-Digest: sha-256=:mEkdbO7Srd9LIOegftO0aBX+VPTVz7/CSHes2Z27gc4=:

 {"title": "New Title"}

 Figure 26: PATCH Request with Digest

 HTTP/1.1 200 OK
 Content-Type: application/json
 Repr-Digest: sha-256=:uVSlinTTdQUwm2On4k8TJUikGN1bf/Ds8WPX4oe0h9I=:

 {
 "id": "123",
 "title": "New Title"
 }

 Figure 27: Response with Digest of Representation

 Note that a 204 No Content response without content but with the same
 Repr-Digest field-value would have been legitimate too. In that
 case, Content-Digest would have been computed on an empty content.

B.10. Error responses

 In error responses, the representation data does not necessarily
 refer to the target resource. Instead, it refers to the
 representation of the error.

Polli & Pardue Expires 11 January 2024 [Page 32]

Internet-Draft Digest Fields July 2023

 In the following example, a client sends the same request from
 Figure 26 to patch the resource located at /books/123. However, the
 resource does not exist and the server generates a 404 response with
 a body that describes the error in accordance with [RFC7807].

 The response Repr-Digest field-value is computed on this enclosed
 representation. It is a multiline JSON object followed by an LF.

 HTTP/1.1 404 Not Found
 Content-Type: application/problem+json
 Repr-Digest: sha-256=:EXB0S2VF2H7ijkAVJkH1Sm0pBho0iDZcvVUHHXTTZSA=:

 {
 "title": "Not Found",
 "detail": "Cannot PATCH a non-existent resource",
 "status": 404
 }

 Figure 28: Response with Digest of Error Representation

B.11. Use with Trailer Fields and Transfer Coding

 An origin server sends Repr-Digest as trailer field, so it can
 calculate digest-value while streaming content and thus mitigate
 resource consumption. The Repr-Digest field-value is the same as in
 Appendix B.1 because Repr-Digest is designed to be independent of the
 use of one or more transfer codings (see Section 3).

 In the response content below, the string "\r\n" represent the bytes
 CRLF.

 GET /items/123 HTTP/1.1
 Host: foo.example

 Figure 29: GET Request

Polli & Pardue Expires 11 January 2024 [Page 33]

Internet-Draft Digest Fields July 2023

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 200 OK
 Content-Type: application/json
 Transfer-Encoding: chunked
 Trailer: Digest

 8\r\n
 {"hello"\r\n
 8\r\n
 : "world\r\n
 3\r\n
 "}\n\r\n
 0\r\n
 Repr-Digest: \
 sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg==:\r\n

 Figure 30: Chunked Response with Digest

Appendix C. Examples of Want-Repr-Digest Solicited Digest

 The following examples demonstrate interactions where a client
 solicits a Repr-Digest using Want-Repr-Digest. The behavior of
 Content-Digest and Want-Content-Digest is identical.

 Some examples include JSON objects in the content. For presentation
 purposes, objects that fit completely within the line-length limits
 are presented on a single line using compact notation with no leading
 space. Objects that would exceed line-length limits are presented
 across multiple lines (one line per key-value pair) with 2 spaces of
 leading indentation.

 Checksum mechanisms described in this document are media-type
 agnostic and do not provide canonicalization algorithms for specific
 formats. Examples are calculated inclusive of any space.

C.1. Server Selects Client’s Least Preferred Algorithm

 The client requests a digest, preferring "sha". The server is free
 to reply with "sha-256" anyway.

 GET /items/123 HTTP/1.1
 Host: foo.example
 Want-Repr-Digest: sha-256=3, sha=10

 Figure 31: GET Request with Want-Repr-Digest

Polli & Pardue Expires 11 January 2024 [Page 34]

Internet-Draft Digest Fields July 2023

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 200 OK
 Content-Type: application/json
 Repr-Digest: \
 sha-256=:RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg==:

 {"hello": "world"}

 Figure 32: Response with Different Algorithm

C.2. Server Selects Algorithm Unsupported by Client

 The client requests a "sha" digest because that is the only algorithm
 it supports. The server is not obliged to produce a response
 containing a "sha" digest, it instead uses a different algorithm.

 GET /items/123 HTTP/1.1
 Host: foo.example
 Want-Repr-Digest: sha=10

 Figure 33: GET Request with Want-Repr-Digest

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 200 OK
 Content-Type: application/json
 Repr-Digest: \
 sha-512=:YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP+pgk4vf2aCs\
 yRZOtw8MjkM7iw7yZ/WkppmM44T3qg==:

 {"hello": "world"}

 Figure 34: Response with Unsupported Algorithm

C.3. Server Does Not Support Client Algorithm and Returns an Error

 Appendix C.2 is an example where a server ignores the client’s
 preferred digest algorithm. Alternatively a server can also reject
 the request and return a response with error status code such as 4xx
 or 5xx. This specification does not prescribe any requirement on
 status code selection; the follow example illustrates one possible
 option.

