Shortest Path Routing Extensions for BGP Protocol
draft-ietf-lsvr-bgp-spf-05

Abstract

Many Massively Scaled Data Centers (MSDCs) have converged on simplified layer 3 routing. Furthermore, requirements for operational simplicity have lead many of these MSDCs to converge on BGP as their single routing protocol for both their fabric routing and their Data Center Interconnect (DCI) routing. This document describes a solution which leverages BGP Link-State distribution and the Shortest Path First (SPF) algorithm similar to Internal Gateway Protocols (IGPs) such as OSPF.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 23, 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Table of Contents

1. Introduction .. 3
 1.1. BGP Shortest Path First (SPF) Motivation 4
 1.2. Requirements Language 5
2. BGP Peering Models ... 5
 2.1. BGP Single-Hop Peering on Network Node Connections ... 5
 2.2. BGP Peering Between Directly Connected Network Nodes .. 6
 2.3. BGP Peering in Route-Reflector or Controller Topology .. 6
3. BGP-LS Shortest Path Routing (SPF) SAFI 6
4. Extensions to BGP-LS .. 7
 4.1. Node NLRI Usage and Modifications 7
 4.2. Link NLRI Usage .. 8
 4.2.1. BGP-LS Link NLRI Attribute Prefix-Length TLVs 9
 4.2.2. BGP-LS Link NLRI Attribute BGP SPF Status TLV ... 9
 4.2.3. BGP-LS Prefix NLRI Attribute SPF Status TLV 10
 4.3. Prefix NLRI Usage 10
 4.4. BGP-LS Attribute Sequence-Number TLV 10
5. Decision Process with SPF Algorithm 11
 5.1. Phase-1 BGP NLRI Selection 12
 5.2. Dual Stack Support 13
 5.3. SPF Calculation based on BGP-LS NLRI 13
 5.4. NEXT_HOP Manipulation 16
 5.5. IPv4/IPv6 Unicast Address Family Interaction 16
 5.6. NLRI Advertisement and Convergence 17
 5.6.1. Link/Prefix Failure Convergence 17
1. Introduction

Many Massively Scaled Data Centers (MSDCs) have converged on simplified layer 3 routing. Furthermore, requirements for operational simplicity have lead many of these MSDCs to converge on BGP [RFC4271] as their single routing protocol for both their fabric routing and their Data Center Interconnect (DCI) routing. Requirements and procedures for using BGP are described in [RFC7938]. This document describes an alternative solution which leverages BGP-LS [RFC7752] and the Shortest Path First algorithm similar to Internal Gateway Protocols (IGPs) such as OSPF [RFC2328].

[RFC4271] defines the Decision Process that is used to select routes for subsequent advertisement by applying the policies in the local Policy Information Base (PIB) to the routes stored in its Adj-RIBs-In. The output of the Decision Process is the set of routes that are announced by a BGP speaker to its peers. These selected routes are stored by a BGP speaker in the speaker’s Adj-RIBs-Out according to policy.

[RFC7752] describes a mechanism by which link-state and TE information can be collected from networks and shared with external components using BGP. This is achieved by defining NLRI advertised within the BGP-LS/BGP-LS-SPF AFI/SAFI. The BGP-LS extensions defined in [RFC7752] makes use of the Decision Process defined in [RFC4271].

This document augments [RFC7752] by replacing its use of the existing Decision Process. Rather than reusing the BGP-LS SAFI, the BGP-LS-SPF SAFI is introduced to insure backward compatibility. The Phase 1 and 2 decision functions of the Decision Process are replaced with the Shortest Path First (SPF) algorithm also known as the Dijkstra algorithm. The Phase 3 decision function is also simplified since it is no longer dependent on the previous phases. This solution avails the benefits of both BGP and SPF-based IGPs. These include TCP based
flow-control, no periodic link-state refresh, and completely incremental NLRI advertisement. These advantages can reduce the overhead in MSDCs where there is a high degree of Equal Cost Multi-Path (ECMPs) and the topology is very stable. Additionally, using a SPF-based computation can support fast convergence and the computation of Loop-Free Alternatives (LFAs) [RFC5286] in the event of link failures. Furthermore, a BGP based solution lends itself to multiple peering models including those incorporating route-reflectors [RFC4456] or controllers.

Support for Multiple Topology Routing (MTR) as described in [RFC4915] is an area for further study dependent on deployment requirements.

1.1. BGP Shortest Path First (SPF) Motivation

Given that [RFC7938] already describes how BGP could be used as the sole routing protocol in an MSDC, one might question the motivation for defining an alternate BGP deployment model when a mature solution exists. For both alternatives, BGP offers the operational benefits of a single routing protocol. However, BGP SPF offers some unique advantages above and beyond standard BGP distance-vector routing.

A primary advantage is that all BGP speakers in the BGP SPF routing domain will have a complete view of the topology. This will allow support for ECMP, IP fast-reroute (e.g., Loop-Free Alternatives), Shared Risk Link Groups (SRLGs), and other routing enhancements without advertisement of addition BGP paths or other extensions. In short, the advantages of an IGP such as OSPF [RFC2328] are availed in BGP.

With the simplified BGP decision process as defined in Section 5.1, NLRI changes can be disseminated throughout the BGP routing domain much more rapidly (equivalent to IGPs with the proper implementation).

Another primary advantage is a potential reduction in NLRI advertisement. With standard BGP distance-vector routing, a single link failure may impact 100s or 1000s prefixes and result in the withdrawal or re-advertisement of the attendant NLRI. With BGP SPF, only the BGP speakers corresponding to the link NLRI need withdraw the corresponding BGP-LS Link NLRI. This advantage will contribute to both faster convergence and better scaling.

With controller and route-reflector peering models, BGP SPF advertisement and distributed computation require a minimal number of sessions and copies of the NLRI since only the latest version of the NLRI from the originator is required. Given that verification of the adjacencies is done outside of BGP (see Section 2), each BGP speaker
will only need as many sessions and copies of the NLRI as required for redundancy (e.g., one for the SPF computation and another for backup). Functions such as Optimized Route Reflection (ORR) are supported without extension by virtue of the primary advantages. Additionally, a controller could inject topology that is learned outside the BGP routing domain.

Given that controllers are already consuming BGP-LS NLRI [RFC7752], reusing for the BGP-LS SPF leverages the existing controller implementations.

Another potential advantage of BGP SPF is that both IPv6 and IPv4 can be supported in the same address family using the same topology. Although not described in this version of the document, multi-topology extensions can be used to support separate IPv4, IPv6, unicast, and multicast topologies while sharing the same NLRI.

Finally, the BGP SPF topology can be used as an underlay for other BGP address families (using the existing model) and realize all the above advantages. A simplified peering model using IPv6 link-local addresses as next-hops can be deployed similar to [RFC5549].

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. BGP Peering Models

Depending on the requirements, scaling, and capabilities of the BGP speakers, various peering models are supported. The only requirement is that all BGP speakers in the BGP SPF routing domain receive link-state NLRI on a timely basis, run an SPF calculation, and update their data plane appropriately. The content of the Link NLRI is described in Section 4.2.

2.1. BGP Single-Hop Peering on Network Node Connections

The simplest peering model is the one described in section 5.2.1 of [RFC7938]. In this model, EBGP single-hop sessions are established over direct point-to-point links interconnecting the SPF domain nodes. For the purposes of BGP SPF, Link NLRI is only advertised if a single-hop BGP session has been established and the Link-State/SPF address family capability has been exchanged [RFC4790] on the corresponding session. If the session goes down, the corresponding
Link NLRI will be withdrawn. Topologically, this would be equivalent to the peering model in [RFC7938] where there is a BGP session on every link in the data center switch fabric.

2.2. BGP Peering Between Directly Connected Network Nodes

In this model, BGP speakers peer with all directly connected network nodes but the sessions may be multi-hop and the direct connection discovery and liveliness detection for those connections are independent of the BGP protocol. How this is accomplished is outside the scope of this document. Consequently, there will be a single session even if there are multiple direct connections between BGP speakers. For the purposes of BGP SPF, Link NLRI is advertised as long as a BGP session has been established, the Link-State/SPF address family capability has been exchanged [RFC4790] and the corresponding link is considered is up and considered operational. This is much like the previous peering model only peering is on a single loopback address and the switch fabric links can be unnumbered. However, there will be the same number of sessions as with the previous peering model unless there are parallel links between switches in the fabric.

2.3. BGP Peering in Route-Reflector or Controller Topology

In this model, BGP speakers peer solely with one or more Route Reflectors [RFC4456] or controllers. As in the previous model, direct connection discovery and liveliness detection for those connections are done outside the BGP protocol. More specifically, the liveliness detection is done using BFD protocol described in [RFC5880]. For the purposes of BGP SPF, Link NLRI is advertised as long as the corresponding link is up and considered operational.

This peering model, known as sparse peering, allows for many fewer BGP sessions and, consequently, instances of the same NLRI received from multiple peers. It is discussed in greater detail in [I-D.ietf-lsvr-applicability].

3. BGP-LS Shortest Path Routing (SPF) SAFI

In order to replace the Phase 1 and 2 decision functions of the existing Decision Process with an SPF-based Decision Process and streamline the Phase 3 decision functions in a backward compatible manner, this draft introduces the BGP-LS-SPF SAFI for BGP-LS SPF operation. The BGP-LS-SPF (AF 16388 / SAFI TBD1) [RFC4790] is allocated by IANA as specified in the Section 6. A BGP speaker using the BGP-LS SPF extensions described herein MUST exchange the AFI/SAFI using Multiprotocol Extensions Capability Code [RFC4760] with other BGP speakers in the SPF routing domain.
4. Extensions to BGP-LS

[RFC7752] describes a mechanism by which link-state and TE information can be collected from networks and shared with external components using BGP protocol. It describes both the definition of BGP-LS NLRI that describes links, nodes, and prefixes comprising IGP link-state information and the definition of a BGP path attribute (BGP-LS attribute) that carries link, node, and prefix properties and attributes, such as the link and prefix metric or auxiliary Router-IDs of nodes, etc.

The BGP protocol will be used in the Protocol-ID field specified in table 1 of [I-D.ietf-idr-bgpls-segment-routing-epe]. The local and remote node descriptors for all NLRI will be the BGP Router-ID (TLV 516) and either the AS Number (TLV 512) [RFC7752] or the BGP Confederation Member (TLV 517) [RFC8402]. However, if the BGP Router-ID is known to be unique within the BGP Routing domain, it can be used as the sole descriptor.

4.1. Node NLRI Usage and Modifications

The SPF capability is a new Node Attribute TLV that will be added to those defined in table 7 of [RFC7752]. The new attribute TLV will only be applicable when BGP is specified in the Node NLRI Protocol ID field. The TBD TLV type will be defined by IANA. The new Node Attribute TLV will contain a single-octet SPF algorithm as defined in [RFC8402].
The SPF Algorithm may take the following values:

0 - Normal Shortest Path First (SPF) algorithm based on link metric. This is the standard shortest path algorithm as computed by the IGP protocol. Consistent with the deployed practice for link-state protocols, Algorithm 0 permits any node to overwrite the SPF path with a different path based on its local policy.

1 - Strict Shortest Path First (SPF) algorithm based on link metric. The algorithm is identical to Algorithm 0 but Algorithm 1 requires that all nodes along the path will honor the SPF routing decision. Local policy at the node claiming support for Algorithm 1 MUST NOT alter the SPF paths computed by Algorithm 1.

Note that usage of Strict Shortest Path First (SPF) algorithm is defined in the IGP algorithm registry but usage is restricted to [I-D.ietf-idr-bgpls-segment-routing-epe]. Hence, its usage for BGP-LS SPF is out of scope.

When computing the SPF for a given BGP routing domain, only BGP nodes advertising the SPF capability attribute will be included the Shortest Path Tree (SPT).

4.2. Link NLRI Usage

The criteria for advertisement of Link NLRI are discussed in Section 2.

Link NLRI is advertised with local and remote node descriptors as described above and unique link identifiers dependent on the addressing. For IPv4 links, the links local IPv4 (TLV 259) and remote IPv4 (TLV 260) addresses will be used. For IPv6 links, the local IPv6 (TLV 261) and remote IPv6 (TLV 262) addresses will be used. For unnumbered links, the link local/remote identifiers (TLV 258) will be used. For links supporting having both IPv4 and IPv6 addresses, both sets of descriptors may be included in the same Link NLRI. The link identifiers are described in table 5 of [RFC7752].

The link IGP metric attribute TLV (TLV 1095) as well as any others required for non-SPF purposes SHOULD be advertised. Algorithms such
as setting the metric inversely to the link speed as done in the OSPF MIB [RFC4750] MAY be supported. However, this is beyond the scope of this document.

4.2.1. BGP-LS Link NLRI Attribute Prefix-Length TLVs

Two BGP-LS Attribute TLVs to BGP-LS Link NLRI are defined to advertise the prefix length associated with the IPv4 and IPv6 link prefixes. The prefix length is used for the optional installation of prefixes corresponding to Link NLRI as defined in Section 5.3.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| TBD IPv4 or IPv6 Type | Length |
+-+
| Prefix-Length |
+-+-+-+-+-+-+-+-+

Prefix-length - A one-octet length restricted to 1-32 for IPv4 Link NLIR endpoint prefixes and 1-128 for IPv6 Link NLRI endpoint prefixes.

4.2.2. BGP-LS Link NLRI Attribute BGP SPF Status TLV

A BGP-LS Attribute TLV to BGP-LS Link NLRI is defined to indicate the status of the link with respect to the BGP SPF calculation. This will be used to expedite convergence for link failures as discussed in Section 5.6.1. If the BGP SPF Status TLV is not included with the Link NLRI, the link is considered up and available.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| TBD Type | Length |
+-+
| BGP SPF Status | |
+-+-+-+-+-+-+-+-+

BGP Status Values:
0 - Reserved
1 - Link Unreachable with respect to BGP SPF
2-254 - Undefined
255 - Reserved
4.2.3. BGP-LS Prefix NLRI Attribute SPF Status TLV

A BGP-LS Attribute TLV to BGP-LS Prefix NLRI is defined to indicate the status of the prefix with respect to the BGP SPF calculation. This will be used to expedite convergence for prefix unreachability as discussed in Section 5.6.1. If the SPF Status TLV is not included with the Prefix NLRI, the prefix is considered reachable.

```
+--------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+
| TBD Type | Length | BGP SPF Status |
+--------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
```

BGP Status Values:
- 0 - Reserved
- 1 - Prefix down with respect to SPF
- 2-254 - Undefined
- 255 - Reserved

4.3. Prefix NLRI Usage

Prefix NLRI is advertised with a local node descriptor as described above and the prefix and length used as the descriptors (TLV 265) as described in [RFC7752]. The prefix metric attribute TLV (TLV 1155) as well as any others required for non-SPF purposes SHOULD be advertised. For loopback prefixes, the metric should be 0. For non-loopback prefixes, the setting of the metric is a local matter and beyond the scope of this document.

4.4. BGP-LS Attribute Sequence-Number TLV

A new BGP-LS Attribute TLV to BGP-LS NLRI types is defined to assure the most recent version of a given NLRI is used in the SPF computation. The TBD TLV type will be defined by IANA. The new BGP-LS Attribute TLV will contain an 8-octet sequence number. The usage of the Sequence Number TLV is described in Section 5.1.
Sequence Number

The 64-bit strictly increasing sequence number is incremented for every version of BGP-LS NLRI originated. BGP speakers implementing this specification MUST use available mechanisms to preserve the sequence number’s strictly increasing property for the deployed life of the BGP speaker (including cold restarts). One mechanism for accomplishing this would be to use the high-order 32 bits of the sequence number as a wrap/boot count that is incremented anytime the BGP router loses its sequence number state or the low-order 32 bits wrap.

When incrementing the sequence number for each self-originated NLRI, the sequence number should be treated as an unsigned 64-bit value. If the lower-order 32-bit value wraps, the higher-order 32-bit value should be incremented and saved in non-volatile storage. If by some chance the BGP Speaker is deployed long enough that there is a possibility that the 64-bit sequence number may wrap or a BGP Speaker completely loses its sequence number state (e.g., the BGP speaker hardware is replaced or experiences a cold-start), the phase 1 decision function (see Section 5.1) rules will insure convergence, albeit, not immediately.

5. Decision Process with SPF Algorithm

The Decision Process described in [RFC4271] takes place in three distinct phases. The Phase 1 decision function of the Decision Process is responsible for calculating the degree of preference for each route received from a BGP speaker’s peer. The Phase 2 decision function is invoked on completion of the Phase 1 decision function and is responsible for choosing the best route out of all those available for each distinct destination, and for installing each chosen route into the Loc-RIB. The combination of the Phase 1 and 2 decision functions is characterized as a Path Vector algorithm.

The SPF based Decision process replaces the BGP best-path Decision process described in [RFC4271]. This process starts with selecting only those Node NLRI whose SPF capability TLV matches with the local
BGP speaker’s SPF capability TLV value. Since Link-State NLRI always contains the local descriptor [RFC7752], it will only be originated by a single BGP speaker in the BGP routing domain. These selected Node NLRI and their Link/Prefix NLRI are used to build a directed graph during the SPF computation. The best paths for BGP prefixes are installed as a result of the SPF process.

When BGP-LS-SPF NLRI is received, all that is required is to determine whether it is the best-path by examining the Node-ID and sequence number as described in Section 5.1. If the received best-path NLRI had changed, it will be advertised to other BGP-LS-SPF peers. If the attributes have changed (other than the sequence number), a BGP SPF calculation will be scheduled. However, a changed NLRI MAY be advertised to other peers almost immediately and propagation of changes can approach IGP convergence times. To accomplish this, the MinRouteAdvertisementIntervalTimer and MinASOriginationIntervalTimer [RFC4271] are not applicable to the BGP-LS-SPF SAFI. Rather, SPF calculations SHOULD be triggered and dampened consistent with the SPF backoff algorithm specified in [RFC8405].

The Phase 3 decision function of the Decision Process [RFC4271] is also simplified since under normal SPF operation, a BGP speaker would advertise the NLRI selected for the SPF to all BGP peers with the BGP-LS/BGP-LS-SPF AFI/SAFI. Application of policy would not be prevented however its usage to best-path process would be limited as the SPF relies solely on link metrics.

5.1. Phase-1 BGP NLRI Selection

The rules for NLRI selection are greatly simplified from [RFC4271].

1. If the NLRI is received from the BGP speaker originating the NLRI (as determined by the comparing BGP Router ID in the NLRI Node identifiers with the BGP speaker Router ID), then it is preferred over the same NLRI from non-originators. This rule will assure that stale NLRI is updated even if a BGP-LS router loses its sequence number state due to a cold-start.

2. If the Sequence-Number TLV is present in the BGP-LS Attribute, then the NLRI with the most recent, i.e., highest sequence number is selected. BGP-LS NLRI with a Sequence-Number TLV will be considered more recent than NLRI without a BGP-LS Attribute or a BGP-LS Attribute that doesn’t include the Sequence-Number TLV.

3. The final tie-breaker is the NLRI from the BGP Speaker with the numerically largest BGP Router ID.

When a BGP speaker completely loses its sequence number state, i.e., due to a cold start, or in the unlikely possibility that that sequence number wraps, the BGP routing domain will still converge. This is due to the fact that BGP speakers adjacent to the router will always accept self-originated NLRI from the associated speaker as more recent (rule # 1). When BGP speaker reestablishes a connection with its peers, any existing session will be taken down and stale NLRI will be replaced by the new NLRI and stale NLRI will be discarded independent of whether or not BGP graceful restart is deployed, [RFC4724]. The adjacent BGP speaker will update their NLRI advertisements in turn until the BGP routing domain has converged.

The modified SPF Decision Process performs an SPF calculation rooted at the BGP speaker using the metrics from Link and Prefix NLRI Attribute TLVs [RFC7752]. As a result, any attributes that would influence the Decision process defined in [RFC4271] like ORIGIN, MULTI_EXIT_DISC, and LOCAL_PREF attributes are ignored by the SPF algorithm. Furthermore, the NEXT_HOP attribute value is preserved but otherwise ignored during the SPF or best-path.

5.2. Dual Stack Support

The SPF-based decision process operates on Node, Link, and Prefix NLRI that support both IPv4 and IPv6 addresses. Whether to run a single SPF instance or multiple SPF instances for separate AFs is a matter of a local implementation. Normally, IPv4 next-hops are calculated for IPv4 prefixes and IPv6 next-hops are calculated for IPv6 prefixes. However, an interesting use-case is deployment of [RFC5549] where IPv6 next-hops are calculated for both IPv4 and IPv6 prefixes. As stated in Section 1, support for Multiple Topology Routing (MTR) is an area for future study.