Polli & Pardue Expires 11 January 2024 [Page 35]

Internet-Draft Digest Fields July 2023

 In this example, the client requests a "sha" Repr-Digest, and the
 server returns an error with problem details [RFC7807] contained in
 the content. The problem details contain a list of the hashing
 algorithms that the server supports. This is purely an example, this
 specification does not define any format or requirements for such
 content.

 GET /items/123 HTTP/1.1
 Host: foo.example
 Want-Repr-Digest: sha=10

 Figure 35: GET Request with Want-Repr-Digest

 HTTP/1.1 400 Bad Request
 Content-Type: application/problem+json

 {
 "title": "Bad Request",
 "detail": "Supported hashing algorithms: sha-256, sha-512",
 "status": 400
 }

 Figure 36: Response advertising the supported algorithms

Appendix D. Sample Digest Values

 This section shows examples of digest values for different hashing
 algorithms. The input value is the JSON object {"hello": "world"}.
 The digest values are each produced by running the relevant hashing
 algorithm over the input and running the output bytes through Byte
 Sequence serialization; see Section 4.1.8 of [STRUCTURED-FIELDS].

Polli & Pardue Expires 11 January 2024 [Page 36]

Internet-Draft Digest Fields July 2023

 NOTE: ’\’ line wrapping per RFC 8792

 sha-512 - :WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+TaPm+\
 AbwAgBWnrIiYllu7BNNyealdVLvRwEmTHWXvJwew==:

 sha-256 - :X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=:

 md5 - :Sd/dVLAcvNLSq16eXua5uQ==:

 sha - :07CavjDP4u3/TungoUHJO/Wzr4c=:

 unixsum - :GQU=:

 unixcksum - :7zsHAA==:

 adler - :OZkGFw==:

 crc32c - :Q3lHIA==:

Appendix E. Migrating from RFC 3230

 HTTP digests are computed by applying a hashing algorithm to input
 data. RFC 3230 defined the input data as an "instance", a term it
 also defined. The concept of instance has since been superseded by
 the HTTP semantic term "representation". It is understood that some
 implementations of RFC 3230 mistook "instance" to mean HTTP content.
 Using content for the Digest field is an error that leads to
 interoperability problems between peers that implement RFC 3230.

 RFC 3230 was only ever intended to use what HTTP now defines as
 selected representation data. The semantic concept of digest and
 representation are explained alongside the definition of the
 Repr-Digest field (Section 3).

 While the syntax of Digest and Repr-Digest are different, the
 considerations and examples this document gives for Repr-Digest apply
 equally to Digest because they operate on the same input data; see
 Sections 3.1, 6 and 6.3.

 RFC 3230 could never communicate the digest of HTTP message content
 in the Digest field; Content-Digest now provides that capability.

 RFC 3230 allowed algorithms to define their output encoding format
 for use with the Digest field. This resulted in a mix of formats
 such as base64, hex or decimal. By virtue of using Structured
 fields, Content-Digest and Repr-Digest use only a single encoding
 format. Further explanation and examples are provided in Appendix D.

Polli & Pardue Expires 11 January 2024 [Page 37]

Internet-Draft Digest Fields July 2023

Acknowledgements

 This document is based on ideas from [RFC3230], so thanks to Jeff
 Mogul and Arthur Van Hoff for their great work. The original idea of
 refreshing RFC3230 arose from an interesting discussion with Mark
 Nottingham, Jeffrey Yasskin, and Martin Thomson when reviewing the
 MICE content coding.

 Thanks to Julian Reschke for his valuable contributions to this
 document, and to the following contributors that have helped improve
 this specification by reporting bugs, asking smart questions,
 drafting or reviewing text, and evaluating open issues: Mike Bishop,
 Brian Campbell, Matthew Kerwin, James Manger, Tommy Pauly, Sean
 Turner, Justin Richer, and Erik Wilde.

Code Samples

 This section is to be removed before publishing as an RFC.

 How can I generate and validate the digest values, computed over the
 JSON object {"hello": "world"} followed by an LF, shown in the
 examples throughout this document?

 The following python3 code can be used to generate digests for JSON
 objects using SHA algorithms for a range of encodings. Note that
 these are formatted as base64. This function could be adapted to
 other algorithms and should take into account their specific
 formatting rules.

Polli & Pardue Expires 11 January 2024 [Page 38]

Internet-Draft Digest Fields July 2023

 import base64, json, hashlib, brotli, logging
 log = logging.getLogger()

 def digest_bytes(bytes_, algorithm=hashlib.sha256):
 checksum_bytes = algorithm(bytes_).digest()
 log.warning("Log bytes: \n[%r]", bytes_)
 return base64.encodebytes(checksum_bytes).strip()

 def digest(bytes_, encoding=lambda x: x, algorithm=hashlib.sha256):
 content_encoded = encoding(bytes_)
 return digest_bytes(content_encoded, algorithm)

 bytes_ = b’{"hello": "world"}\n’

 print("Encoding | hashing algorithm | digest-value")
 print("Identity | sha256 |", digest(bytes_))
 # Encoding | hashing algorithm | digest-value
 # Identity | sha256 | RK/0qy18MlBSVnWgjwz6lZEWjP/lF5HF9bvEF8FabDg=