5.3. SPF Calculation based on BGP-LS NLRI

This section details the BGP-LS SPF local routing information base (RIB) calculation. The router will use BGP-LS Node, Link, and Prefix NLRI to populate the local RIB using the following algorithm. This calculation yields the set of intra-area routes associated with the BGP-LS domain. A router calculates the shortest-path tree using itself as the root. Variations and optimizations of the algorithm are valid as long as it yields the same set of routes. The algorithm below supports Equal Cost Multi-Path (ECMP) routes. Weighted Unequal Cost Multi-Path are out of scope. The organization of this section owes heavily to section 16 of [RFC2328].

The following abstract data structures are defined in order to specify the algorithm.
Local Route Information Base (RIB) - This is abstract contains reachability information (i.e., next hops) for all prefixes (both IPv4 and IPv6) as well as the Node NLRI reachability. Implementations may choose to implement this as separate RIBs for each address family and/or Node NLRI.

Link State NLRI Database (LSNDB) - Database of BGP-LS NLRI that facilitates access to all Node, Link, and Prefix NLRI as well as all the Link and Prefix NLRI corresponding to a given Node NLRI. Other optimization, such as, resolving bi-directional connectivity associations between Link NLRI are possible but of scope of this document.

Candidate List - This is a list of candidate Node NLRI with the lowest cost Node NLRI at the front of the list. It is typically implemented as a heap but other concrete data structures have also been used.

The algorithm is comprised of the steps below:

1. The current local RIB is invalidated. The local RIB is built again from scratch. The existing routing entries are preserved for comparison to determine changes that need to be installed in the global RIB.

2. The computing router’s Node NLRI is installed in the local RIB with a cost of 0 and as as the sole entry in the candidate list.

3. The Node NLRI with the lowest cost is removed from the candidate list for processing. The Node corresponding to this NLRI will be referred to as the Current Node. If the candidate list is empty, the SPF calculation has completed and the algorithm proceeds to step 6.

4. All the Prefix NLRI with the same Node Identifiers as the Current Node will be considered for installation. The cost for each prefix is the metric advertised in the Prefix NLRI added to the cost to reach the Current Node.

 * If the BGP-LS Prefix attribute includes a BGP-SPF Status TLV indicating the prefix is unreachable, the BGP-LS Prefix NLRI is considered unreachable and the next BGP-LS Prefix NLRI is examined.

 * If the prefix is in the local RIB and the cost is greater than the Current route’s metric, the Prefix NLRI does not contribute to the route and is ignored.
* If the prefix is in the local RIB and the cost is less than the current route’s metric, the Prefix is installed with the Current Node’s next-hops replacing the local RIB route’s next-hops and the metric being updated.

* If the prefix is in the local RIB and the cost is same as the current route’s metric, the Prefix is installed with the Current Node’s next-hops being merged with local RIB route’s next-hops.

5. All the Link NLRI with the same Node Identifiers as the Current Node will be considered for installation. Each link will be examined and will be referred to in the following text as the Current Link. The cost of the Current Link is the advertised metric in the Link NLRI added to the cost to reach the Current Node.

* Optionally, the prefix(es) associated with the Current Link are installed into the local RIB using the same rules as were used for Prefix NLRI in the previous steps.

* The Current Link’s endpoint Node NLRI is accessed (i.e., the Node NLRI with the same Node identifiers as the Link endpoint). If it exists, it will be referred to as the Endpoint Node NLRI and the algorithm will proceed as follows:

 + If the BGP-LS Link NLRI includes an BGP-SPF Status TLV indicating the link is down, the BGP-LS Link NLRI is considered down and the next BGP-LS Link NLRI is examined.

 + All the Link NLRI corresponding the Endpoint Node NLRI will be searched for a back-link NLRI pointing to the current node. Both the Node identifiers and the Link endpoint identifiers in the Endpoint Node’s Link NLRI must match for a match. If there is no corresponding Link NLRI corresponding to the Endpoint Node NLRI, the Endpoint Node NLRI fails the bi-directional connectivity test and is not processed further.

 + If the Endpoint Node NLRI is not on the candidate list, it is inserted based on the link cost and BGP Identifier (the latter being used as a tie-breaker).

 + If the Endpoint Node NLRI is already on the candidate list with a lower cost, it need not be inserted again.
If the Endpoint Node NLRI is already on the candidate list with a higher cost, it must be removed and reinserted with a lower cost.

Return to step 3 to process the next lowest cost Node NLRI on the candidate list.

6. The local RIB is examined and changes (adds, deletes, modifications) are installed into the global RIB.

5.4. NEXT_HOP Manipulation

A BGP speaker that supports SPF extensions MAY interact with peers that don't support SPF extensions. If the BGP-LS address family is advertised to a peer not supporting the SPF extensions described herein, then the BGP speaker MUST conform to the NEXT_HOP rules specified in [RFC4271] when announcing the Link-State address family routes to those peers.

All BGP peers that support SPF extensions would locally compute the Loc-RIB next-hops as a result of the SPF process. Consequently, the NEXT_HOP attribute is always ignored on receipt. However, BGP speakers SHOULD set the NEXT_HOP address according to the NEXT_HOP attribute rules specified in [RFC4271].

5.5. IPv4/IPv6 Unicast Address Family Interaction

While the BGP-LS SPF address family and the IPv4/IPv6 unicast address families install routes into the same device routing tables, they will operate independently much the same as OSPF and IS-IS would operate today (i.e., "Ships-in-the-Night" mode). There will be no implicit route redistribution between the BGP address families. However, implementation specific redistribution mechanisms SHOULD be made available with the restriction that redistribution of BGP-LS SPF routes into the IPv4 address family applies only to IPv4 routes and redistribution of BGP-LS SPF route into the IPv6 address family applies only to IPv6 routes.

Given the fact that SPF algorithms are based on the assumption that all routers in the routing domain calculate the precisely the same SPF tree and install the same set of routes, it is RECOMMENDED that BGP-LS SPF IPv4/IPv6 routes be given priority by default when installed into their respective RIBs. In common implementations the prioritization is governed by route preference or administrative distance with lower being more preferred.
5.6. NLRI Advertisement and Convergence

5.6.1. Link/Prefix Failure Convergence

A local failure will prevent a link from being used in the SPF calculation due to the IGP bi-directional connectivity requirement. Consequently, local link failures should always be given priority over updates (e.g., withdrawing all routes learned on a session) in order to ensure the highest priority propagation and optimal convergence.

An IGP such as OSPF [RFC2328] will stop using the link as soon as the Router-LSA for one side of the link is received. With normal BGP advertisement, the link would continue to be used until the last copy of the BGP-LS Link NLRI is withdrawn. In order to avoid this delay, the originator of the Link NLRI will advertise a more recent version of the BGP-LS Link NLRI including the BGP-SPF Status TLV Section 4.2.2 indicating the link is down with respect to BGP-SPF. After some configurable period of time, e.g., 2-3 seconds, the BGP-LS Link NLRI can be withdrawn with no consequence. If the link becomes available in that period, the originator of the BGP-LS LINK NLRI will simply advertise a more recent version of the BGP-LS Link NLRI without the BGP-SPF status TLV in the BGP-LS Link Attributes.

Similarly, when a prefix becomes unreachable, a more recent version of the BGP-LS Prefix NLRI will be advertised with the BGP-SPF status TLV Section 4.2.3 indicating the prefix is unreachable in the BGP-LS Prefix Attributes and the prefix will be considered unreachable with respect to BGP SPF. After some configurable period of time, e.g., 2-3 seconds, the BGP-LS Prefix NLRI can be withdrawn with no consequence. If the prefix becomes reachable in that period, the originator of the BGP-LS Prefix NLRI will simply advertise a more recent version of the BGP-LS Prefix NLRI without the BGP-SPF status TLV in the BGP-LS Prefix Attributes.

5.6.2. Node Failure Convergence

With BGP without graceful restart [RFC4724], all the NLRI advertised by node are implicitly withdrawn when a session failure is detected. If fast failure detection such as BFD is utilized and the node is on the fastest converging path, the most recent versions of BGP-LS NLRI may be withdrawn while these versions are in-flight on longer paths. This will result the older version of the NLRI being used until the new versions arrive and, potentially, unnecessary route flaps. Therefore, BGP-LS SPF NLRI SHOULD always be retained before being implicitly withdrawn for a brief configurable interval, e.g., 2-3 seconds. This will not delay convergence since the adjacent nodes will detect the link failure and advertise a more recent NLRI.
indicating the link is down with respect to BGP SPF Section 5.6.1 and the BGP-SPF calculation will failure the bi-directional connectivity check.

5.7. Error Handling

When a BGP speaker receives a BGP Update containing a malformed SPF Capability TLV in the Node NLRI BGP-LS Attribute [RFC7752], it MUST ignore the received TLV and the Node NLRI and not pass it to other BGP peers as specified in [RFC7606]. When discarding a Node NLRI with malformed TLV, a BGP speaker SHOULD log an error for further analysis.

6. IANA Considerations

This document defines an AFI/SAFI for BGP-LS SPF operation and requests IANA to assign the BGP-LS/BGP-LS-SPF (AFI 16388 / SAFI TBD1) as described in [RFC4750].

This document also defines four attribute TLVs for BGP LS NLRI. We request IANA to assign TLVs for the SPF capability, Sequence Number, IPv4 Link Prefix-Length, and IPv6 Link Prefix-Length from the "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs" Registry.

7. Security Considerations

This extension to BGP does not change the underlying security issues inherent in the existing [RFC4271], [RFC4724], and [RFC7752].

8. Management Considerations

This section includes unique management considerations for the BGP-LS SPF address family.

8.1. Configuration

In addition to configuration of the BGP-LS SPF address family, implementations SHOULD support the configuration of the INITIAL_SPF_DELAY, SHORT_SPF_DELAY, LONG_SPF_DELAY, TIME_TO_LEARN, and HOLDDOWN_INTERVAL as documented in [RFC8405].

8.2. Operational Data

In order to troubleshoot SPF issues, implementations SHOULD support an SPF log including entries for previous SPF computations. Each SPF log entry would include the BGP-LS NLRI SPF triggering the SPF, SPF scheduled time, SPF start time, SPF end time, and SPF type if
different types of SPF are supported. Since the size of the log will be finite, implementations SHOULD also maintain counters for the total number of SPF computations of each type and the total number of SPF triggering events. Additionally, to troubleshoot SPF scheduling and backoff [RFC8405], the current SPF backoff state, remaining time-to-learn, remaining holddown, last trigger event time, last SPF time, and next SPF time should be available.

9. Acknowledgements

The authors would like to thank Sue Hares, Jorge Rabadan, Boris Hassanov, Dan Frost, and Fred Baker for their review and comments.

The authors extend special thanks to Eric Rosen for fruitful discussions on BGP-LS SPF convergence as compared to IGPs.

10. Contributors

In addition to the authors listed on the front page, the following co-authors have contributed to the document.

Derek Yeung
Arrcus, Inc.
derek@arrcus.com

Gunter Van De Velde
Nokia
gunter.van_de_velde@nokia.com

Abhay Roy
Cisco Systems
akr@cisco.com

Venu Venugopal
Cisco Systems
venuv@cisco.com

11. References

11.1. Normative References

[I-D.ietf-idr-bgpls-segment-routing-epe]
11.2. Information References

[I-D.ietf-lsvr-applicability]

Authors’ Addresses

Keyur Patel
Arrcus, Inc.

Email: keyur@arrcus.com

Acee Lindem
Cisco Systems
301 Midenhall Way
Cary, NC 27513
USA

Email: acee@cisco.com

Shawn Zandi
LinkedIn
222 2nd Street
San Francisco, CA 94105
USA

Email: szandi@linkedin.com

Wim Henderickx
Nokia
Antwerp
Belgium

Email: wim.henderickx@nokia.com
Abstract

Many Massively Scaled Data Centers (MSDCs) have converged on simplified layer 3 routing. Furthermore, requirements for operational simplicity have led many of these MSDCs to converge on BGP as their single routing protocol for both their fabric routing and their Data Center Interconnect (DCI) routing. This document describes extensions to BGP to use BGP Link-State distribution and the Shortest Path First (SPF) algorithm used by Internal Gateway Protocols (IGPs) such as OSPF. In doing this, it allows BGP to be efficiently used as both the underlay protocol and the overlay protocol in MSDCs.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction ... 3
 1.1. Terminology ... 4
 1.2. BGP Shortest Path First (SPF) Motivation 4
 1.3. Document Overview 6
 1.4. Requirements Language 6
2. Base BGP Protocol Relationship 6
3. BGP Link-State (BGP-LS) Relationship 7
4. BGP Peering Models .. 8
 4.1. BGP Single-Hop Peering on Network Node Connections 8
 4.2. BGP Peering Between Directly-Connected Nodes 8
 4.3. BGP Peering in Route-Reflector or Controller Topology ... 9
5. BGP Shortest Path Routing (SPF) Protocol Extensions 9
 5.1. BGP-LS Shortest Path Routing (SPF) SAFI 9
 5.1.1. BGP-LS-SPF NLRI TLVs 9
 5.1.2. BGP-LS Attribute 10
 5.2. Extensions to BGP-LS 11
 5.2.1. Node NLRI Usage 11
 5.2.1.1. BGP-LS-SPF Node NLRI Attribute SPF Capability TLV .. 11
 5.2.1.2. BGP-LS-SPF Node NLRI Attribute SPF Status TLV ... 12
 5.2.2. Link NLRI Usage 13
 5.2.2.1. BGP-LS-SPF Link NLRI Attribute Prefix-Length TLVs ... 14
 5.2.2.2. BGP-LS-SPF Link NLRI Attribute SPF Status TLV ... 15
 5.2.3. IPv4/IPv6 Prefix NLRI Usage 16
 5.2.3.1. BGP-LS-SPF Prefix NLRI Attribute SPF Status TLV ... 16
 5.2.4. BGP-LS Attribute Sequence-Number TLV 17
 5.3. NEXT_HOP Manipulation 18
6. Decision Process with SPF Algorithm 18
 6.1. BGP NLRI Selection 19
 6.1.1. BGP Self-Originated NLRI 20
 6.2. Dual Stack Support 21
 6.3. SPF Calculation based on BGP-LS-SPF NLRI 21
 6.4. IPv4/IPv6 Unicast Address Family Interaction 26
 6.5. NLRI Advertisement 26
 6.5.1. Link/Prefix Failure Convergence 26
1. Introduction

Many Massively Scaled Data Centers (MSDCs) have converged on simplified layer 3 routing. Furthermore, requirements for operational simplicity have led many of these MSDCs to converge on BGP [RFC4271] as their single routing protocol for both their fabric routing and their Data Center Interconnect (DCI) routing [RFC7938]. This document describes an alternative solution which leverages BGP-LS [RFC7752] and the Shortest Path First algorithm used by Internal Gateway Protocols (IGPs) such as OSPF [RFC2328].

This document leverages both the BGP protocol [RFC4271] and the BGP-LS [RFC7752] protocols. The relationship, as well as the scope of changes are described respectively in Section 2 and Section 3. The modifications to [RFC4271] for BGP SPF described herein only apply to IPv4 and IPv6 as underlay unicast Subsequent Address Families Identifiers (SAFIs). Operations for any other BGP SAFIs are outside the scope of this document.

This solution avails the benefits of both BGP and SPF-based IGPs. These include TCP based flow-control, no periodic link-state refresh, and completely incremental NLRI advertisement. These advantages can reduce the overhead in MSDCs where there is a high degree of Equal Cost Multi-Path (ECMPs) and the topology is very stable.

Additionally, using an SPF-based computation can support fast convergence and the computation of Loop-Free Alternatives (LFAs). The SPF LFA extensions defined in [RFC5286] can be similarly applied to BGP SPF calculations. However, the details are a matter of
Internet-Draft BGP Link-State SPF Routing February 2022

implementation detail. Furthermore, a BGP-based solution lends itself to multiple peering models including those incorporating route-reflectors [RFC4456] or controllers.

1.1. Terminology

This specification reuses terms defined in section 1.1 of [RFC4271] including BGP speaker, NLRI, and Route.

Additionally, this document introduces the following terms:

BGP SPF Routing Domain: A set of BGP routers that are under a single administrative domain and exchange link-state information using the BGP-LS-SPF SAFI and compute routes using BGP SPF as described herein.

BGP-LS-SPF NLRI: This refers to BGP-LS Network Layer Reachability Information (NLRI) that is being advertised in the BGP-LS-SPF SAFI (Section 5.1) and is being used for BGP SPF route computation.

Dijkstra Algorithm: An algorithm for computing the shortest path from a given node in a graph to every other node in the graph. At each iteration of the algorithm, there is a list of candidate vertices. Paths from the root to these vertices have been found, but not necessarily the shortest ones. However, the paths to the candidate vertex that is closest to the root are guaranteed to be shortest; this vertex is added to the shortest-path tree, removed from the candidate list, and its adjacent vertices are examined for possible addition to/modification of the candidate list. The algorithm then iterates again. It terminates when the candidate list becomes empty. [RFC2328]

1.2. BGP Shortest Path First (SPF) Motivation

Given that [RFC7938] already describes how BGP could be used as the sole routing protocol in an MSDC, one might question the motivation for defining an alternate BGP deployment model when a mature solution exists. For both alternatives, BGP offers the operational benefits of a single routing protocol as opposed to the combination of an IGP for the underlay and BGP as an overlay. However, BGP SPF offers some unique advantages above and beyond standard BGP distance-vector routing. With BGP SPF, the standard hop-by-hop peering model is relaxed.

A primary advantage is that all BGP SPF speakers in the BGP SPF routing domain will have a complete view of the topology. This will allow support for ECMP, IP fast-reroute (e.g., Loop-Free Alternatives), Shared Risk Link Groups (SRLGs), and other routing
enhancements without advertisement of additional BGP paths [RFC7911] or other extensions. In short, the advantages of an IGP such as OSPF [RFC2328] are availed in BGP.

With the simplified BGP decision process as defined in Section 6, NLRI changes can be disseminated throughout the BGP routing domain much more rapidly (equivalent to IGPs with the proper implementation). The added advantage of BGP using TCP for reliable transport leverages TCP’s inherent flow-control and guaranteed in-order delivery.

Another primary advantage is a potential reduction in NLRI advertisement. With standard BGP distance-vector routing, a single link failure may impact 100s or 1000s prefixes and result in the withdrawal or re-advertisement of the attendant NLRI. With BGP SPF, only the BGP SPF speakers corresponding to the link NLRI need to withdraw the corresponding BGP-LS-SPF Link NLRI. Additionally, the changed NLRI will be advertised immediately as opposed to normal BGP where it is only advertised after the best route selection. These advantages will afford NLRI dissemination throughout the BGP SPF routing domain with efficiencies similar to link-state protocols.

With controller and route-reflector peering models, BGP SPF advertisement and distributed computation require a minimal number of sessions and copies of the NLRI since only the latest version of the NLRI from the originator is required. Given that verification of the adjacencies is done outside of BGP (see Section 4), each BGP SPF speaker will only need as many sessions and copies of the NLRI as required for redundancy (see Section 4). Additionally, a controller could inject topology that is learned outside the BGP SPF routing domain.

Given that controllers are already consuming BGP-LS NLRI [RFC7752], this functionality can be reused for BGP-LS-SPF NLRI.

Another advantage of BGP SPF is that both IPv6 and IPv4 can be supported using the BGP-LS-SPF SAFI with the same BGP-LS-SPF NLRIs. In many MSDC fabrics, the IPv4 and IPv6 topologies are congruent, refer to Section 5.2.2 and Section 5.2.3. Although beyond the scope of this document, multi-topology extensions could be used to support separate IPv4, IPv6, unicast, and multicast topologies while sharing the same NLRI.

Finally, the BGP SPF topology can be used as an underlay for other BGP SAFIs (using the existing model) and realize all the above advantages.
1.3. Document Overview

The document begins with sections defining the precise relationship that BGP SPF has with both the base BGP protocol [RFC4271] (Section 2) and the BGP Link-State (BGP-LS) extensions [RFC7752] (Section 3). This is required to dispel the notion that BGP SPF is an independent protocol. The BGP peering models, as well as their respective trade-offs are then discussed in Section 4. The remaining sections, which make up the bulk of the document, define the protocol enhancements necessary to support BGP SPF. The BGP-LS extensions to support BGP SPF are defined in Section 5. The replacement of the base BGP decision process with the SPF computation is specified in Section 6. Finally, BGP SPF error handling is defined in Section 7.

1.4. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Base BGP Protocol Relationship

With the exception of the decision process, the BGP SPF extensions leverage the BGP protocol [RFC4271] without change. This includes the BGP protocol Finite State Machine, BGP messages and their encodings, processing of BGP messages, BGP attributes and path attributes, BGP NLRI encodings, and any error handling defined in the [RFC4271] and [RFC7606].

Due to the changes to the decision process, there are mechanisms and encodings that are no longer applicable. While not necessarily required for computation, the ORIGIN, AS_PATH, MULTI_EXIT_DISC, LOCAL_PREF, and NEXT_HOP path attributes are mandatory and will be validated. The ATOMIC_AGGREGATE, and AGGREGATOR are not applicable within the context of BGP SPF and SHOULD NOT be advertised. However, if they are advertised, they will be accepted, validated, and propagated consistent with the BGP protocol.

Section 9 of [RFC4271] defines the decision process that is used to select routes for subsequent advertisement by applying the policies in the local Policy Information Base (PIB) to the routes stored in its Adj-RIBs-In. The output of the Decision Process is the set of routes that are announced by a BGP speaker to its peers. These selected routes are stored by a BGP speaker in the speaker's Adj-RIBs-Out according to policy.
The BGP SPF extension fundamentally changes the decision process, as described herein, to be more like a link-state protocol (e.g., OSPF [RFC2328]). Specifically:

1. BGP advertisements are readvertised to neighbors immediately without waiting or dependence on the route computation as specified in phase 3 of the base BGP decision process. Multiple peering models are supported as specified in Section 4.

2. Determining the degree of preference for BGP routes for the SPF calculation as described in phase 1 of the base BGP decision process is replaced with the mechanisms in Section 6.1.

3. Phase 2 of the base BGP protocol decision process is replaced with the Shortest Path First (SPF) algorithm, also known as the Dijkstra algorithm Section 1.1.

3. BGP Link-State (BGP-LS) Relationship

[RFC7752] describes a mechanism by which link-state and TE information can be collected from networks and shared with external entities using BGP. This is achieved by defining NLRI advertised using the BGP-LS AFI. The BGP-LS extensions defined in [RFC7752] make use of the decision process defined in [RFC4271]. This document reuses NLRI and TLVs defined in [RFC7752]. Rather than reusing the BGP-LS SAFI, the BGP-LS-SPF SAFI Section 5.1 is introduced to insure backward compatibility for the BGP-LS SAFI usage.

The BGP SPF extensions reuse the Node, Link, and Prefix NLRI defined in [RFC7752]. The usage of the BGP-LS NLRI, attributes, and attribute extensions is described in Section 5.2. The usage of others BGP-LS attributes is not precluded and is, in fact, expected. However, the details are beyond the scope of this document and will be specified in future documents.

Support for Multiple Topology Routing (MTR) similar to the OSPF MTR computation described in [RFC4915] is beyond the scope of this document. Consequently, the usage of the Multi-Topology TLV as described in section 3.2.1.5 of [RFC7752] is not specified.

The rules for setting the NLRI next-hop path attribute for the BGP-LS-SPF SAFI will follow the BGP-LS SAFI as specified in section 3.4 of [RFC7752].
4. BGP Peering Models

Depending on the topology, scaling, capabilities of the BGP SPF speakers, and redundancy requirements, various peering models are supported. The only requirements are that all BGP SPF speakers in the BGP SPF routing domain exchange BGP-LS-SPF NLRI, run an SPF calculation, and update their routing table appropriately.

4.1. BGP Single-Hop Peering on Network Node Connections

The simplest peering model is the one where EBGP single-hop sessions are established over direct point-to-point links interconnecting the nodes in the BGP SPF routing domain. Once the single-hop BGP session has been established and the BGP-LS-SPF AFI/SAFI capability has been exchanged [RFC4760] for the corresponding session, then the link is considered up from a BGP SPF perspective and the corresponding BGP-LS-SPF Link NLRI is advertised. If the session goes down, the corresponding Link NLRI will be withdrawn. Topologically, this would be equivalent to the peering model in [RFC7938] where there is a BGP session on every link in the data center switch fabric. The content of the Link NLRI is described in Section 5.2.2.

4.2. BGP Peering Between Directly-Connected Nodes

In this model, BGP SPF speakers peer with all directly-connected nodes but the sessions may be between loopback addresses (i.e., two-hop sessions) and the direct connection discovery and liveness detection for the interconnecting links are independent of the BGP protocol. For example, liveness detection could be done using the BFD protocol [RFC5880]. Precisely how discovery and liveness detection is accomplished is outside the scope of this document. Consequently, there will be a single BGP session even if there are multiple direct connections between BGP SPF speakers. BGP-LS-SPF Link NLRI is advertised as long as a BGP session has been established, the BGP-LS-SPF AFI/SAFI capability has been exchanged [RFC4760], and the link is operational as determined using liveness detection mechanisms outside the scope of this document. This is much like the previous peering model only peering is between loopback addresses and the interconnecting links can be unnumbered. However, since there are BGP sessions between every directly-connected node in the BGP SPF routing domain, there is only a reduction in BGP sessions when there are parallel links between nodes.
4.3. BGP Peering in Route-Reflector or Controller Topology

In this model, BGP SPF speakers peer solely with one or more Route Reflectors [RFC4456] or controllers. As in the previous model, direct connection discovery and liveness detection for those links in the BGP SPF routing domain are done outside of the BGP protocol. BGP-LS-SPF Link NLRI is advertised as long as the corresponding link is considered up as per the chosen liveness detection mechanism.

This peering model, known as sparse peering, allows for fewer BGP sessions and, consequently, fewer instances of the same NLRI received from multiple peers. Normally, the route-reflectors or controller BGP sessions would be on directly-connected links to avoid dependence on another routing protocol for session connectivity. However, multi-hop peering is not precluded. The number of BGP sessions is dependent on the redundancy requirements and the stability of the BGP sessions. This is discussed in greater detail in [I-D.ietf-lsvr-applicability].

5. BGP Shortest Path Routing (SPF) Protocol Extensions

5.1. BGP-LS Shortest Path Routing (SPF) SAFI

In order to replace the existing BGP decision process with an SPF-based decision process in a backward compatible manner by not impacting the BGP-LS SAFI, this document introduces the BGP-LS-SPF SAFI. The BGP-LS-SPF (AFI 16388 / SAFI 80) [RFC4760] is allocated by IANA as specified in the Section 8. In order for two BGP SPF speakers to exchange BGP SPF NLRI, they MUST exchange the Multiprotocol Extensions Capability [RFC5492] [RFC4760] to ensure that they are both capable of properly processing such NLRI. This is done with AFI 16388 / SAFI 80 for BGP-LS-SPF advertised within the BGP SPF Routing Domain. The BGP-LS-SPF SAFI is used to carry IPv4 and IPv6 prefix information in a format facilitating an SPF-based decision process.

5.1.1. BGP-LS-SPF NLRI TLVs

The NLRI format of BGP-LS-SPF SAFI uses exactly same format as the BGP-LS AFI [RFC7752]. In other words, all the TLVs used in BGP-LS AFI are applicable and used for the BGP-LS-SPF SAFI. These TLVs within BGP-LS-SPF NLRI advertise information that describes links, nodes, and prefixes comprising IGP link-state information.

In order to compare the NLRI efficiently, it is REQUIRED that all the TLVs within the given NLRI must be ordered in ascending order by the TLV type. For multiple TLVs of same type within a single NLRI, it is REQUIRED that these TLVs are ordered in ascending order by the TLV
value field. Comparison of the value fields is performed by treating the entire value field as a hexadecimal string. NLRIs having TLVs which do not follow the ordering rules MUST be considered as malformed and discarded with appropriate error logging.

[RFC7752] defines certain NLRI TLVs as a mandatory TLVs. These TLVs are considered mandatory for the BGP-LS-SPF SAFI as well. All the other TLVs are considered as an optional TLVs.

Given that there is a single BGP-LS Attribute for all the BGP-LS-SPF NLRI in a BGP Update, Section 3.3, [RFC7752], a BGP Update will normally contain a single BGP-LS-SPF NLRI since advertising multiple NLRI would imply identical attributes.

5.1.2. BGP-LS Attribute

The BGP-LS attribute of the BGP-LS-SPF SAFI uses exactly same format of the BGP-LS AFI [RFC7752]. In other words, all the TLVs used in BGP-LS attribute of the BGP-LS AFI are applicable and used for the BGP-LS attribute of the BGP-LS-SPF SAFI. This attribute is an optional, non-transitive BGP attribute that is used to carry link, node, and prefix properties and attributes. The BGP-LS attribute is a set of TLVs.

The BGP-LS attribute may potentially grow large in size depending on the amount of link-state information associated with a single Link-State NLRI. The BGP specification [RFC4271] mandates a maximum BGP message size of 4096 octets. It is RECOMMENDED that an implementation support [RFC8654] in order to accommodate larger size of information within the BGP-LS Attribute. BGP SPF speakers MUST ensure that they limit the TLVs included in the BGP-LS Attribute to ensure that a BGP update message for a single Link-State NLRI does not cross the maximum limit for a BGP message. The determination of the types of TLVs to be included by the BGP SPF speaker originating the attribute is outside the scope of this document. When a BGP SPF speaker finds that it is exceeding the maximum BGP message size due to addition or update of some other BGP Attribute (e.g., AS_PATH), it MUST consider the BGP-LS Attribute to be malformed and the attribute discard handling of [RFC7606] applies.

In order to compare the BGP-LS attribute efficiently, it is REQUIRED that all the TLVs within the given attribute must be ordered in ascending order by the TLV type. For multiple TLVs of same type within a single attribute, it is REQUIRED that these TLVs are ordered in ascending order by the TLV value field. Comparison of the value fields is performed by treating the entire value field as a hexadecimal string. Attributes having TLVs which do not follow the ordering rules MUST NOT be considered as malformed.
All TLVs within the BGP-LS Attribute are considered optional unless specified otherwise.

5.2. Extensions to BGP-LS

[RFC7752] describes a mechanism by which link-state and TE information can be collected from IGPs and shared with external components using the BGP protocol. It describes both the definition of the BGP-LS NLRI that advertise links, nodes, and prefixes comprising IGP link-state information and the definition of a BGP path attribute (BGP-LS attribute) that carries link, node, and prefix properties and attributes, such as the link and prefix metric or auxiliary Router-IDs of nodes, etc. This document extends the usage of BGP-LS NLRI for the purpose of BGP SPF calculation via advertisement in the BGP-LS-SPF SAFI.

The protocol identifier specified in the Protocol-ID field [RFC7752] will represent the origin of the advertised NLRI. For Node NLRI and Link NLRI, this MUST be the direct protocol (4). Node or Link NLRI with a Protocol-ID other than direct will be considered malformed. For Prefix NLRI, the specified Protocol-ID MUST be the origin of the prefix. The local and remote node descriptors for all NLRI MUST include the BGP Identifier (TLV 516) and the AS Number (TLV 512) [RFC7752]. The BGP Confederation Member (TLV 517) [RFC7752] is not applicable and SHOULD not be included. If TLV 517 is included, it will be ignored.

5.2.1. Node NLRI Usage

The Node NLRI MUST be advertised unconditionally by all routers in the BGP SPF routing domain.

5.2.1.1. BGP-LS-SPF Node NLRI Attribute SPF Capability TLV

The SPF capability is an additional Node Attribute TLV. This attribute TLV MUST be included with the BGP-LS-SPF SAFI and SHOULD NOT be used for other SAFIs. The TLV type 1180 will be assigned by IANA. The Node Attribute TLV will contain a single-octet SPF algorithm as defined in [RFC8665].

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
| SPF Algorithm |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```
The SPF algorithm inherits the values from the IGP Algorithm Types registry [RFC8665]. Algorithm 0, (Shortest Path Algorithm (SFP) based on link metric, is supported and described in Section 6.3. Support for other algorithm types is beyond the scope of this specification.

When computing the SPF for a given BGP routing domain, only BGP nodes advertising the SPF capability TLV with same SPF algorithm will be included in the Shortest Path Tree (SPT) Section 6.3. An implementation MAY optionally log detection of a BGP node that has either not advertised the SPF capability TLV or is advertising the SPF capability TLV with an algorithm type other than 0.

5.2.1.2. BGP-LS-SPF Node NLRI Attribute SPF Status TLV

A BGP-LS Attribute TLV of the BGP-LS-SPF Node NLRI is defined to indicate the status of the node with respect to the BGP SPF calculation. This will be used to rapidly take a node out of service Section 6.5.2 or to indicate the node is not to be used for transit (i.e., non-local) traffic Section 6.3. If the SPF Status TLV is not included with the Node NLRI, the node is considered to be up and is available for transit traffic. The SPF status is acted upon with the execution of the next SPF calculation Section 6.3. A single TLV type will be shared by the BGP-LS-SPF Node, Link, and Prefix NLRI. The TLV type 1184 will be assigned by IANA.

```
<table>
<thead>
<tr>
<th>SPF Status</th>
</tr>
</thead>
</table>
```

BGP Status Values:

- **0** - Reserved
- **1** - Node Unreachable with respect to BGP SPF
- **2** - Node does not support transit with respect to BGP SPF
- **3** - Undefined
- **255** - Reserved
The BGP-LS-SPF Node Attribute SPF Status TLV, Link Attribute SPF Status TLV, and Prefix Attribute SPF Status TLV use the same TLV Type (1184). This implies that a BGP Update cannot contain multiple NLRI with differing status. If the BGP-LS-SPF Status TLV is advertised and the advertised value is not defined for all NLRI included in the BGP update, then the SPF Status TLV is ignored and not used in SPF computation but is still announced to other BGP SPF speakers. An implementation MAY log an error for further analysis.

If a BGP SPF speaker received the Node NLRI but the SPF Status TLV is not received, then any previously received information is considered as implicitly withdrawn and the update is propagated to other BGP SPF speakers. A BGP SPF speaker receiving a BGP Update containing a SPF Status TLV in the BGP-LS attribute [RFC7752] with a value that is outside the range of defined values SHOULD be processed and announced to other BGP SPF speakers. However, a BGP SPF speaker MUST NOT use the Status TLV in its SPF computation. An implementation MAY log this condition for further analysis.

5.2.2. Link NLRI Usage

The criteria for advertisement of Link NLRI are discussed in Section 4.

Link NLRI is advertised with unique local and remote node descriptors dependent on the IP addressing. For IPv4 links, the link’s local IPv4 (TLV 259) and remote IPv4 (TLV 260) addresses will be used. For IPv6 links, the local IPv6 (TLV 261) and remote IPv6 (TLV 262) addresses will be used. For unnumbered links, the link local/remote identifiers (TLV 258) will be used. For links supporting having both IPv4 and IPv6 addresses, both sets of descriptors MAY be included in the same Link NLRI. The link identifiers are described in table 5 of [RFC7752].

For a link to be used in Shortest Path Tree (SPT) for a given address family, i.e., IPv4 or IPv6, both routers connecting the link MUST have an address in the same subnet for that address family. However, an IPv4 or IPv6 prefix associated with the link MAY be installed without the corresponding address on the other side of link.

The link IGP metric attribute TLV (TLV 1095) MUST be advertised. If a BGP SPF speaker receives a Link NLRI without an IGP metric attribute TLV, then it SHOULD consider the received NLRI as a malformed and the receiving BGP SPF speaker MUST handle such malformed NLRI as 'Treat-as-withdraw' [RFC7606]. The BGP SPF metric length is 4 octets. Like OSPF [RFC2328], a cost is associated with the output side of each router interface. This cost is configurable by the system administrator. The lower the cost, the more likely the
interface is to be used to forward data traffic. One possible
default for metric would be to give each interface a cost of 1 making
it effectively a hop count. Algorithms such as setting the metric
inversely to the link speed as supported in the OSPF MIB [RFC4750]
MAY be supported. However, this is beyond the scope of this
document. Refer to Section 10.1.1 for operational guidance.

The usage of other link attribute TLVs is beyond the scope of this
document.

5.2.2.1. BGP-LS-SPF Link NLRI Attribute Prefix-Length TLVs

Two BGP-LS Attribute TLVs of the BGP-LS-SPF Link NLRI are defined to
advertise the prefix length associated with the IPv4 and IPv6 link
prefixes derived from the link descriptor addresses. The prefix
length is used for the optional installation of prefixes
corresponding to Link NLRI as defined in Section 6.3.

Prefix-length - A one-octet length restricted to 1-32 for IPv4
Link NLRI endpoint prefixes and 1-128 for IPv6
Link NLRI endpoint prefixes.

The Prefix-Length TLV is only relevant to Link NLRIs. The Prefix-
Length TLVs MUST be discarded as an error and not passed to other BGP
peers as specified in [RFC7606] when received with any NLRIs other
than Link NRLIs. An implementation MAY log an error for further
analysis.

The maximum prefix-length for IPv4 Prefix-Length TLV is 32 bits. A
prefix-length field indicating a larger value than 32 bits MUST be
discarded as an error and the received TLV is not passed to other BGP
peers as specified in [RFC7606]. The corresponding Link NLRI is
considered as malformed and MUST be handled as 'Treat-as-withdraw'.
An implementation MAY log an error for further analysis.
The maximum prefix-length for IPv6 Prefix-Length Type is 128 bits. A prefix-length field indicating a larger value than 128 bits MUST be discarded as an error and the received TLV is not passed to other BGP peers as specified in [RFC7606]. The corresponding Link NLRI is considered as malformed and MUST be handled as 'Treat-as-withdraw'. An implementation MAY log an error for further analysis.

5.2.2.2. BGP-LS-SPF Link NLRI Attribute SPF Status TLV

A BGP-LS Attribute TLV of the BGP-LS-SPF Link NLRI is defined to indicate the status of the link with respect to the BGP SPF calculation. This will be used to expedite convergence for link failures as discussed in Section 6.5.1. If the SPF Status TLV is not included with the Link NLRI, the link is considered up and available. The SPF status is acted upon with the execution of the next SPF calculation Section 6.3. A single TLV type will be shared by the Node, Link, and Prefix NLRI. The TLV type 1184 will be assigned by IANA.

```
0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type (1184)                 |      Length (1 Octet)         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SPF Status    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

BGP Status Values: 0 - Reserved
1 - Link Unreachable with respect to BGP SPF
2-254 - Undefined
255 - Reserved

The BGP-LS-SPF Node Attribute SPF Status TLV, Link Attribute SPF Status TLV, and Prefix Attribute SPF Status TLV use the same TLV Type (1184). This implies that a BGP Update cannot contain multiple NLRI with differing status. If the BGP-LS-SPF Status TLV is advertised and the advertised value is not defined for all NLRI included in the BGP update, then the SPF Status TLV is ignored and not used in SPF computation but is still announced to other BGP SPF speakers. An implementation MAY log an error for further analysis.
If a BGP SPF speaker received the Link NLRI but the SPF Status TLV is not received, then any previously received information is considered as implicitly withdrawn and the update is propagated to other BGP SPF speakers. A BGP SPF speaker receiving a BGP Update containing an SPF Status TLV in the BGP-LS attribute [RFC7752] with a value that is outside the range of defined values SHOULD be processed and announced to other BGP SPF speakers. However, a BGP SPF speaker MUST NOT use the Status TLV in its SPF computation. An implementation MAY log this information for further analysis.

5.2.3. IPv4/IPv6 Prefix NLRI Usage

IPv4/IPv6 Prefix NLRI is advertised with a Local Node Descriptor and the prefix and length. The Prefix Descriptors field includes the IP Reachability Information TLV (TLV 265) as described in [RFC7752]. The Prefix Metric attribute TLV (TLV 1155) MUST be advertised. The IGP Route Tag TLV (TLV 1153) MAY be advertised. The usage of other attribute TLVs is beyond the scope of this document. For loopback prefixes, the metric should be 0. For non-loopback prefixes, the setting of the metric is a local matter and beyond the scope of this document.

5.2.3.1. BGP-LS-SPF Prefix NLRI Attribute SPF Status TLV

A BGP-LS Attribute TLV to BGP-LS-SPF Prefix NLRI is defined to indicate the status of the prefix with respect to the BGP SPF calculation. This will be used to expedite convergence for prefix unreachability as discussed in Section 6.5.1. If the SPF Status TLV is not included with the Prefix NLRI, the prefix is considered reachable. A single TLV type will be shared by the Node, Link, and Prefix NLRI. The TLV type 1184 will be assigned by IANA.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type (1184)                 |      Length (1 Octet)         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SPF Status    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

BGP Status Values: 0 - Reserved
1 - Prefix Unreachable with respect to SPF
2-254 - Undefined
255 - Reserved

The BGP-LS-SPF Node Attribute SPF Status TLV, Link Attribute SPF Status TLV, and Prefix Attribute SPF Status TLV use the same TLV Type (1184). This implies that a BGP Update cannot contain multiple NLRI
with differing status. If the BGP-LS-SPF Status TLV is advertised and the advertised value is not defined for all NLRI included in the BGP update, then the SPF Status TLV is ignored and not used in SPF computation but is still announced to other BGP SPF speakers. An implementation MAY log an error for further analysis.

If a BGP SPF speaker received the Prefix NLRI but the SPF Status TLV is not received, then any previously received information is considered as implicitly withdrawn and the update is propagated to other BGP SPF speakers. A BGP SPF speaker receiving a BGP Update containing an SPF Status TLV in the BGP-LS attribute [RFC7752] with a value that is outside the range of defined values SHOULD be processed and announced to other BGP SPF speakers. However, a BGP SPF speaker MUST NOT use the Status TLV in its SPF computation. An implementation MAY log this information for further analysis.

5.2.4. BGP-LS Attribute Sequence-Number TLV

A BGP-LS Attribute TLV of the BGP-LS-SPF NLRI types is defined to assure the most recent version of a given NLRI is used in the SPF computation. The Sequence-Number TLV is mandatory for BGP-LS-SPF NLRI. The TLV type 1181 has been assigned by IANA. The BGP-LS Attribute TLV will contain an 8-octet sequence number. The usage of the Sequence Number TLV is described in Section 6.1.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type (1181)                 |      Length (8 Octets)        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Sequence Number (High-Order 32 Bits)             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                Sequence Number (Low-Order 32 Bits)               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Sequence Number The 64-bit strictly-increasing sequence number MUST be incremented for every self-originated version of BGP-LS-SPF NLRI. BGP SPF speakers implementing this specification MUST use available mechanisms to preserve the sequence number’s strictly increasing property for the deployed life of the BGP SPF speaker (including cold restarts). One mechanism for accomplishing this would be to use the high-order 32 bits of the sequence number as a wrap/boot count that is incremented any time the BGP router loses its sequence number state or the low-order 32 bits wrap.

When incrementing the sequence number for each self-originated NLRI, the sequence number should be treated as an unsigned 64-bit value. If the lower-order 32-bit value wraps, the higher-order 32-bit value
should be incremented and saved in non-volatile storage. If a BGP SPF speaker completely loses its sequence number state (e.g., the BGP SPF speaker hardware is replaced or experiences a cold-start), the BGP NLRI selection rules (see Section 6.1) will insure convergence, albeit not immediately.

The Sequence-Number TLV is mandatory for BGP-LS-SPF NLRI. If the Sequence-Number TLV is not received then the corresponding Link NLRI is considered as malformed and MUST be handled as ‘Treat-as-withdraw’. An implementation MAY log an error for further analysis.

5.3. NEXT_HOP Manipulation

All BGP peers that support SPF extensions would locally compute the LOC-RIB Next-Hop as a result of the SPF process. Consequently, the Next-Hop is always ignored on receipt. The Next-Hop address MUST be encoded as described in [RFC4760]. BGP SPF speakers MUST interpret the Next-Hop address of MP_REACH_NLRI attribute as an IPv4 address whenever the length of the Next-Hop address is 4 octets, and as an IPv6 address whenever the length of the Next-Hop address is 16 octets.

[RFC4760] modifies the rules of NEXT_HOP attribute whenever the multiprotocol extensions for BGP-4 are enabled. BGP SPF speakers MUST set the NEXT_HOP attribute according to the rules specified in [RFC4760] as the BGP-LS-SPF routing information is carried within the multiprotocol extensions for BGP-4.

6. Decision Process with SPF Algorithm

The Decision Process described in [RFC4271] takes place in three distinct phases. The Phase 1 decision function of the Decision Process is responsible for calculating the degree of preference for each route received from a BGP SPF speaker’s peer. The Phase 2 decision function is invoked on completion of the Phase 1 decision function and is responsible for choosing the best route out of all those available for each distinct destination, and for installing each chosen route into the LOC-RIB. The combination of the Phase 1 and 2 decision functions is characterized as a Path Vector algorithm.

The SPF based Decision process replaces the BGP Decision process described in [RFC4271]. This process starts with selecting only those Node NLRI whose SPF capability TLV matches with the local BGP SPF speaker’s SPF capability TLV value. Since Link-State NLRI always contains the local node descriptor Section 5.2, each NLRI is uniquely originated by a single BGP SPF speaker in the BGP SPF routing domain (the BGP node matching the NLRI’s Node Descriptors). Instances of the same NLRI originated by multiple BGP SPF speakers would be
indicative of a configuration error or a masquerading attack (Section 9). These selected Node NLRI and their Link/Prefix NLRI are used to build a directed graph during the SPF computation as described below. The best routes for BGP prefixes are installed in the RIB as a result of the SPF process.

When BGP-LS-SPF NLRI is received, all that is required is to determine whether it is the most recent by examining the Node-ID and sequence number as described in Section 6.1. If the received NLRI has changed, it will be advertised to other BGP-LS-SPF peers. If the attributes have changed (other than the sequence number), a BGP SPF calculation will be triggered. However, a changed NLRI MAY be advertised immediately to other peers and prior to any SPF calculation. Note that the BGP MinRouteAdvertisementIntervalTimer and MinASOrignationIntervalTimer [RFC4271] timers are not applicable to the BGP-LS-SPF SAFI. The scheduling of the SPF calculation, as described in Section 6.3, is an implementation issue. Scheduling MAY be dampened consistent with the SPF back-off algorithm specified in [RFC8405].

The Phase 3 decision function of the Decision Process [RFC4271] is also simplified since under normal SPF operation, a BGP SPF speaker MUST advertise the changed NLRIs to all BGP peers with the BGP-LS-SPF AFI/SAFI and install the changed routes in the Global RIB. The only exception are unchanged NLRIs or stale NLRIs, i.e., NLRI received with a less recent (numerically smaller) sequence number.

6.1. BGP NLRI Selection

The rules for all BGP-LS-SPF NLRIs selection for phase 1 of the BGP decision process, section 9.1.1 [RFC4271], no longer apply.

1. Routes originated by directly connected BGP SPF peers are preferred. This condition can be determined by comparing the BGP Identifiers in the received Local Node Descriptor and OPEN message. This rule will assure that stale NLRI is updated even if a BGP-LS router loses its sequence number state due to a cold-start.

2. The NLRI with the most recent Sequence Number TLV, i.e., highest sequence number is selected.

3. The route received from the BGP SPF speaker with the numerically larger BGP Identifier is preferred.

When a BGP SPF speaker completely loses its sequence number state, i.e., due to a cold start, or in the unlikely possibility that 64-bit sequence number wraps, the BGP routing domain will still converge.
This is due to the fact that BGP SPF speakers adjacent to the router will always accept self-originated NLRI from the associated speaker as more recent (rule # 1). When a BGP SPF speaker reestablishes a connection with its peers, any existing session will be taken down and stale NLRI will be replaced. The adjacent BGP SPF speaker will update their NLRI advertisements, hop by hop, until the BGP routing domain has converged.

The modified SPF Decision Process performs an SPF calculation rooted at the BGP SPF speaker using the metrics from the Link Attribute IGP Metric TLV (1095) and the Prefix Attribute Prefix Metric TLV (1155) [RFC7752]. As a result, any other BGP attributes that would influence the BGP decision process defined in [RFC4271] including ORIGIN, MULTI_EXIT_DISC, and LOCAL_PREF attributes are ignored by the SPF algorithm. The NEXT_HOP attribute is discussed in Section 5.3. The AS_PATH and AS4_PATH [RFC6793] attributes are preserved and used for loop detection [RFC4271]. They are ignored during the SPF computation for BGP-LS-SPF NRLIs.

6.1.1. BGP Self-Originated NLRI

Node, Link, or Prefix NLRI with Node Descriptors matching the local BGP SPF speaker are considered self-originated. When self-originated NLRI is received and it doesn’t match the local node’s NLRI content (including sequence number), special processing is required.

* If a self-originated NLRI is received and the sequence number is more recent (i.e., greater than the local node’s sequence number for the NLRI), the NLRI sequence number will be advanced to one greater than the received sequence number and the NLRI will be readvertised to all peers.

* If self-originated NLRI is received and the sequence number is the same as the local node’s sequence number but the attributes differ, the NLRI sequence number will be advanced to one greater than the received sequence number and the NLRI will be readvertised to all peers.

* If self-originated Link or Prefix NLRI is received and the Link or Prefix NLRI is no longer being advertised by the local node, the NLRI will be withdrawn.
The above actions are performed immediately when the first instance of a newer self-originated NLRI is received. In this case, the newer instance is considered to be a stale instance that was advertised by the local node prior to a restart where the NLRI state is lost. However, if subsequent newer self-originated NLRI is received for the same Node, Link, or Prefix NLRI, the readvertisement or withdrawal is delayed by 5 seconds since it is likely being advertised by a misconfigured or rogue BGP SPF speaker Section 9.

6.2. Dual Stack Support

The SPF-based decision process operates on Node, Link, and Prefix NLRIs that support both IPv4 and IPv6 addresses. Whether to run a single SPF computation or multiple SPF computations for separate AFs is an implementation matter. Normally, IPv4 next-hops are calculated for IPv4 prefixes and IPv6 next-hops are calculated for IPv6 prefixes.

6.3. SPF Calculation based on BGP-LS-SPF NLRI

This section details the BGP-LS-SPF local routing information base (RIB) calculation. The router will use BGP-LS-SPF Node, Link, and Prefix NLRI to compute routes using the following algorithm. This calculation yields the set of routes associated with the BGP SPF Routing Domain. A router calculates the shortest-path tree using itself as the root. Optimizations to the BGP-LS-SPF algorithm are possible but MUST yield the same set of routes. The algorithm below supports Equal Cost Multi-Path (ECMP) routes. Weighted Unequal Cost Multi-Path routes are out of scope. The organization of this section owes heavily to section 16 of [RFC2328].

The following abstract data structures are defined in order to specify the algorithm.

* Local Route Information Base (LOC-RIB) - This routing table contains reachability information (i.e., next hops) for all prefixes (both IPv4 and IPv6) as well as BGP-LS-SPF node reachability. Implementations may choose to implement this with separate RIBs for each address family and/or Prefix versus Node reachability. It is synonymous with the Loc-RIB specified in [RFC4271].

* Global Routing Information Base (GLOBAL-RIB) - This is Routing Information Base (RIB) containing the current routes that are installed in the router’s forwarding plane. This is commonly referred to in networking parlance as "the RIB".
* Link State NLRI Database (LSNDB) - Database of BGP-LS-SPF NLRI that facilitates access to all Node, Link, and Prefix NLRI.

* Candidate List (CAN-LIST) - This is a list of candidate Node NLRI used during the BGP SPF calculation Section 6.3. The list is sorted by the cost to reach the Node NLRI with the Node NLRI with the lowest reachability cost at the head of the list. This facilitates execution of the Dijkstra algorithm Section 1.1 where the shortest paths between the local node and other nodes in graph area computed. The CAN-LIST is typically implemented as a heap but other data structures have been used.

The algorithm is comprised of the steps below:

1. The current LOC-RIB is invalidated, and the CAN-LIST is initialized to empty. The LOC-RIB is rebuilt during the course of the SPF computation. The existing routing entries are preserved for comparison to determine changes that need to be made to the GLOBAL-RIB in step 6.

2. The computing router’s Node NLRI is updated in the LOC-RIB with a cost of 0 and the Node NLRI is also added to the CAN-LIST. The next-hop list is set to the internal loopback next-hop.

3. The Node NLRI with the lowest cost is removed from the candidate list for processing. If the BGP-LS Node attribute doesn’t include an SPF Capability TLV (Section 5.2.1.1, the Node NLRI is ignored and the next lowest cost Node NLRI is selected from candidate list. The If the BGP-LS Node attribute includes an SPF Status TLV (Section 5.2.1.1) indicating the node is unreachable, the Node NLRI is ignored and the next lowest cost Node NLRI is selected from candidate list. The Node corresponding to this NLRI will be referred to as the Current-Node. If the candidate list is empty, the SPF calculation has completed and the algorithm proceeds to step 6.

4. All the Prefix NLRI with the same Node Identifiers as the Current-Node will be considered for installation. The next-hop(s) for these Prefix NLRI are inherited from the Current-Node. The cost for each prefix is the metric advertised in the Prefix Attribute Prefix Metric TLV (1155) added to the cost to reach the Current-Node. The following will be done for each Prefix NLRI (referred to as the Current-Prefix):

 * If the BGP-LS Prefix attribute includes an SPF Status TLV indicating the prefix is unreachable, the Current-Prefix is considered unreachable and the next Prefix NLRI is examined in Step 4.
* If the Current-Prefix’s corresponding prefix is in the LOC-RIB and the LOC-RIB cost is less than the Current-Prefix’s metric, the Current-Prefix does not contribute to the route and the next Prefix NLRI is examined in Step 4.

* If the Current-Prefix’s corresponding prefix is not in the LOC-RIB, the prefix is installed with the Current-Node’s next-hops installed as the LOC-RIB route’s next-hops and the metric being updated. If the IGP Route Tag TLV (1153) is included in the Current-Prefix’s NLRI Attribute, the tag(s) are installed in the current LOC-RIB route’s tag(s).

* If the Current-Prefix’s corresponding prefix is in the LOC-RIB and the cost is less than the LOC-RIB route’s metric, the prefix is installed with the Current-Node’s next-hops replacing the LOC-RIB route’s next-hops and the metric being updated and any route tags removed. If the IGP Route Tag TLV (1153) is included in the Current-Prefix’s NLRI Attribute, the tag(s) are installed in the current LOC-RIB route’s tag(s).

* If the Current-Prefix’s corresponding prefix is in the LOC-RIB and the cost is the same as the LOC-RIB route’s metric, the Current-Node’s next-hops will be merged with LOC-RIB route’s next-hops. If the number of merged next-hops exceeds the Equal-Cost Multi-Path (ECMP) limit, the number of next-hops is reduced with next-hops on numbered links preferred over next-hops on unnumbered links. Among next-hops on numbered links, the next-hops with the highest IPv4 or IPv6 addresses are preferred. Among next-hops on unnumbered links, the next-hops with the highest Remote Identifiers are preferred [RFC5307]. If the IGP Route Tag TLV (1153) is included in the Current-Prefix’s NLRI Attribute, the tag(s) are merged into the LOC-RIB route’s current tags.

5. All the Link NLRI with the same Node Identifiers as the Current-Node will be considered for installation. Each link will be examined and will be referred to in the following text as the Current-Link. The cost of the Current-Link is the advertised IGP Metric TLV (1095) from the Link NLRI BGP-LS attribute added to the cost to reach the Current-Node. If the Current-Node is for the local BGP Router, the next-hop for the link will be a direct next-hop pointing to the corresponding local interface. For any other Current-Node, the next-hop(s) for the Current-Link will be inherited from the Current-Node. The following will be done for each link:
a. The prefix(es) associated with the Current-Link are installed into the LOC-RIB using the same rules as were used for Prefix NLRI in the previous steps. Optionally, in deployments where BGP-SPF routers have limited routing table capacity, installation of these subnets can be suppressed. Suppression will have an operational impact as the IPv4/IPv6 link endpoint addresses will not be reachable and tools such as traceroute will display addresses that are not reachable.

b. If the Current-Node NLRI attributes includes the SPF status TLV (Section 5.2.1.2) and the status indicates that the Node doesn’t support transit, the next link for the Current-Node is processed in Step 5.

c. If the Current-Link’s NLRI attribute includes an SPF Status TLV indicating the link is down, the BGP-LS-SPF Link NLRI is considered down and the next link for the Current-Node is examined in Step 5.

d. The Current-Link’s Remote Node NLRI is accessed (i.e., the Node NLRI with the same Node identifiers as the Current-Link’s Remote Node Descriptors). If it exists, it will be referred to as the Remote-Node and the algorithm will proceed as follows:

* If the Remote-Node’s NLRI attribute includes an SPF Status TLV indicating the node is unreachable, the next link for the Current-Node is examined in Step 5.

* All the Link NLRI corresponding the Remote-Node will be searched for a Link NLRI pointing to the Current-Node. Each Link NLRI is examined for Remote Node Descriptors matching the Current-Node and Link Descriptors matching the Current-Link. For numbered links to match, the Link Descriptors MUST share a common IPv4 or IPv6 subnet. For unnumbered links to match, the Current Link’s Local Identifier MUST match the Remote Node Link’s Remote Identifier and the Current Link’s Remote Identifier MUST the Remote Node Link’s Local Identifier [RFC5307]. If these conditions are satisfied for one of the Remote-Node’s links, the bi-directional connectivity check succeeds and the Remote-Node may be processed further. The Remote-Node’s Link NLRI providing bi-directional connectivity will be referred to as the Remote-Link. If no Remote-Link is found, the next link for the Current-Node is examined in Step 5.
* If the Remote-Link NLRI attribute includes an SPF Status TLV indicating the link is down, the Remote-Link NLRI is considered down and the next link for the Current-Node is examined in Step 5.

* If the Remote-Node is not on the CAN-LIST, it is inserted based on the cost. The Remote Node’s cost is the cost of Current-Node added the Current-Link’s IGP Metric TLV (1095). The next-hop(s) for the Remote-Node are inherited from the Current-Link.

* If the Remote-Node NLRI is already on the CAN-LIST with a higher cost, it must be removed and reinserted with the Remote-Node cost based on the Current-Link (as calculated in the previous step). The next-hop(s) for the Remote-Node are inherited from the Current-Link.

* If the Remote-Node NLRI is already on the CAN-LIST with the same cost, it need not be reinserted on the CAN-LIST. However, the Current-Link’s next-hop(s) must be merged into the current set of next-hops for the Remote-Node.

* If the Remote-Node NLRI is already on the CAN-LIST with a lower cost, it need not be reinserted on the CAN-LIST.

e. Return to step 3 to process the next lowest cost Node NLRI on the CAN-LIST.

6. The LOC-RIB is examined and changes (adds, deletes, modifications) are installed into the GLOBAL-RIB. For each route in the LOC-RIB:

* If the route was added during the current BGP SPF computation, install the route into the GLOBAL-RIB.

* If the route modified during the current BGP SPF computation (e.g., metric, tags, or next-hops), update the route in the GLOBAL-RIB.

* If the route was not installed during the current BGP SPF computation, remove the route from both the GLOBAL-RIB and the LOC-RIB.
6.4. IPv4/IPv6 Unicast Address Family Interaction

While the BGP-LS-SPF address family and the IPv4/IPv6 unicast address families MAY install routes into the same device routing tables, they will operate independently much the same as OSPF and IS-IS would operate today (i.e., "Ships-in-the-Night" mode). There is no implicit route redistribution between the BGP address families.

It is RECOMMENDED that BGP-LS-SPF IPv4/IPv6 route computation and installation be given scheduling priority by default over other BGP address families as these address families are considered as underlay SAFIs. Similarly, it is RECOMMENDED that the route preference or administrative distance give active route installation preference to BGP-LS-SPF IPv4/IPv6 routes over BGP routes from other AFI/SAFIs. However, this preference MAY be overridden by an operator-configured policy.

6.5. NLRI Advertisement

6.5.1. Link/Prefix Failure Convergence

A local failure will prevent a link from being used in the SPF calculation due to the IGP bi-directional connectivity requirement. Consequently, local link failures SHOULD always be given priority over updates (e.g., withdrawing all routes learned on a session) in order to ensure the highest priority propagation and optimal convergence.

An IGP such as OSPF [RFC2328] will stop using the link as soon as the Router-LSA for one side of the link is received. With a BGP advertisement, the link would continue to be used until the last copy of the BGP-LS-SPF Link NLRI is withdrawn. In order to avoid this delay, the originator of the Link NLRI SHOULD advertise a more recent version with an increased Sequence Number TLV for the BGP-LS-SPF Link NLRI including the SPF Status TLV (Section 5.2.2.2) indicating the link is down with respect to BGP SPF. The configurable LinkStatusDownAdvertise timer controls the interval that the BGP-LS-LINK NLRI is advertised with SPF Status indicating the link is down prior to withdrawal. If the link becomes available in that period, the originator of the BGP-LS-SPF LINK NLRI SHOULD advertise a more recent version of the BGP-LS-SPF Link NLRI without the SPF Status TLV in the BGP-LS Link Attributes. The suggested default value for the LinkStatusDownAdvertise timer is 2 seconds.

Similarly, when a prefix becomes unreachable, a more recent version of the BGP-LS-SPF Prefix NLRI SHOULD be advertised with the SPF Status TLV (Section 5.2.3.1) indicating the prefix is unreachable in the BGP-LS Prefix Attributes and the prefix will be considered
unreachable with respect to BGP SPF. The configurable
PrefixStatusDownAdvertise timer controls the interval that the BGP-
LS-Prefix NLRI is advertised with SPF Status indicating the prefix is
unreachable prior to withdrawal. If the prefix becomes reachable in
that period, the originator of the BGP-LS-SPF Prefix NLRI SHOULD
advertise a more recent version of the BGP-LS-SPF Prefix NLRI without
the SPF Status TLV in the BGP-LS Prefix Attributes. The suggested
default value for the PrefixStatusDownAdvertise timer is 2 seconds.

6.5.2. Node Failure Convergence

With BGP without graceful restart [RFC4724], all the NLRI advertised
by a node are implicitly withdrawn when a session failure is
detected. If fast failure detection such as BFD is utilized, and the
node is on the fastest converging path, the most recent versions of
BGP-LS-SPF NLRI may be withdrawn. This will result into an older
version of the NLRI being used until the new versions arrive and,
potentially, unnecessary route flaps. For the BGP-LS-SPF SAFI, NLRI
SHOULD NOT be implicitly withdrawn immediately to prevent such
unnecessary route flaps. The configurable
NLRIImplicitWithdrawalDelay timer controls the interval that NLRI is
retained prior to implicit withdrawal after a BGP SPF speaker has
transitioned out of Established state. This will not delay
convergence since the adjacent nodes will detect the link failure and
advertise a more recent NLRI indicating the link is down with respect
to BGP SPF (Section 6.5.1) and the BGP SPF calculation will fail the
bi-directional connectivity check Section 6.3. The suggested default
value for the NLRIImplicitWithdrawalDelay timer is 2 seconds.

7. Error Handling

This section describes the Error Handling actions, as described in
[RFC7606], that are specific to SAFI BGP-LS-SPF BGP Update message
processing.

7.1. Processing of BGP-LS-SPF TLVs

When a BGP SPF speaker receives a BGP Update containing a malformed
Node NLRI SPF Status TLV in the BGP-LS Attribute [RFC7752], it MUST
ignore the received TLV and MUST NOT pass it to other BGP peers as
specified in [RFC7606]. When discarding an associated Node NLRI with
a malformed TLV, a BGP SPF speaker SHOULD log an error for further
analysis.
When a BGP SPF speaker receives a BGP Update containing a malformed Link NLRI SPF Status TLV in the BGP-LS Attribute [RFC7752], it MUST ignore the received TLV and MUST NOT pass it to other BGP peers as specified in [RFC7606]. When discarding an associated Link NLRI with a malformed TLV, a BGP SPF speaker SHOULD log an error for further analysis.

When a BGP SPF speaker receives a BGP Update containing a malformed Prefix NLRI SPF Status TLV in the BGP-LS Attribute [RFC7752], it MUST ignore the received TLV and MUST NOT pass it to other BGP peers as specified in [RFC7606]. When discarding an associated Prefix NLRI with a malformed TLV, a BGP SPF speaker SHOULD log an error for further analysis.

When a BGP SPF speaker receives a BGP Update containing a malformed SPF Capability TLV in the Node NLRI BGP-LS Attribute [RFC7752], it MUST ignore the received TLV and the Node NLRI and MUST NOT pass it to other BGP peers as specified in [RFC7606]. When discarding a Node NLRI with a malformed TLV, a BGP SPF speaker SHOULD log an error for further analysis.

When a BGP SPF speaker receives a BGP Update containing a malformed IPv4 Prefix-Length TLV in the Link NLRI BGP-LS Attribute [RFC7752], it MUST ignore the received TLV and the Node NLRI and MUST NOT pass it to other BGP peers as specified in [RFC7606]. The corresponding Link NLRI is considered as malformed and MUST be handled as 'Treat-as-withdraw'. An implementation MAY log an error for further analysis.

When a BGP SPF speaker receives a BGP Update containing a malformed IPv6 Prefix-Length TLV in the Link NLRI BGP-LS Attribute [RFC7752], it MUST ignore the received TLV and the Node NLRI and MUST NOT pass it to other BGP peers as specified in [RFC7606]. The corresponding Link NLRI is considered as malformed and MUST be handled as 'Treat-as-withdraw'. An implementation MAY log an error for further analysis.

7.2. Processing of BGP-LS-SPF NLRIs

A Link-State NLRI MUST NOT be considered as malformed or invalid based on the inclusion/exclusion of TLVs or contents of the TLV fields (i.e., semantic errors), as described in Section 5.1 and Section 5.1.1.

A BGP-LS-SPF Speaker MUST perform the following syntactic validation of the BGP-LS-SPF NLRI to determine if it is malformed.
1. Does the sum of all TLVs found in the BGP MP_REACH_NLRI attribute correspond to the BGP MP_REACH_NLRI length?

2. Does the sum of all TLVs found in the BGP MP_UNREACH_NLRI attribute correspond to the BGP MP_UNREACH_NLRI length?

3. Does the sum of all TLVs found in a BGP-LS-SPF NLRI correspond to the Total NLRI Length field of all its Descriptors?

4. When an NLRI TLV is recognized, is the length of the TLV and its sub-TLVs valid?

5. Has the syntactic correctness of the NLRI fields been verified as per [RFC7606]?

6. Has the rule regarding ordering of TLVs been followed as described in Section 5.1.1?

When the error determined allows for the router to skip the malformed NLRI(s) and continue processing of the rest of the update message (e.g., when the TLV ordering rule is violated), then it MUST handle such malformed NLRIs as ‘Treat-as-withdraw’. In other cases, where the error in the NLRI encoding results in the inability to process the BGP update message (e.g., length related encoding errors), then the router SHOULD handle such malformed NLRIs as ‘AFI/SAFI disable’ when other AFI/SAFI besides BGP-LS are being advertised over the same session. Alternately, the router MUST perform ‘session reset’ when the session is only being used for BGP-LS-SPF or when its ‘AFI/SAFI disable’ action is not possible.

7.3. Processing of BGP-LS Attribute

A BGP-LS Attribute MUST NOT be considered as malformed or invalid based on the inclusion/exclusion of TLVs or contents of the TLV fields (i.e., semantic errors), as described in Section 5.1 and Section 5.1.1.

A BGP-LS-SPF Speaker MUST perform the following syntactic validation of the BGP-LS Attribute to determine if it is malformed.

1. Does the sum of all TLVs found in the BGP-LS-SPF Attribute correspond to the BGP-LS Attribute length?

2. Has the syntactic correctness of the Attributes (including BGP-LS Attribute) been verified as per [RFC7606]?

3. Is the length of each TLV and, when the TLV is recognized then, its sub-TLVs in the BGP-LS Attribute valid?
When the detected error allows for the router to skip the malformed BGP-LS Attribute and continue processing of the rest of the update message (e.g., when the BGP-LS Attribute length and the total Path Attribute Length are correct but some TLV/sub-TLV length within the BGP-LS Attribute is invalid), then it MUST handle such malformed BGP-LS Attribute as ‘Attribute Discard’. In other cases, when the error in the BGP-LS Attribute encoding results in the inability to process the BGP update message, then the handling is the same as described above for malformed NLRI.

Note that the ‘Attribute Discard’ action results in the loss of all TLVs in the BGP-LS Attribute and not the removal of a specific malformed TLV. The removal of specific malformed TLVs may give a wrong indication to a BGP SPF speaker that the specific information is being deleted or is not available.

When a BGP SPF speaker receives an update message with Link-State NLRI(s) in the MP_REACH_NLRI but without the BGP-LS-SPF Attribute, it is most likely an indication that a BGP SPF speaker preceding it has performed the ‘Attribute Discard’ fault handling. An implementation SHOULD preserve and propagate the Link-State NLRI in such an update message so that the BGP SPF speaker can detect the loss of link-state information for that object and not assume its deletion/withdrawal. This also makes it possible for a network operator to trace back to the BGP SPF speaker which actually detected a problem with the BGP-LS Attribute.

An implementation SHOULD log an error for further analysis for problems detected during syntax validation.

When a BGP SPF speaker receives a BGP Update containing a malformed IGP metric TLV in the Link NLRI BGP-LS Attribute [RFC7752], it MUST ignore the received TLV and the Link NLRI and MUST NOT pass it to other BGP peers as specified in [RFC7606]. When discarding a Link NLRI with a malformed TLV, a BGP SPF speaker SHOULD log an error for further analysis.

8. IANA Considerations

This document defines the use of SAFI (80) for BGP SPF operation Section 5.1, and requests IANA to assign the value from the First Come First Serve (FCFS) range in the Subsequent Address Family Identifiers (SAFI) Parameters registry.
This document also defines five attribute TLVs of BGP-LS-SPF NLRI. We request IANA to assign types for the SPF capability TLV, Sequence Number TLV, IPv4 Link Prefix-Length TLV, IPv6 Link Prefix-Length TLV, and SPF Status TLV from the "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs" Registry.

<table>
<thead>
<tr>
<th>Attribute TLV</th>
<th>Suggested Value</th>
<th>NLRI Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPF Capability</td>
<td>1180</td>
<td>Node</td>
</tr>
<tr>
<td>SPF Status</td>
<td>1184</td>
<td>Node, Link, Prefix</td>
</tr>
<tr>
<td>IPv4 Link Prefix Length</td>
<td>1182</td>
<td>Link</td>
</tr>
<tr>
<td>IPv6 Link Prefix Length</td>
<td>1183</td>
<td>Link</td>
</tr>
<tr>
<td>Sequence Number</td>
<td>1181</td>
<td>Node, Link, Prefix</td>
</tr>
</tbody>
</table>

Table 1: NLRI Attribute TLVs

9. Security Considerations

This document defines a BGP SAFI, i.e., the BGP-LS-SPF SAFI. This document does not change the underlying security issues inherent in the BGP protocol [RFC4271]. The Security Considerations discussed in [RFC4271] apply to the BGP SPF functionality as well. The analysis of the security issues for BGP mentioned in [RFC4272] and [RFC6952] also applies to this document. The analysis of Generic Threats to Routing Protocols done in [RFC4593] is also worth noting. As the modifications described in this document for BGP SPF apply to IPv4 Unicast and IPv6 Unicast as undelay SAFIs in a single BGP SPF Routing Domain, the BGP security solutions described in [RFC6811] and [RFC8205] are somewhat constricted as they are meant to apply for inter-domain BGP where multiple BGP Routing Domains are typically involved. The BGP-LS-SPF SAFI NLRI described in this document are typically advertised between EBGP or IBGP speakers under a single administrative domain.

In the context of the BGP peering associated with this document, a BGP speaker MUST NOT accept updates from a peer that is not within any administrative control of an operator. That is, a participating BGP speaker SHOULD be aware of the nature of its peering relationships. Such protection can be achieved by manual configuration of peers at the BGP speaker.
In order to mitigate the risk of peering with BGP speakers masquerading as legitimate authorized BGP speakers, it is recommended that the TCP Authentication Option (TCP-AO) [RFC5925] be used to authenticate BGP sessions. If an authorized BGP peer is compromised, that BGP peer could advertise modified Node, Link, or Prefix NLRI which will result in misrouting, repeating origination of NLRI, and/or excessive SPF calculations. When a BGP speaker detects that its self-originated NLRI is being originated by another BGP speaker, an appropriate error should be logged so that the operator can take corrective action.

10. Management Considerations

This section includes unique management considerations for the BGP-LS-SPF address family.

10.1. Configuration

All routers in BGP SPF Routing Domain are under a single administrative domain allowing for consistent configuration.

10.1.1. Link Metric Configuration

Within a BGP SPF Routing Domain, the IGP metrics for all advertised links SHOULD be configured or defaulted consistently. For example, if a default metric is used for one router’s links, then a similar metric should be used for all router’s links. Similarly, if the link cost is derived from using the inverse of the link bandwidth on one router, then this SHOULD be done for all routers and the same reference bandwidth should be used to derive the inversely proportional metric. Failure to do so will not result in correct routing based on link metric.

10.1.2. backoff-config

In addition to configuration of the BGP-LS-SPF address family, implementations SHOULD support the "Shortest Path First (SPF) Back-Off Delay Algorithm for Link-State IGPs" [RFC8405]. If supported, configuration of the INITIAL_SPF_DELAY, SHORT_SPF_DELAY, LONG_SPF_DELAY, TIME_TO_LEARN, and HOLDOWN_INTERVAL MUST be supported [RFC8405]. Section 6 of [RFC8405] recommends consistent configuration of these values throughout the IGP routing domain and this also applies to the BGP SPF Routing Domain.
10.2. Operational Data

In order to troubleshoot SPF issues, implementations SHOULD support an SPF log including entries for previous SPF computations. Each SPF log entry would include the BGP-LS-SPF NLRI SPF triggering the SPF, SPF scheduled time, SPF start time, SPF end time, and SPF type if different types of SPF are supported. Since the size of the log will be finite, implementations SHOULD also maintain counters for the total number of SPF computations and the total number of SPF triggering events. Additionally, to troubleshoot SPF scheduling and back-off [RFC8405], the current SPF back-off state, remaining time-to-learn, remaining holddown, last trigger event time, last SPF time, and next SPF time should be available.

11. Implementation Status

Note RFC Editor: Please remove this section and the associated references prior to publication.

This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft and is based on a proposal described in [RFC7942]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist.

According to RFC 7942, "this will allow reviewers and working groups to assign due consideration to documents that have the benefit of running code, which may serve as evidence of valuable experimentation and feedback that have made the implemented protocols more mature. It is up to the individual working groups to use this information as they see fit".

The BGP-LS-SPF implementation status is documented in [I-D.psarkar-lsvr-bgp-spf-impl].
12. Acknowledgements

The authors would like to thank Sue Hares, Jorge Rabadan, Boris Hassanov, Dan Frost, Matt Anderson, Fred Baker, Lukas Krattiger, Yingzhen Qu, and Haibo Wang for their review and comments. Thanks to Pushpasis Sarkar for discussions on preventing a BGP SPF Router from being used for non-local traffic (i.e., transit traffic).

The authors extend special thanks to Eric Rosen for fruitful discussions on BGP-LS-SPF convergence as compared to IGPs.

13. Contributors

In addition to the authors listed on the front page, the following co-authors have contributed to the document.

Derek Yeung
Arrcus, Inc.
derek@arrcus.com

Gunter Van De Velde
Nokia
gunter.van_de_velde@nokia.com

Abhay Roy
Arrcus, Inc.
abhay@arrcus.com

Venu Venugopal
Cisco Systems
venuv@cisco.com

Chaitanya Yadlapalli
AT&T
cy098d@att.com

14. References

14.1. Normative References

Patel, et al. Expires 19 August 2022
14.2. Informational References

[I-D.ietf-lsvr-applicability]

[I-D.psarkar-lsvr-bgp-spf-impl]

Authors’ Addresses

Keyur Patel
Arrcus, Inc.

Email: keyur@arrcus.com

Acee Lindem
Cisco Systems
301 Midenhall Way
Cary, NC 27513
United States of America

Email: acee@cisco.com

Shawn Zandi
LinkedIn
222 2nd Street
San Francisco, CA 94105
United States of America

Email: szandi@linkedin.com

Wim Henderickx
Nokia
Antwerp
Belgium

Email: wim.henderickx@nokia.com
abstract

in massive data centers, bgp-spf and similar routing protocols are used to build topology and reachability databases. these protocols need to discover ip layer 3 attributes of links, such as logical link ip encapsulation abilities, ip neighbor address discovery, and link liveness. this layer 3 discovery and liveness protocol collects these data, which may then be disseminated using bgp-spf and similar protocols.

requirements language

the key words "must", "must not", "required", "shall", "shall not", "should", "should not", "recommended", "not recommended", "may", and "optional" in this document are to be interpreted as described in bcp 14 [rfc2119] [rfc8174] when, and only when, they appear in all capitals, as shown here.

status of this memo

this internet-draft is submitted in full conformance with the provisions of bcp 78 and bcp 79.

internet-drafts are working documents of the internet engineering task force (ietf). note that other groups may also distribute working documents as internet-drafts. the list of current internet-drafts is at https://datatracker.ietf.org/drafts/current/.

internet-drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. it is inappropriate to use internet-drafts as reference material or to cite them other than as "work in progress."

this internet-draft will expire on january 8, 2020.
Table of Contents

1. Introduction ... 3
2. Terminology ... 4
3. Background .. 5
4. Top Level Overview .. 5
5. Inter-Link Protocol Overview 6
 5.1. L3DL Ladder Diagram 7
6. Transport Layer ... 8
7. The Checksum ... 10
8. TLV PDUs ... 12
9. Logical Link Endpoint Identifier 13
10. HELLO .. 14
11. OPEN ... 15
12. ACK ... 17
 12.1. Retransmission .. 18
13. The Encapsulations ... 18
 13.1. The Encapsulation PDU Skeleton 19
 13.2. Encapsulation Flags 20
 13.3. IPv4 Encapsulation 21
 13.4. IPv6 Encapsulation 21
 13.5. MPLS Label List 22
 13.6. MPLS IPv4 Encapsulation 22
 13.7. MPLS IPv6 Encapsulation 23
14. VENDOR - Vendor Extensions 24
15. KEEPALIVE - Layer 2 Liveness 25
16. Layers 2.5 and 3 Liveness 26
17. The North/South Protocol 26
 17.1. Use BGP-LS as Much as Possible 26
 17.2. Extensions to BGP-LS 26
18. Discussion .. 27
 18.1. HELLO Discussion 27
 18.2. HELLO versus KEEPALIVE 27
1. Introduction

The Massive Data Center (MDC) environment presents unusual problems of scale, e.g. O(10,000) forwarding devices, while its homogeneity presents opportunities for simple approaches. Approaches such as Jupiter Rising [JUPITER] use a central controller to deal with scaling, while BGP-SPF [I-D.ietf-lsvr-bgp-spf] provides massive scale-out without centralization using a tried and tested scalable distributed control plane, offering a scalable routing solution in Clos [Clos0][Clos1] and similar environments. But BGP-SPF and similar higher level device-spanning protocols, e.g. [I-D.malhotra-bess-evpn-lsoe], need logical link state and addressing data from the network to build the routing topology. They also need prompt but prudent reaction to (logical) link failure.

Layer 3 Discovery and Liveness (L3DL) provides brutally simple mechanisms for devices to

- Discover each other’s unique endpoint identification,
- Discover mutually supported layer 3 encapsulations, e.g. IP/MPLS,
- Discover Layer 3 IP and/or MPLS addressing of interfaces of the encapsulations,
- Present these data, using a very restricted profile of a BGP-LS [RFC7752] API, to BGP-SPF which computes the topology and builds routing and forwarding tables,
- Enable layer 3 link liveness such as BFD, and finally
- Provide Layer 2 keep-alive messages for session continuity.
This protocol may be more widely applicable to a range of routing and similar protocols which need layer 3 discovery and characterisation.

2. Terminology

Even though it concentrates on the inter-device layer, this document relies heavily on routing terminology. The following attempts to clarify the use of some possibly confusing terms:

ASN: Autonomous System Number [RFC4271], a BGP identifier for an originator of Layer 3 routes, particularly BGP announcements.

BGP-LS: A mechanism by which link-state and TE information can be collected from networks and shared with external components using the BGP routing protocol. See [RFC7752].

BGP-SPF: A hybrid protocol using BGP transport but a Dijkstra Shortest Path First decision process. See [I-D.ietf-lsvr-bgp-spf].

Clos: A hierarchic subset of a crossbar switch topology commonly used in data centers.

Datagram: The L3DL content of a single Layer 2 frame. A full L3DL PDU may be packaged in multiple Datagrams.

Encapsulation: Address Family Indicator and Subsequent Address Family Indicator (AFI/SAFI). I.e. classes of layer 2.5 and 3 addresses such as IPv4, IPv6, MPLS, etc.

Frame: A Layer 2 packet.

Link or Logical Link: A logical connection between two logical ports on two devices. E.g. two VLANs between the same two ports are two links.

LLEI: Logical Link Endpoint Identifier, the unique identifier of one end of a logical link, see Section 9.

MAC Address: 48-bit Layer 2 addresses are assumed since they are used by all widely deployed Layer 2 network technologies of interest, especially Ethernet. See [IEEE.802_2001].

MDC: Massive Data Center, commonly composed of thousands of Top of Rack Switches (TORs).

MTU: Maximum Transmission Unit, the size in octets of the largest packet that can be sent on a medium, see [RFC1122] 1.3.3.

PDU: Protocol Data Unit, an L3DL application layer message. A PDU may need to be broken into multiple Datagrams to make it through MTU or other restrictions.

RouterID: An 32-bit identifier unique in the current routing domain, see [RFC6286].

Session: An established, via OPEN PDUs, session between two L3DL capable link end-points.

SPF: Shortest Path First, an algorithm for finding the shortest paths between nodes in a graph; AKA Dijkstra’s algorithm.
System Identifier: An eight octet ISO System Identifier a la
[RFC1629] System ID
TOR: Top Of Rack switch, aggregates the servers in a rack and
connects to aggregation layers of the Clos tree, AKA the
Clos spine.
ZTP: Zero Touch Provisioning gives devices initial addresses,
credentials, etc. on boot/restart.

3. Background

L3DL is primarily designed for a Clos type datacenter scale and
topology, but can accommodate richer topologies which contain
potential cycles.

While L3DL is designed for the MDC, there are no inherent reasons it
could not run on a WAN. The authentication and authorization needed
to run safely on a WAN need to be considered, and the appropriate
level of security options chosen.

L3DL assumes a new IEEE assigned EtherType (TBD).

The number of addresses of one Encapsulation type on an interface
link may be quite large given a TOR with tens of servers, each server
having a few hundred micro-services, resulting in an inordinate
number of addresses. And highly automated micro-service migration
can cause serious address prefix disaggregation, resulting in
interfaces with thousands of disaggregated prefixes.

Therefore the L3DL protocol is session oriented and uses incremental
announcement and withdrawal with session restart, a la BGP ([RFC4271]).

4. Top Level Overview

- Devices discover each other on logical links
- Logical Link Endpoint Identifiers are exchanged
- Layer 2 Liveness Checks may be started
- Encapsulation data are exchanged and IP-Level Liveness Checks
enabled
- A BGP-like upper layer protocol is assumed to use these data to
discover and build a topology database
There are two protocols, the inter-device per-link layer 3 discovery and the API to the upper level BGP-like routing protocol:

- Inter-device PDUs are used to exchange device and logical link identities and layer 2.5 and 3 identifiers (not payloads), e.g. device IDs, port identities, VLAN IDs, Encapsulations, and IP addresses.

- A Link Layer to BGP API presents these data up the stack to a BGP protocol or another device-spanning upper layer protocol, presenting them using the BGP-LS BGP-like data format.

The upper layer BGP family routing protocols cross all the devices, though they are not part of these L3DL protocols.

To simplify this document, Layer 2 framing is not shown. L3DL is about layer 3.

5. Inter-Link Protocol Overview

Two devices discover each other and their respective identities by sending multicast HELLO PDUs (Section 10). To assure discovery of new devices coming up on a multi-link topology, devices on such a topology send periodic HELLOs forever, see Section 18.1.
Once a new device is recognized, both devices attempt to negotiate and establish a session by sending unicast OPEN PDUs (Section 11). In an established session, the Encapsulations (Section 13) configured on an end point may be announced and modified. Note that these are only the encapsulation and addresses configured on the announcing interface; though a device’s loopback and overlay interface(s) may also be announced. When two devices on a link have compatible Encapsulations and addresses, i.e. the same AFI/SAFI and the same subnet, the link is announced via the BGP-LS API.

5.1. L3DL Ladder Diagram

The HELLO, Section 10, is a priming message. It is a small L3DL PDU encapsulated in an Ethernet multicast frame with the simple goal of discovering the identities of logical link endpoint(s) reachable from a Logical Link Endpoint, Section 9.

The HELLO and OPEN, Section 11, PDUs, which are used to discover and exchange detailed Logical Link Endpoint Identifiers, LLEIs, and the ACK/ERROR PDU, are mandatory; other PDUs are optional; though at least one encapsulation SHOULD be agreed at some point.

The following is a ladder-style diagram of the L3DL protocol exchanges:

```
            HELLO           | Logical Link Peer discovery
---------------------------->|
            HELLO           | Mandatory
<----------------------------|
            OPEN            | MACs, IDs, etc.
---------------------------->|
            ACK             |
<----------------------------|
            OPEN            | Mandatory
<----------------------------|
            ACK             |
---------------------------->|
            Interface IPv4 Addresses | Interface IPv4 Addresses
---------------------------->|
            ACK             | Optional
<----------------------------|
            Interface IPv4 Addresses
```
6. Transport Layer

L3DL PDUs are carried by a simple transport layer which allows PDUs to occupy many Ethernet frames. An L3DL Ethernet frame is referred to as a Datagram.
The L3DL Transport Layer encapsulates each Datagram using a common transport header.

If a PDU does not fit in a single datagram, it is broken into multiple datagrams and reassembled by the receiver a la [RFC0791] Section 2.3 Fragmentation.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Version   |L|                Datagram Number                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|        Datagram Length        |            Checksum           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
˜                               |           Payload...          ˜
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

The fields of the L3DL Transport Header are as follows:

Version: Seven-bit Version number of the protocol, currently 0. Values other than 0 MUST BE treated as an error. The protocol version needs to be in one and only one place, so it is in the datagram as opposed to, for example, the PDU header.

L: A bit that set to one if this Datagram is the last Datagram of the PDU. For a PDU which fits in only one Datagram, it is set to one. Note that this is the inverse of the marking technique used by [RFC0791].

Datagram Number: A monotonically increasing 24-bit value which starts at zero for each PDU. This is used to reassemble frames into PDUs a la [RFC0791] Section 2.3. Note that this limits an L3DL PDU to 2^24 frames.

Datagram Length: Total number of octets in the Datagram including all payloads and fields. Note that this limits a datagram to 2^16 octets.

Checksum: A 32 bit hash over the Datagram to detect bit flips, see Section 7.

Payload: The PDU being transported or a fragment thereof.

To avoid the need for a receiver to reassemble two PDUs at the same time, a sender MUST NOT send a subsequent PDU when a PDU is already in flight and not yet acknowledged if it is an ACKed PDU Type.
7. The Checksum

There is a reason conservative folk use a checksum in UDP. And as many operators stretch to jumbo frames (over 1,500 octets) longer checksums are the prudent approach.

For the purpose of computing a checksum, the checksum field itself is assumed to be zero.

The following code describes the suggested algorithm.

Sum up 32-bit unsigned ints in a 64-bit long, then take the high-order section, shift it right, rotate, add it in, repeat until zero.
/* The F table from Skipjack, and it would work for the S-Box. */
static const uint8_t sbox[256] = {
 0xa3, 0xd7, 0x09, 0x83, 0xf8, 0x48, 0xf4, 0xb3, 0x21, 0x15, 0x78,
 0x99, 0x81, 0xaf, 0xf9, 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
 0x52, 0x95, 0x9d, 0x1e, 0x4e, 0x38, 0x44, 0x28, 0x0a, 0xdf, 0x02, 0xa0,
 0x17, 0xf1, 0x60, 0x68, 0xb7, 0x7a, 0xc3, 0xe9, 0xfa, 0x3d, 0x53,
 0x96, 0x84, 0x6b, 0xba, 0xf2, 0x63, 0x9a, 0x19, 0x7c, 0xae, 0xe5, 0xf5,
 0xf7, 0x16, 0x6a, 0xa2, 0x39, 0xb6, 0x7b, 0x0f, 0xc1, 0x93, 0x81, 0x1b,
 0xee, 0xb4, 0x1a, 0xea, 0xd0, 0x91, 0x2f, 0xb8, 0x55, 0xb9, 0xda, 0x85,
 0x3f, 0x41, 0xbf, 0xe0, 0x5a, 0x58, 0x80, 0x5f, 0x66, 0x0b, 0xd8, 0x90,
 0x35, 0xd5, 0xc0, 0xa7, 0x33, 0x06, 0x65, 0x69, 0x45, 0x00, 0x94, 0x56,
 0x6d, 0x98, 0x9b, 0x76, 0x97, 0xfc, 0xb2, 0xc2, 0xb0, 0xe0, 0xd6, 0x20,
 0xe1, 0xe6, 0xd6, 0x4e, 0xd4, 0x47, 0x4a, 0x1d, 0x42, 0xe9, 0xe6, 0xe,
 0x49, 0x3c, 0xcd, 0x43, 0x27, 0xda, 0x07, 0xda, 0xe0, 0xc7, 0x67, 0x18,
 0x89, 0xcb, 0x30, 0x1f, 0x8d, 0xc6, 0x8f, 0xaa, 0xc8, 0x74, 0x8d, 0xc9,
 0x5d, 0x5c, 0x31, 0xa4, 0x70, 0x88, 0x61, 0x2c, 0x9f, 0xd0, 0xc2, 0x87,
 0x50, 0x82, 0x54, 0x64, 0x26, 0x7d, 0x03, 0x40, 0x34, 0xb4, 0x1c, 0x73,
 0xd1, 0xc4, 0xfd, 0x3b, 0xc0, 0xfb, 0x7f, 0x9b, 0xe6, 0x3e, 0x5b, 0xa5,
 0xda, 0x04, 0x23, 0x9c, 0x14, 0x51, 0x22, 0xf0, 0x29, 0x79, 0x71, 0x7e,
 0xff, 0x8c, 0x0e, 0xe2, 0x0c, 0xef, 0xbc, 0x72, 0x75, 0x6f, 0x37, 0xa1,
 0xec, 0xd3, 0x8e, 0x62, 0x8b, 0x86, 0x10, 0xe8, 0x0b, 0x77, 0x11, 0xbe,
 0x92, 0x4f, 0x24, 0xc5, 0x32, 0x36, 0x9d, 0xc0, 0x0f, 0xa6, 0xbb, 0xac,
 0xe, 0x6c, 0xa9, 0x13, 0x57, 0x25, 0xb5, 0xe3, 0xbd, 0xa8, 0x3a, 0x01,
 0x05, 0x59, 0x2a, 0x46
};

/* non-normative example C code, constant time even */
uint32_t sbox_checksum_32(const uint8_t *b, const size_t n)
{
 uint32_t sum[4] = {0, 0, 0, 0};
 uint64_t result = 0;
 for (size_t i = 0; i < n; i++)
 sum[i & 3] += sbox[*b++];
 for (int i = 0; i < sizeof(sum)/sizeof(*sum); i++)
 result = (result << 8) + sum[i];
 result = (result >> 32) + (result & 0xFFFFFFFF);
 result = (result >> 32) + (result & 0xFFFFFFFF);
 return (uint32_t) result;
}
8. TLV PDUs

The basic L3DL application layer PDU is a typical TLV (Type Length Value) PDU. It includes a signature to provide optional integrity and authentication. It may be broken into multiple Datagrams, see Section 6.

```
 0                   1                   2                   3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    PDU Type   |                 Payload Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                  Payload ...                  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Sig Type   |        Signature Length       |               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
|                Signature                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

The fields of the basic L3DL header are as follows:

- **PDU Type**: An integer differentiating PDU payload types. See Section 22.1.

- **Payload Length**: Total number of octets in the Payload field.

- **Payload**: The application layer content of the L3DL PDU.

- **Sig Type**: The type of the Signature, see Section 22.2. Type 0, a null signature, is defined in this document.

 Sig Type 0 indicates a null Signature. For a trivial PDU such as KEEPALIVE, the underlying Datagram checksum may be sufficient for integrity, though it lacks authentication.

 Other Sig Types may be defined in other documents.

- **Signature Length**: The length of the Signature, possibly including padding, in octets. If Sig Type is 0, Signature Length MUST BE 0.

- **Signature**: The result of running the signature algorithm specified in Sig Type over all octets of the PDU except for the Signature itself.
9. Logical Link Endpoint Identifier

L3DL discovers neighbors on logical links and establishes sessions between the two ends of all consenting discovered logical links. A logical link is described by a pair of Logical Link Endpoint Identifiers, LLEIs.

An LLEI is a variable length descriptor which could be an ASN, a classic RouterID, a catenation of the two, an eight octet ISO System Identifier [RFC1629], or any other identifier unique to a single logical link endpoint in the topology.

An L3DL deployment will choose and define an LLEI which suits its needs, simple or complex. Two extremes are as follows:

A simplistic view of a link between two devices is two ports, identified by unique MAC addresses, carrying a layer 3 protocol conversation. In this case, the MAC addresses might suffice for the LLEIs.

Unfortunately, things can get more complex. Multiple VLANs can run between those two MAC addresses. In practice, many real devices use the same MAC address on multiple ports and/or sub-interfaces.

Therefore, in the general circumstance, a fully described LLEI might be as follows:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            ifIndex                            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

System Identifier, a la [RFC1629], is an eight octet identifier unique in the entire operational space. Routers and switches usually have internal MAC Addresses which can be padded with high order zeros and used if no System ID exists on the device. If no unique identifier is burned into a device, the local L3DL configuration SHOULD create and assign a unique one by configuration.

ifIndex is the SNMP identifier of the (sub-)interface, see [RFC1213]. This uniquely identifies the port.
For a layer 3 tagged sub-interface or a VLAN/SVI interface, Ifindex is that of the logical sub-interface, so no further disambiguation is needed.

L3DL PDUs learned over VLAN-ports may be interpreted by upper layer-3 routing protocols as being learned on the corresponding layer-3 SVI interface for the VLAN.

LLEIs are big-endian.

10. HELLO

The HELLO PDU is unique in that it is encapsulated in a multicast Ethernet frame. It solicits response(s) from other LLEI(s) on the link. See Section 10.1 for why multicast is used. The destination multicast MAC Addresses to be used MUST be one of the following, See Clause 9.2.2 of [IEEE802-2014]:

01-80-C2-00-00-0E: Nearest Bridge = Propagation constrained to a single physical link; stopped by all types of bridges (including MPRs (media converters)). This SHOULD BE used when the link is known to be a simple point to point link.

To Be Assigned: When a switch receives a frame with a multicast destination MAC it does not recognize, it forwards to all ports. This destination MAC is to be sent when the interface is known to be connected to a switch. See Section 23. This SHOULD BE used when the link may be a multi-point link.

All other L3DL PDUs are encapsulated in unicast frames, as the peer’s destination MAC address is known after the HELLO exchange.

When an interface is turned up on a device, it SHOULD issue a HELLO if it is to participate in L3DL sessions.

If a constrained Nearest Bridge destination address is configured for a point-to-point interface, see above, then the HELLO SHOULD NOT be repeated once a session has been created by an exchange of OPENs.

If the configured destination address is one that is propagated by switches, the HELLO SHOULD be repeated at a configured interval, with a default of 60 seconds. This allows discovery by new devices which come up on the layer-2 mesh.
If more than one device responds, one adjacency is formed for each unique source LLEI response. L3DL treats each adjacency as a separate logical link.

When a HELLO is received from a source MAC address with which there is no established L3DL session, the receiver SHOULD respond with an OPEN PDU. The two devices establish an L3DL session by exchanging OPEN PDUs.

The Payload Length is zero as there is no payload.

HELLO PDUs can not be signed as keying material has yet to be exchanged. Hence the signature MUST always be the null type.

11. OPEN

Each device has learned the other’s MAC Address from the HELLO exchange, see Section 10. Therefore the OPEN and subsequent PDUs MUST BE unicast, as opposed to the HELLO’s multicast frame.
The Payload Length is the number of octets in all fields of the PDU from the Nonce through the Serial Number, not including the three final signature fields.

The Nonce enables detection of a duplicate OPEN PDU. It SHOULD be either a random number or a high resolution timestamp. It is needed to prevent session closure due to a repeated OPEN caused by a race or a dropped or delayed ACK.

My LLEI is the sender’s LLEI, see Section 9.

AttrCount is the number of attributes in the Attribute List. Attributes are single octets the semantics of which are operator-defined.

A node may have zero or more operator-defined attributes, e.g.: spine, leaf, backbone, route reflector, arabica, ...

Attribute syntax and semantics are local to an operator or datacenter; hence there is no global registry. Nodes exchange their attributes only in the OPEN PDU.

Auth Type is the Signature algorithm suite, see Section 8.

Key Length is a 16-bit field denoting the length in octets of the Key itself, not including the Auth Type or the Key Length. If there is no Key, the Auth Type and key Length MUST both be zero.

The Key is specific to the operational environment. A failure to authenticate is a failure to start the L3DL session, an ERROR PDU MUST BE sent (Error Code 2), and HELLOs MUST be restarted.

The Serial Number is that of the last received and processed PDU. This allows a receiver sending an OPEN to tell the sender that the receiver wants to resume a session and the sender only needs to send data more recent than the Serial Number. If this OPEN is not trying to restart a lost session, the Serial Number MUST BE set to zero.

The Signature fields are described in Section 8 and in an asymmetric key environment serve as a proof of possession of the signing auth data by the sender.

Once two logical link endpoints know each other, and have ACKed each other’s OPEN PDUs, Layer 2 KEEPALIVEs (see Section 15) MAY be started to ensure Layer 2 liveness and keep the session semantics alive. The timing and acceptable drop of KEEPALIVE PDUs are discussed in Section 15.
If a sender of OPEN does not receive an ACK of the OPEN PDU, then they MUST resend the same OPEN PDU, with the same Nonce. Resending an unacknowledged OPEN PDU, like other ACKed PDUs, SHOULD use exponential back-off, see [RFC1122].

If a properly authenticated OPEN arrives with a new Nonce from an LLEI with which the receiving logical link endpoint believes it already has an L3DL session (OPENs have already been exchanged), and the Serial Number in the OPEN is non-zero, the receiver SHOULD establish a new session by sending an OPEN with the Serial Number of the last data it received. Each party MUST resume sending encapsulations etc. subsequent to the other party’s Sequence Number. And each MUST retain all previously discovered encapsulation and other data.

If a properly authenticated OPEN arrives with a new Nonce from an LLEI with which the receiving logical link endpoint believes it already has an L3DL session (OPENs have already been exchanged), and the Serial Number in the OPEN is zero, then the receiver MUST assume that the sending LLEI or entire device has been reset. All previously discovered encapsulation data MUST NOT be kept and MUST be withdrawn via the BGP-LS API and the recipient MUST respond with a new OPEN.

12. ACK

The ACK PDU acknowledges receipt of a PDU and reports any error condition which might have been raised.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PDU Type = 3 |               Payload Length = 5              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACKed PDU | EType |       Error Code      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           Error Hint          |    Sig Type   |Signature Leng.  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                 Signature ...                 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

The ACK acknowledges receipt of an OPEN, Encapsulation, VENDOR PDU, etc.

The ACKed PDU is the PDU Type of the PDU being acknowledged, e.g., OPEN, one of the Encapsulations, etc.
If there was an error processing the received PDU, then the EType is non-zero. If the EType is zero, Error Code and Error Hint MUST also be zero.

A non-zero EType is the receiver’s way of telling the PDU’s sender that the receiver had problems processing the PDU. The Error Code and Error Hint will tell the sender more detail about the error.

The decimal value of EType gives a strong hint how the receiver sending the ACK believes things should proceed:

- 0 - No Error, Error Code and Error Hint MUST be zero
- 1 - Warning, something not too serious happened, continue
- 2 - Session should not be continued, try to restart
- 3 - Restart is hopeless, call the operator
- 4-15 - Reserved

The Error Codes, noting protocol failures listed in this document, are listed in Section 22.4. Someone stuck in the 1990s might think the catenation of EType and Error Code as an echo of 0x1zzz, 0x2zzz, etc. They might be right; or not.

The Error Hint is any additional data the sender of the error PDU thinks will help the recipient or the debugger with the particular error.

The Signature fields are described in Section 8.

12.1. Retransmission

If a PDU sender expects an ACK, e.g. for an OPEN, an Encapsulation, a VENDOR PDU, etc., and does not receive the ACK for a configurable time (default one second), and the interface is live at layer 2, the sender resends the PDU using exponential back-off, see [RFC1122]. This cycle MAY be repeated a configurable number of times (default three) before it is considered a failure. The session MAY BE considered closed in case of this ACK failure.

If the link is broken at layer 2, retransmission MAY BE retried when the link is restored.

13. The Encapsulations

Once the devices know each other’s LLEIs, know each other’s upper layer identities, have means to ensure link state, etc., the L3DL session is considered established, and the devices SHOULD exchange L3 interface encapsulations, L3 addresses, and L2.5 labels.
The Encapsulation types the peers exchange may be IPv4 (Section 13.3), IPv6 (Section 13.4), MPLS IPv4 (Section 13.6), MPLS IPv6 (Section 13.7), and/or possibly others not defined here.

The sender of an Encapsulation PDU MUST NOT assume that the peer is capable of the same Encapsulation Type. An ACK (Section 12) merely acknowledges receipt. Only if both peers have sent the same Encapsulation Type is it safe to assume that they are compatible for that type.

A receiver of an encapsulation might recognize an addressing conflict, such as both ends of the link trying to use the same address. In this case, the receiver SHOULD respond with an error (Error Code 1) ACK. As there may be other usable addresses or encapsulations, this error might log and continue, letting an upper layer topology builder deal with what works.

Further, to consider a logical link of a type to formally be established so that it may be pushed up to upper layer protocols, the addressing for the type must be compatible, e.g. on the same IP subnet.

13.1. The Encapsulation PDU Skeleton

The header for all encapsulation PDUs is as follows:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    PDU Type   |                 Payload Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     Count                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         Serial Number                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|        Signature Length       |         Signature ...         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

An Encapsulation PDU describes zero or more addresses of the encapsulation type.

The 24-bit Count is the number of Encapsulations in the Encapsulation list.

The Serial Number is a monotonically increasing 32-bit value representing the sender’s state in time. It may be an integer, a
timestamp, etc. On session restart (new OPEN), a receiver MAY send the last received Session Number to tell the sender to only send newer data.

If a sender has multiple links on the same interface, separate state: data, ACKs, etc. must be kept for each peer session.

Over time, multiple Encapsulation PDUs may be sent for an interface as configuration changes.

If the length of an Encapsulation PDU exceeds the Datagram size limit on media, the PDU is broken into multiple Datagrams. See Section 8.

The Signature fields are described in Section 8.

The Receiver MUST acknowledge the Encapsulation PDU with a Type=3, ACK PDU (Section 12) with the Encapsulation Type being that of the encapsulation being announced, see Section 12.

If the Sender does not receive an ACK in a configurable interval (default one second), and the interface is live at layer 2, they SHOULD retransmit. After a user configurable number of failures, the L3DL session should be considered dead and the OPEN process SHOULD be restarted.

If the link is broken at layer 2, retransmission MAY BE retried if data have not changed in the interim.

13.2. Encapsulaion Flags

```
   0   1   2   3   4   5   6   7
+-------------+-------------+------------+-------------+------------+
| Ann/With | Primary | Under/Over | Loopback | Reserved ..|
+-------------+-------------+------------+-------------+------------+
```

Each encapsulation in an Encapsulation PDU of Type T may announce new and/or withdraw old encapsulations of Type T. It indicates this with the Ann/With Encapsulation Flag, Announce == 1, Withdraw == 0.

Each Encapsulation interface address in an Encapsulation PDU is either a new encapsulation be announced (Ann/With == 1) (yes, a la BGP) or requests one be withdrawn (Ann/With == 0). Adding an encapsulation which already exists SHOULD raise an Announce/Withdraw Error (see Section 22.4); the EType SHOULD be 2, suggesting a session restart (see Section 12 so all encapsulations will be resent.

If an LLEI has multiple addresses for an encapsulation type, one and only one address SHOULD be configured to be marked as primary

(Primary Flag == 1). Only one address on an interface MAY be marked as primary for a particular encapsulation type.

An Encapsulation interface address in an Encapsulation PDU MAY be marked as a loopback, in which case the Loopback bit is set. Loopback addresses are generally not seen directly on an external interface. One or more loopback addresses MAY be exposed by configuration on one or more L3DL speaking external interfaces, e.g. for iBGP peering. They SHOULD be marked as such, Loopback Flag == 1.

Each Encapsulation interface address in an Encapsulation PDU is that of the direct ‘underlay interface (Under/Over == 1), or an ‘overlay’ address (Under/Over == 0), likely that of a VM or container guest bridged or configured on to the interface already having an underlay address.

13.3. IPv4 Encapsulation

The IPv4 Encapsulation describes a device’s ability to exchange IPv4 packets on one or more subnets. It does so by stating the interface’s addresses and the corresponding prefix lengths.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       PDU Type = 4       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       Payload Length       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       Count       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       Serial Number       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Encaps Flags | IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       PrefixLen       | more ... | Sig Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Signature Length | Signature ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

The 24-bit Count is the number of IPv4 Encapsulations being announced and/or withdrawn.

13.4. IPv6 Encapsulation

The IPv6 Encapsulation describes a logical link’s ability to exchange IPv6 packets on one or more subnets. It does so by stating the interface’s addresses and the corresponding prefix lengths.
The 24-bit Count is the number of IPv6 Encapsulations being announced and/or withdrawn.

13.5. MPLS Label List

As an MPLS enabled interface may have a label stack, see [RFC3032], a variable length list of labels is needed. These are the labels the sender will accept for the prefix to which the list is attached.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
| Label Count | Label | Exp |S|       | Label | Exp |S|       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
| more ... | Sig Type | Signature Length | Signature ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```

A Label Count of zero is an implicit withdraw of all labels for that prefix on that interface.

13.6. MPLS IPv4 Encapsulation

The MPLS IPv4 Encapsulation describes a logical link’s ability to exchange labeled IPv4 packets on one or more subnets. It does so by stating the interface’s addresses the corresponding prefix lengths, and the corresponding labels which will be accepted for each address.
The 24-bit Count is the number of MPLSv4 Encapsulation being announced and/or withdrawns.

13.7. MPLS IPv6 Encapsulation

The MPLS IPv4 Encapsulation describes a logical link’s ability to exchange labeled IPv4 packets on one or more subnets. It does so by stating the interface’s addresses, the corresponding prefix lengths, and the corresponding labels which will be accepted for each address.
The 24-bit Count is the number of MPLSv6 Encapsulations being announced and/or withdrawn.

14. VENDOR - Vendor Extensions

Vendors or enterprises may define TLVs beyond the scope of L3DL standards. This is done using a Private Enterprise Number [IANA-PEN]
followed by Enterprise Data in a format defined for that Enterprise Number and Ent Type.

Ent Type allows a VENDOR PDU to be sub-typed in the event that the vendor/enterprise needs multiple PDU types.

As with Encapsulation PDUs, a receiver of a VENDOR PDU MUST respond with an ACK or an ERROR PDU. Similarly, a VENDOR PDU MUST only be sent over an open session.

15. KEEPALIVE - Layer 2 Liveness

L3DL devices SHOULD beacon frequent Layer 2 KEEPALIVE PDUs to ensure session continuity. A receiver may choose to ignore KEEPALIVE PDUs.

An operational deployment MUST BE configured whether to use KEEPALIVES or not, either globally, or down to per-link granularity. Disagreement MAY result in repeated session break and reestablishment.

KEEPALIVES SHOULD be beaconed at a configured frequency. One per second is the default. Layer 3 liveness, such as BFD, may be more (or less) aggressive.

When a sender transmits a PDU which is not a KEEPALIVE, the sender SHOULD reset the KEEPALIVE timer. I.e. sending any PDU acts as a keepalive. Once the last fragment has been sent, the KEEPALIVE timer SHOULD BE restarted. Do not wait for the ACK.

If a KEEPALIVE or other PDUs have not been received from a peer with which a receiver has an open session for a configurable time (default 30 seconds), the link SHOULD BE presumed down. The devices MAY keep configuration state and restore it without retransmission if no data have changed. Otherwise, a new session SHOULD BE established and new Encapsulation PDUs exchanged.
16. Layers 2.5 and 3 Liveness

Layer 2 liveness may be continuously tested by KEEPALIVE PDUs, see Section 15. As layer 2.5 or layer 3 connectivity could still break, liveness above layer 2 MAY be frequently tested using BFD ([RFC5880]) or a similar technique.

This protocol assumes that one or more Encapsulation addresses may be used to ping, run BFD, or whatever the operator configures.

17. The North/South Protocol

Thus far, a one-hop point-to-point logical link discovery protocol has been defined.

The devices know their unique LLEIs and know the unique peer LLEIs and Encapsulations on each logical link interface.

Full topology discovery is not appropriate at the L3DL layer, so Dijkstra a la IS-IS etc. is assumed to be done by higher level protocols such as BGP-SPF.

Therefore the LLEIs, link Encapsulations, and state changes are pushed North via a small subset of the BGP-LS API. The upper layer routing protocol(s), e.g. BGP-SPF, learn and maintain the topology, run Dijkstra, and build the routing database(s).

For example, if a neighbor’s IPv4 Encapsulation address changes, the devices seeing the change push that change Northbound.

17.1. Use BGP-LS as Much as Possible

BGP-LS [RFC7752] defines BGP-like Datagrams describing logical link state (links, nodes, link prefixes, and many other things), and a new BGP path attribute providing Northbound transport, all of which can be ingested by upper layer protocols such as BGP-SPF; see Section 4 of [I-D.ietf-lsvr-bgp-spf].

For IPv4 links, TLVs 259 and 260 are used. For IPv6 links, TLVs 261 and 262. If there are multiple addresses on a link, multiple TLV pairs are pushed North, having the same ID pairs.

17.2. Extensions to BGP-LS

The Northbound protocol needs a few minor extensions to BGP-LS. Luckily, others have needed the same extensions.
Similarly to BGP-SPF, the BGP protocol is used in the Protocol-ID field specified in table 1 of [I-D.ietf-idr-bgpls-segment-routing-epe]. The local and remote node descriptors for all NLRI are the IDs described in Section 11. This is equivalent to an adjacency SID or a node SID if the address is a loopback address.

Label Sub-TLVs from [I-D.ietf-idr-bgp-ls-segment-routing-ext] Section 2.1.1, are used to associate one or more MPLS Labels with a link.

18. Discussion

This section explores some trade-offs taken and some considerations.

18.1. HELLO Discussion

A device with multiple Layer 2 interfaces, traditionally called a switch, may be used to forward frames and therefore packets from multiple devices to one logical interface (LLEI), I, on an L3DL speaking device. Interface I could discover a peer J across the switch. Later, a prospective peer K could come up across the switch. If I was not still sending and listening for HELLOs, the potential peering with K could not be discovered. Therefore, on multi-link interfaces MUST continue to send HELLOs as long as they are turned up.

18.2. HELLO versus KEEPALIVE

Both HELLO and KEEPALIVE are periodic. KEEPALIVE might be eliminated in favor of keeping only HELLOs. But KEEPALIVEs are unicast, and thus less noisy on the network, especially if HELLO is configured to transit layer-2-only switches, see Section 18.1.

19. VLANs/SVIs/Sub-interfaces

One can think of the protocol as an instance (i.e. state machine) which runs on each logical link of a device.

As the upper routing layer must view VLAN topologies as separate graphs, L3DL treats VLAN ports as separate links.

L3DL PDUs learned over VLAN-ports may be interpreted by upper layer-3 routing protocols as being learned on the corresponding layer-3 SVI interface for the VLAN.

As Sub-Interfaces each have their own LLIEs, they act as separate interfaces, forming their own links.
20. Implementation Considerations

An implementation SHOULD provide the ability to configure a logical interface as L3DL speaking or not.

An implementation SHOULD provide the ability to configure whether HELLOs on an L3DL enabled interface send Nearest Bridge or the MAC which is propagated by switches from that interface; see Section 10.

An implementation SHOULD provide the ability to distribute one or more loopback addresses or interfaces into L3DL on an external L3DL speaking interface.

An implementation SHOULD provide the ability to distribute one or more overlay and/or underlay addresses or interfaces into L3DL on an external L3DL speaking interface.

An implementation SHOULD provide the ability to configure one of the addresses of an encapsulation as primary on an L3DL speaking interface. If there is only one address for a particular encapsulation, the implementation MAY mark it as primary by default.

An implementation MAY allow optional configuration which updates the local forwarding table with overlay and underlay data both learned from L3DL peers and configured locally.

21. Security Considerations

The protocol as is MUST NOT be used outside a datacenter or similarly closed environment due to lack of formal definition of the authentication and authorization mechanism. Sufficient mechanisms may be described in separate documents.

Many MDC operators have a strange belief that physical walls and firewalls provide sufficient security. This is not credible. All MDC protocols need to be examined for exposure and attack surface. In the case of L3DL, Authentication and Integrity as provided in [draft-ymbk-l3dl-signing] is strongly recommended.

It is generally unwise to assume that on the wire Layer 2 is secure. Strange/unauthorized devices may plug into a port. Mis-wiring is very common in datacenter installations. A poisoned laptop might be plugged into a device’s port, form malicious sessions, etc. to divert, intercept, or drop traffic.

Similarly, malicious nodes/devices could mis-announce addressing.
If OPENs are not being authenticated, an attacker could forge an OPEN for an existing session and cause the session to be reset.

For these reasons, the OPEN PDU’s authentication data exchange SHOULD be used.

If the KEEPALIVE PDU is not signed (as suggested in Section 8) to save computation, then a MITM could fake a session being alive.

22. IANA Considerations

22.1. PDU Types

This document requests the IANA create a registry for L3DL PDU Type, which may range from 0 to 255. The name of the registry should be L3DL-PDU-Type. The policy for adding to the registry is RFC Required per [RFC5226], either standards track or experimental. The initial entries should be the following:

<table>
<thead>
<tr>
<th>PDU Code</th>
<th>PDU Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>HELLO</td>
</tr>
<tr>
<td>1</td>
<td>OPEN</td>
</tr>
<tr>
<td>2</td>
<td>KEEPALIVE</td>
</tr>
<tr>
<td>3</td>
<td>ACK</td>
</tr>
<tr>
<td>4</td>
<td>IPv4 Announcement</td>
</tr>
<tr>
<td>5</td>
<td>IPv6 Announcement</td>
</tr>
<tr>
<td>6</td>
<td>MPLS IPv4 Announcement</td>
</tr>
<tr>
<td>7</td>
<td>MPLS IPv6 Announcement</td>
</tr>
<tr>
<td>8-254</td>
<td>Reserved</td>
</tr>
<tr>
<td>255</td>
<td>VENDOR</td>
</tr>
</tbody>
</table>

22.2. Signature Type

This document requests the IANA create a registry for L3DL Signature Type, AKA Sig Type, which may range from 0 to 255. The name of the registry should be L3DL-Signature-Type. The policy for adding to the registry is RFC Required per [RFC5226], either standards track or experimental. The initial entries should be the following:

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Null</td>
</tr>
<tr>
<td>1-255</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
22.3. Flag Bits

This document requests the IANA create a registry for L3DL PL Flag Bits, which may range from 0 to 7. The name of the registry should be L3DL-PL-Flag-Bits. The policy for adding to the registry is RFC Required per [RFC5226], either standards track or experimental. The initial entries should be the following:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Announce/Withdraw (ann == 0)</td>
</tr>
<tr>
<td>1</td>
<td>Primary</td>
</tr>
<tr>
<td>2</td>
<td>Underlay/Overlay (under == 0)</td>
</tr>
<tr>
<td>3</td>
<td>Loopback</td>
</tr>
<tr>
<td>4-7</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

22.4. Error Codes

This document requests the IANA create a registry for L3DL Error Codes, a 16 bit integer. The name of the registry should be L3DL-Error-Codes. The policy for adding to the registry is RFC Required per [RFC5226], either standards track or experimental. The initial entries should be the following:

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Error</td>
</tr>
<tr>
<td>1</td>
<td>Logical Link Addressing Conflict</td>
</tr>
<tr>
<td>2</td>
<td>Authorization Failure in OPEN</td>
</tr>
<tr>
<td>3</td>
<td>Signature Failure in PDU</td>
</tr>
<tr>
<td>4</td>
<td>Announce/Withdraw Error</td>
</tr>
</tbody>
</table>

23. IEEE Considerations

This document requires a new EtherType.

This document requires a new multicast MAC address that will be broadcast through a switch.

24. Acknowledgments

The authors thank Cristel Pelsser for multiple reviews, Harsha Kovuru for comments during implementation, Jeff Haas for review and comments, Joe Clarke for a useful review, John Scudder for deeply serious review and comments, Larry Kreeger for a lot of layer 2 clue, Martijn Schmidt for his contribution, Neeraj Malhotra for review,
Russ Housley for checksum discussion and sBox, and Steve Bellovin for checksum advice.

25. References

25.1. Normative References

[I-D.ietf-idr-bgp-ls-segment-routing-ext]

[I-D.ietf-idr-bgpls-segment-routing-epe]

[I-D.ietf-lsvr-bgp-spf]

[IANA-PEN]
"IANA Private Enterprise Numbers",

[IEEE.802_2001]

[IEEE802-2014]
Institute of Electrical and Electronics Engineers, "Local and Metropolitan Area Networks: Overview and Architecture", IEEE Std 802-2014, 2014.

25.2. Informative References

[I-D.malhotra-bess-evpn-lsoe]

Authors’ Addresses

Randy Bush
Arrcus & Internet Initiative Japan
5147 Crystal Springs
Bainbridge Island, WA 98110
US

Email: randy@psg.com

Rob Austein
Arrcus, Inc

Email: sra@hactrn.net

Keyur Patel
Arrcus
2077 Gateway Place, Suite #400
San Jose, CA 95119
US

Email: keyur@arrcus.com
Layer-3 Discovery and Liveness
draft-ietf-lsvr-l3dl-09

Abstract

In Massive Data Centers, BGP-SPF and similar routing protocols are used to build topology and reachability databases. These protocols need to discover IP Layer-3 attributes of links, such as neighbor IP addressing, logical link IP encapsulation abilities, and link liveness. This Layer-3 Discovery and Liveness protocol collects these data, which may then be disseminated using BGP-SPF and similar protocols.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 November 2022.
1. Introduction

The Massive Data Center (MDC) environment presents unusual problems of scale, e.g. O(10,000) forwarding devices, while its homogeneity presents opportunities for simple approaches. Approaches such as Jupiter Rising [JUPITER] use a central controller to deal with scaling, while BGP-SPF [I-D.ietf-lsvr-bgp-spf] provides massive scale-out without centralization using a tried and tested scalable distributed control plane, offering a scalable routing solution in Clos [Clos0][Clos1] and similar environments. But BGP-SPF and similar higher level device-spanning protocols, e.g. [I-D.malhotra-bess-evpn-lsoe], need logical link state and addressing data from the network to build the routing topology. They also need prompt but prudent reaction to (logical) link failure.

Layer-3 Discovery and Liveness (L3DL) provides brutally simple mechanisms for devices to

* Discover each other’s unique endpoint identification,
* Discover mutually supported layer-3 encapsulations, e.g. IP/MPLS,
* Discover Layer-3 IP and/or MPLS addressing of interfaces of the encapsulations,
* Present these data, using a very restricted profile of a BGP-LS [RFC7752] API, to BGP-SPF which computes the topology and builds routing and forwarding tables,
* Enable Layer-3 link liveness such as BFD,
* Provide Layer-2 keep-alive messages for session continuity, and finally

* Provide for authenticity verification of protocol messages.

In this document, the use case for L3DL is for point to point links in a datacenter Clos in order to exchange the data needed for BGP-SPF [I-D.ietf-lsvr-bgp-spf] bootstrap and continuity. Once layer-2 connectivity has been leveraged to get layer-3 addressability and forwarding capabilities, normal layer-3 forwarding and routing can take over.

L3DL might be found to be more widely applicable to a range of routing and similar protocols which need layer-3 discovery and characterisation.

2. Terminology

Even though it concentrates on the inter-device layer, this document relies heavily on routing terminology. The following attempts to clarify the use of some possibly confusing terms:

ASN: Autonomous System Number [RFC4271], a BGP identifier for an originator of Layer-3 routes, particularly BGP announcements.

BGP-LS: A mechanism by which link-state and TE information can be collected from networks and shared with external components using the BGP routing protocol. See [RFC7752].

BGP-SPF A hybrid protocol using BGP transport but a Dijkstra Shortest Path First decision process. See [I-D.ietf-lsvr-bgp-spf].

Clos: A hierarchic subset of a crossbar switch topology commonly used in data centers.

Datagram: The L3DL content of a single Layer-2 frame, sans Ethernet framing. A full L3DL PDU may be packaged in multiple Datagrams.

Encapsulation: Address Family Indicator and Subsequent Address Family Indicator (AFI/SAFI). I.e. classes of layer-2.5 and 3 addresses such as IPv4, IPv6, MPLS, etc.

Frame: A Layer-2 Ethernet packet.

Link or Logical Link: A logical connection between two logical ports on two devices. E.g. two VLANs between the same two ports are two links.
LLEI: Logical Link Endpoint Identifier, the unique identifier of one end of a logical link, see Section 9.

MAC Address: 48-bit Layer-2 addresses are assumed since they are used by all widely deployed Layer-2 network technologies of interest, especially Ethernet. See [IEEE.802_2001].

MDC: Massive Data Center, commonly composed of thousands of Top of Rack Switches (TORs).

MTU: Maximum Transmission Unit, the size in octets of the largest packet that can be sent on a medium, see [RFC1122] 1.3.3.

PDU: Protocol Data Unit, an L3DL application layer message. A PDU's content may need to be broken into multiple Datagrams to make it through MTU or other restrictions.

RouterID: An 32-bit identifier unique in the current routing domain, see [RFC6286].

Session: An established, via OPEN PDUs, session between two L3DL capable link end-points,

SPF: Shortest Path First, an algorithm for finding the shortest paths between nodes in a graph; AKA Dijkstra’s algorithm.

System Identifier: An eight octet ISO System Identifier a la [RFC1629] System ID

TOR: Top Of Rack switch, aggregates the servers in a rack and connects to aggregation layers of the Clos tree, AKA the Clos spine.

ZTP: Zero Touch Provisioning gives devices initial addresses, credentials, etc. on boot/restart.

3. Background

L3DL is primarily designed for a Clos type datacenter scale and topology, but can accommodate richer topologies which contain potential cycles.

While L3DL is designed for the MDC, there are no inherent reasons it could not run on a WAN. The authentication and authorization needed to run safely on a WAN need to be considered, and the appropriate level of security options chosen.
L3DL assumes a new IEEE assigned EtherType (TBD).

The number of addresses of one Encapsulation type on an interface link may be quite large given a TOR with tens of servers, each server having a few hundred micro-services, resulting in an inordinate number of addresses. And highly automated micro-service migration can cause serious address prefix disaggregation, resulting in interfaces with thousands of disaggregated prefixes.

Therefore the L3DL protocol is session oriented and uses incremental announcement and withdrawal with session restart, a la BGP ([RFC4271]).

4. Top Level Overview

* Devices discover each other on logical links
* Logical Link Endpoint Identifiers (LLEIs) are exchanged
* Layer-2 Liveness checks may be started
* Encapsulation data are exchanged and IP-Level Liveness checks enabled
* A BGP-like upper layer protocol is assumed to use the identifiers and encapsulation data to discover and build a topology database
There are two protocols, the inter-device (left-right in the diagram) per-link layer-3 discovery and the API to the upper level BGP-like routing protocol (up-down in the above diagram):

* Inter-device PDUs are used to exchange device and logical link identities and layer-2.5 (MPLS) and 3 identifiers (not payloads), e.g. device IDs, port identities, VLAN IDs, Encapsulations, and IP addresses.

* A Link Layer to BGP API presents these data up the stack to a BGP protocol or an other device-spanning upper layer protocol, presenting them using the BGP-LS BGP-like data format.

The upper layer BGP family routing protocols cross all the devices, though they are not part of these L3DL protocols.

To simplify this document, Layer-2 framing is not shown. L3DL is about layer-3.
5. Inter-Link Protocol Overview

Two devices discover each other and their respective identities by sending multicast HELLO PDUs (Section 10). To assure discovery of new devices coming up on a multi-link topology, devices on such a topology, and only on a multi-link topology, send periodic HELLOs forever, see Section 18.1.

Once a new device is recognized, both devices attempt to negotiate and establish a session by sending unicast OPEN PDUs (Section 11) to the source MAC addresses (plus VID(s) if VLANs) of the received HELLOs. Once a session is established through the OPEN exchange, the Encapsulations (Section 13) configured on an end point may be announced and modified. Note that these are only the encapsulation and addresses configured on the announcing interface; though a device’s loopback and overlay interface(s) may also be announced. When two devices on a link have compatible Encapsulations and addresses, i.e. the same AFI/SAFI and the same subnet, the link is announced via the BGP-LS API.

5.1. L3DL Ladder Diagram

The HELLO, Section 10, is a priming message sent on all configured logical links. It is a small L3DL PDU encapsulated in an Ethernet multicast frame with the simple goal of discovering the identities of logical link endpoint(s) reachable from a Logical Link Endpoint, Section 9.

The HELLO and OPEN, Section 11, PDUs, which are used to discover and exchange detailed Logical Link Endpoint Identifiers, LLEIs, and the ACK/ERROR PDU, are mandatory; other PDUs are optional; though at least one encapsulation SHOULD be agreed at some point.

The following is a ladder-style diagram of the L3DL protocol exchanges:

```
                             | HELLO                      | Logical Link Peer discovery
-----------------------------|-----------------------------|-----------------------------
                             | HELLO                      | Mandatory
-----------------------------|-----------------------------|-----------------------------
                             | OPEN                       | MACs, IDs, etc.
-----------------------------|-----------------------------|-----------------------------
                             | ACK                        | Mandatory
-----------------------------|-----------------------------|-----------------------------
                             | OPEN                       |
6. Transport Layer

L3DL PDUs are carried by a simple transport layer which allows long PDUs to occupy many Ethernet frames. The L3DL content of a single Ethernet frame, exclusive of Ethernet framing data, is referred to as a Datagram.

The L3DL Transport Layer encapsulates each Datagram using a common transport header.

If a PDU does not fit in a single datagram, it is broken into multiple Datagrams and reassembled by the receiver a la [RFC0791] Section 2.3 Fragmentation.

This is not classic ‘fragmentation’, but rather decomposition at the origin to allow PDU payloads larger than the frame allows. There are no intermediate devices capable of further fragmentation or reassembly.

A PDU might need a large number of frames to be sent. As fragments are not ACK paced (as PDUs are), to avoid overwhelming bursts, the sender should pace fragments of a large PDU.

L3DL is carrying a relatively small amount of data on relatively high bandwidth links, and at a time when the link is not active with other data as it does not yet have layer-3 connectivity. So congestion is not considered a sufficiently significant risk to warrant additional complexity.

Should a PDU need to be retransmitted, it MUST BE sent as the identical Datagram set as the original transmission. The Transmission Sequence Number informs the receiver that it is the same PDU.
The fields of the L3DL Transport Header are as follows:

Version: Eight-bit Version number of the protocol, currently 0. Values other than 0 MUST BE treated as an error. The protocol version needs to be in one and only one place, so it is in the datagram as opposed to, for example, the PDU header.

Transmission Sequence Number: A 16-bit strictly increasing unsigned integer identifying this PDU, possibly across retransmissions, that wraps from 2^16-1 to 0. The initial value is arbitrary. See [RFC1982] on DNS Serial Number Arithmetic for too much detail on comparing and incrementing a wrapping sequence number.

L: A bit that set to one if this Datagram is the last Datagram of the PDU. For a PDU which fits in only one Datagram, it is set to one. Note that this is the inverse of the marking technique used by [RFC0791].

Datagram Number: A monotonically increasing 23-bit value which starts at zero for each PDU. This is used to reassemble frames into PDUs a la [RFC0791] Section 2.3. Note that this limits an L3DL PDU to 2^24 frames.

Datagram Length: Total number of octets in the Datagram including all payloads and fields. Note that this limits a datagram to 2^16 octets; though Ethernet framing is likely to impose a smaller limit.

Checksum: A 32 bit hash over the Datagram to detect bit flips, see Section 7.

If a Datagram fails checksum verification, the datagram is invalid and SHOULD be silently discarded. The sender will retransmit the PDU, and the receiver can assemble it.

Payload: The PDU being transported or a fragment thereof.
To avoid the need for a receiver to reassemble two PDUs at the same time, a sender MUST NOT send a subsequent PDU when a PDU is already in flight and not yet acknowledged; assuming it is an ACKed PDU Type.

7. The Checksum

There is a reason conservative folk use a checksum in UDP. And as many operators stretch to jumbo frames (over 1,500 octets) longer checksums are the prudent approach.

For the purpose of computing a checksum, the checksum field itself is assumed to be zero.

The following code describes a suggested algorithm. This specification avoids mandatory to implement, algorithm agility, etc. What matters is that the same algorithm is used consistently in any deployment.

Sum up 32-bit unsigned ints in a 64-bit long, then take the high-order section, shift it right filling on the left with zeros, rotate, add it in, repeat until the high order 32 bits are all zero.
/* The F table from Skipjack, and it would work for the S-Box. */
static const uint8_t sbox[256] = {
  0xa3, 0xd7, 0x09, 0x83, 0xf8, 0x48, 0xf6, 0x0f, 0xb3, 0x21, 0x15, 0x78,
  0x99, 0x01, 0xaf, 0xf9, 0xe7, 0x0d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
  0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x0f, 0x28, 0x0a, 0xdf, 0x02, 0xa0,
  0x17, 0xf1, 0x60, 0x68, 0xb1, 0x7a, 0x0c, 0xe9, 0x96, 0x84, 0x6b, 0x0a,
  0x99, 0xb1, 0xaf, 0xf9, 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
  0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x0f, 0x28, 0x0a, 0xdf, 0x02, 0xa0,
  0x17, 0xf1, 0x60, 0x68, 0xb1, 0x7a, 0x0c, 0xe9, 0x96, 0x84, 0x6b, 0x0a,
  0x99, 0xb1, 0xaf, 0xf9, 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
  0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x0f, 0x28, 0x0a, 0xdf, 0x02, 0xa0,
  0x17, 0xf1, 0x60, 0x68, 0xb1, 0x7a, 0x0c, 0xe9, 0x96, 0x84, 0x6b, 0x0a,
  0x99, 0xb1, 0xaf, 0xf9, 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
  0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x0f, 0x28, 0x0a, 0xdf, 0x02, 0xa0,
  0x17, 0xf1, 0x60, 0x68, 0xb1, 0x7a, 0x0c, 0xe9, 0x96, 0x84, 0x6b, 0x0a,
  0x99, 0xb1, 0xaf, 0xf9, 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
  0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x0f, 0x28, 0x0a, 0xdf, 0x02, 0xa0,
  0x17, 0xf1, 0x60, 0x68, 0xb1, 0x7a, 0x0c, 0xe9, 0x96, 0x84, 0x6b, 0x0a,
  0x99, 0xb1, 0xaf, 0xf9, 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
  0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x0f, 0x28, 0x0a, 0xdf, 0x02, 0xa0,
  0x17, 0xf1, 0x60, 0x68, 0xb1, 0x7a, 0x0c, 0xe9, 0x96, 0x84, 0x6b, 0x0a,
  0x99, 0xb1, 0xaf, 0xf9, 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
  0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x0f, 0x28, 0x0a, 0xdf, 0x02, 0xa0,
  0x17, 0xf1, 0x60, 0x68, 0xb1, 0x7a, 0x0c, 0xe9, 0x96, 0x84, 0x6b, 0x0a,
  0x99, 0xb1, 0xaf, 0xf9, 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
  0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x0f, 0x28, 0x0a, 0xdf, 0x02, 0xa0,
  0x17, 0xf1, 0x60, 0x68, 0xb1, 0x7a, 0x0c, 0xe9, 0x96, 0x84, 0x6b, 0x0a,
  0x99, 0xb1, 0xaf, 0xf9, 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
};

/* non-normative example C code, constant time even */

uint32_t sbox_checksum_32(const uint8_t *b, const size_t n)
{
  uint32_t sum[4] = {0, 0, 0, 0};
  uint64_t result = 0;
  for (size_t i = 0; i < n; i++)
    sum[i & 3] += sbox[*b++];
  for (int i = 0; i < sizeof(sum)/sizeof(*sum); i++)
    result = (result << 8) + sum[i];
  result = (result >> 32) + (result & 0xFFFFFFFFU);
  result = (result >> 32) + (result & 0xFFFFFFFFU);
  return (uint32_t) result;
}
8. TLV PDUs

The basic L3DL application layer PDU is a typical TLV (Type Length Value) PDU. It includes a signature to provide optional integrity and authentication. It may be broken into multiple Datagrams, see Section 6.

```
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| PDU Type | Payload Length |
+-+
| Payload ... |
+-+
| Sig Type | Signature Length |
+-+ +
| Signature |
+-+
```

The fields of the basic L3DL header are as follows:

- **PDU Type**: An integer differentiating PDU payload types. See Section 22.1.
- **Payload Length**: Total number of octets in the Payload field.
- **Payload**: The application layer content of the L3DL PDU.
- **Sig Type**: The type of the Signature, see Section 22.2. Type 0, a null signature, is defined in this document.
  - Sig Type 0 indicates a null Signature. For a trivial PDU such as KEEPALIVE, the underlying Datagram checksum may be sufficient for integrity, though it lacks authenticity.
  - Other Sig Types may be defined in other documents, cf. [I-D.ymbk-lsvr-l3dl-signing].
- **Signature Length**: The length of the Signature, possibly including padding, in octets. If Sig Type is 0, Signature Length MUST BE 0.
- **Signature**: The result of running the signature algorithm specified in Sig Type over all octets of the PDU except for the Signature itself.
9. Logical Link Endpoint Identifier

L3DL discovers neighbors on logical links and establishes sessions between the two ends of all consenting discovered logical links. A logical link is described by a pair of Logical Link Endpoint Identifiers, LLEIs.

An LLEI is a variable length descriptor which could be an ASN, a classic RouterID, a catenation of the two, an eight octet ISO System Identifier [RFC1629], or any other identifier unique to a single logical link endpoint in the topology.

An L3DL deployment will choose and define an LLEI which suits its needs, simple or complex. Examples of two extremes follow:

A simplistic view of a link between two devices is two ports, identified by unique MAC addresses, carrying a layer-3 protocol conversation. In this case, the MAC addresses might suffice for the LLEIs.

Unfortunately, things can get more complex. Multiple VLANs can run between those two MAC addresses. In practice, many real devices use the same MAC address on multiple ports and/or sub-interfaces.

Therefore, in the general circumstance, a fully described LLEI might be as follows:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---+
<table>
<thead>
<tr>
<th>System Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifIndex</td>
</tr>
</tbody>
</table>
```

System Identifier, a la [RFC1629], is an eight octet identifier unique in the entire operational space. Routers and switches usually have internal MAC Addresses which can be padded with high order zeros and used if no System ID exists on the device. If no unique identifier is burned into a device, the local L3DL configuration SHOULD create and assign a unique one, likely by configuration.

ifIndex is the SNMP identifier of the (sub-)interface, see [RFC1213]. This uniquely identifies the port.
For a layer-3 tagged sub-interface or a VLAN/SVI interface, IfIndex is that of the logical sub-interface, so no further disambiguation is needed.

L3DL PDUs learned over VLAN-ports may be interpreted by upper layer-3 routing protocols as being learned on the corresponding layer-3 SVI interface for the VLAN.

LLEIs are big-endian.

10. HELLO

The HELLO PDU is unique in that it is encapsulated in a multicast Ethernet frame. It solicits response(s) from other LLEI(s) on the link. See Section 18.1 for why multicast is used. The destination multicast MAC Addresses to be used MUST be one of the following, See Clause 9.2.2 of [IEEE802-2014]:

01-80-C2-00-00-0E: Nearest Bridge = Propagation constrained to a single physical link; stopped by all types of bridges (including MPRs (media converters)). This SHOULD be used when the link is known to be a simple point to point link.

To Be Assigned: When a switch receives a frame with a multicast destination MAC it does not recognize, it forwards to all ports. This destination MAC SHOULD be sent when the interface is known to be connected to a switch. See Section 23. This SHOULD be used when the link may be a multi-point link.

All other L3DL PDUs are encapsulated in unicast frames, as the peer’s destination MAC address is known after the HELLO exchange.

When an interface is turned up on a device, it SHOULD issue a HELLO if it is to participate in L3DL sessions.

If a constrained Nearest Bridge destination address has been configured for a point-to-point interface, see above, then the HELLO SHOULD NOT be repeated once a session has been created by an exchange of OPENs.

If the configured destination address is one that is propagated by switches, the HELLO SHOULD be repeated at a configured interval, with a default of 60 seconds. This allows discovery by new devices which come up on the layer-2 mesh. In this multi-link scenario, the operator should be aware of the trade-off between timer tuning and network noise and adjust the inter-HELLO timer accordingly.
If more than one device responds, one adjacency is formed for each unique source LLEI response. L3DL treats each adjacency as a separate logical link.

When a HELLO is received from a source MAC address (plus VID if VLAN) with which there is no established L3DL session, the receiver SHOULD respond by sending an OPEN PDU to the source MAC address (plus VID). The two devices establish an L3DL session by exchanging OPEN PDUs.

To ameliorate possible load spikes during bootstrap or event recovery, there SHOULD be a jittered delay between receipt of a HELLO and issue of the OPEN. The default delay range SHOULD be zero to five seconds, and MUST be configurable.

If a HELLO is received from a MAC address with which there is an established session, the HELLO should be dropped.

The Payload Length is zero as there is no payload.

HELLO PDUs can not be signed as keying material has yet to be exchanged. Hence the signature MUST always be the null type.

11. OPEN

Each device has learned the other’s MAC Address from the HELLO exchange, see Section 10. Therefore the OPEN and all subsequent PDUs MUST BE unicast, as opposed to the HELLO’s multicast frame.
The Payload Length is the number of octets in all fields of the PDU from the Nonce through the Serial Number, not including the three final signature fields.

The Nonce enables detection of a duplicate OPEN PDU. It SHOULD be either a random number or a high resolution timestamp. It is needed to prevent session closure due to a repeated OPEN caused by a race or a dropped or delayed ACK.

My LLEI is the sender’s LLEI, see Section 9.

AttrCount is the number of attributes in the Attribute List. Attributes are single octets the semantics of which are operator-defined.

A node may have zero or more operator-defined attributes, e.g.: spine, leaf, backbone, route reflector, arabica, ...

Attribute syntax and semantics are local to an operator or datacenter; hence there is no global registry. Nodes exchange their attributes only in the OPEN PDU.

Auth Type is the Signature algorithm suite, see Section 8.

Key Length is a 16-bit field denoting the length in octets of the Key itself, not including the Auth Type or the Key Length. If the Auth Type is zero, then the Key Length MUST also be zero, and there MUST BE no Key data.
The Key is specific to the operational environment. A failure to authenticate is a failure to start the L3DL session, an ERROR PDU MUST BE sent (Error Code 3), and HELLOs MUST be restarted.

Although delay and jitter in responding with an OPEN were specified above, beware of load created by long strings of authentication failures and retries. A configurable failure count limit (default 8) SHOULD result in giving up on the connection attempt.

The Serial Number is a monotonically increasing 32-bit value representing the sender’s state at the time of sending the last PDU. It may be an integer, a timestamp, etc. If incrementing the Serial Number would cause it to be zero, it should be incremented again.

On session restart (new OPEN), a receiver MAY send the last received Serial Number to tell the sender to only send data with a Serial Number greater (in the [RFC1982] sense), or send a Serial Number of zero to request all data.

The Serial Number supports session resumption in anticipation of peers having a very large amount of state they would prefer not to re-exchange because of some glitch. The Serial Number is not expected to wrap for a considerable time, e.g. days or weeks. But to address the rare case it does, [RFC1982] on DNS Serial Number Arithmetic should be used as it is in the Transmission Sequence Number.

This allows a sender of an OPEN to tell the receiver that the sender would like to resume a session and that the receiver only needs to send data starting with the PDU with the lowest Serial Number greater (in the [RFC1982] sense) than the one sent in the OPEN. If the sender is not trying to resume a dropped session, the Serial Number MUST be zero.

If the receiver of an OPEN PDU with a non-zero Serial Number can not resume from the requested point, it should return an ACK with an Error Code of 2, Session could not be continued. The sender of the failing OPEN PDU SHOULD then send an OPEN PDU with a Serial Number of zero.

The Signature fields are described in Section 8 and in an asymmetric key environment serve as a proof of possession of the signing auth data by the sender.
Once two logical link endpoints know each other, and have ACKed each other’s OPEN PDUs, Layer-2 KEEPALIVEs (see Section 15) MAY be started to ensure Layer-2 liveness and keep the session semantics alive. The timing and acceptable drop of KEEPALIVE PDUs are discussed in Section 15.

If a sender of OPEN does not receive an ACK of the OPEN PDU, then they MUST resend the same OPEN PDU, with the same Nonce. Resending an unacknowledged OPEN PDU, like other ACKed PDUs, SHOULD use exponential back-off, see [RFC1122].

If a properly authenticated OPEN arrives at L3DL speaker A with a new Nonce from an LLEI, speaker B, with which A believes it already has an L3DL session (OPENs have already been exchanged), and the Serial Number in the OPEN PDU is non-zero, speaker A SHOULD establish a new sending session by sending an OPEN with the Serial Number being the same as that of A’s last sent and ACKed PDU. A MUST resume sending encapsulations etc. subsequent to the requested Sequence Number. And B MUST retain all previously discovered encapsulation and other data received from A.

If a properly authenticated OPEN arrives with a new Nonce from an LLEI with which the receiving logical link endpoint believes it already has an L3DL session (OPENs have already been exchanged), and the Serial Number in the OPEN is zero, then the receiver MUST assume that the sending LLEI or entire device has been reset. All previously discovered encapsulation data MUST NOT be kept and MUST BE withdrawn via the BGP-LS API and the recipient MUST respond with a new OPEN.

12. ACK

The ACK PDU acknowledges receipt of a PDU and reports any error condition which might have been raised.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| PDU Type = 3 | Payload Length = 5 |
+-+
| ACKed PDU | EType | Error