 print("Encoding | hashing algorithm | digest-value")
 print("Brotli | sha256 |", digest(bytes_, encoding=brotli.compress))
 # Encoding | hashing algorithm | digest-value
 # Brotli | sha256 | d435Qo+nKZ+gLcUHn7GQtQ72hiBVAgqoLsZnZPiTGPk=

 print("Encoding | hashing algorithm | digest-value")
 print("Identity | sha512 |", digest(bytes_, algorithm=hashlib.sha512))
 print("Brotli | sha512 |", digest(bytes_, algorithm=hashlib.sha512,
 encoding=brotli.compress))
 # Encoding | hashing algorithm | digest-value
 # Identity | sha512 |b’YMAam51Jz/jOATT6/zvHrLVgOYTGFy1d6GJiOHTohq4yP’
 # ’+pgk4vf2aCsyRZOtw8MjkM7iw7yZ/WkppmM44T3qg==’

 # Brotli | sha512 | b’db7fdBbgZMgX1Wb2MjA8zZj+rSNgfmDCEEXM8qLWfpfoNY’
 # ’0sCpHAzZbj09X1/7HAb7Od5Qfto4QpuBsFbUO3dQ==’

Changes

 This section is to be removed before publishing as an RFC.

Since draft-ietf-httpbis-digest-headers-12

 * Be clearer that applications can enforce additional requirements
 wrt digest

 * Change algorithm status names: s/standard/active, s/insecure/
 deprecated

Polli & Pardue Expires 11 January 2024 [Page 39]

Internet-Draft Digest Fields July 2023

 * Remove "reserved" algorithm status

 * Provide clear guidance about the use of standard or deprecated
 algorithms

 * Editorial or minor changes

Since draft-ietf-httpbis-digest-headers-11

 * Editorial or minor changes

Since draft-ietf-httpbis-digest-headers-10

 * Editorial or minor changes

Since draft-ietf-httpbis-digest-headers-09

 * Editorial or minor changes

Since draft-ietf-httpbis-digest-headers-08

 * Add note about migrating from RFC 3230. #1968, #1971

 * Clarify what Want-* means in responses. #2097

 * Editorial changes to structure and to align to HTTP style guide.

Since draft-ietf-httpbis-digest-headers-07

 * Introduced Repr-Digest and Want-Repr-Digest, and deprecated Digest
 and Want-Digest. Use of Structured Fields. #1993, #1919

 * IANA refactoring. #1983

 * No normative text in security considerations. #1972

Since draft-ietf-httpbis-digest-headers-06

 * Remove id-sha-256 and id-sha-512 from the list of supported
 algorithms #855

Since draft-ietf-httpbis-digest-headers-05

 * Reboot digest-algorithm values registry #1567

 * Add Content-Digest #1542

 * Remove SRI section #1478

Polli & Pardue Expires 11 January 2024 [Page 40]

Internet-Draft Digest Fields July 2023

Since draft-ietf-httpbis-digest-headers-04

 * Improve SRI section #1354

 * About duplicate digest-algorithms #1221

 * Improve security considerations #852

 * md5 and sha deprecation references #1392

 * Obsolete 3230 #1395

 * Editorial #1362

Since draft-ietf-httpbis-digest-headers-03

 * Reference semantics-12

 * Detail encryption quirks

 * Details on Algorithm agility #1250

 * Obsolete parameters #850

Since draft-ietf-httpbis-digest-headers-02

 * Deprecate SHA-1 #1154

 * Avoid id-* with encrypted content

 * Digest is independent of MESSAGING and HTTP/1.1 is not normative
 #1215

 * Identity is not a valid field value for content-encoding #1223

 * Mention trailers #1157

 * Reference httpbis-semantics #1156

 * Add contentMD5 as an obsoleted digest-algorithm #1249

 * Use lowercase digest-algorithms names in the doc and in the
 digest-algorithm IANA table.

Since draft-ietf-httpbis-digest-headers-01

 * Digest of error responses is computed on the error representation-
 data #1004

Polli & Pardue Expires 11 January 2024 [Page 41]

Internet-Draft Digest Fields July 2023

 * Effect of HTTP semantics on payload and message body moved to
 appendix #1122

 * Editorial refactoring, moving headers sections up. #1109-#1112,
 #1116, #1117, #1122-#1124

Since draft-ietf-httpbis-digest-headers-00

 * Align title with document name

 * Add id-sha-* algorithm examples #880

 * Reference [RFC6234] and [RFC3174] instead of FIPS-1

 * Deprecate MD5

 * Obsolete ADLER-32 but don’t forbid it #828

 * Update CRC32C value in IANA table #828

 * Use when acting on resources (POST, PATCH) #853

 * Added Relationship with SRI, draft Use Cases #868, #971

 * Warn about the implications of Content-Location

Authors’ Addresses

 Roberto Polli
 Team Digitale, Italian Government
 Italy
 Email: robipolli@gmail.com

 Lucas Pardue
 Cloudflare
 Email: lucaspardue.24.7@gmail.com

Polli & Pardue Expires 11 January 2024 [Page 42]

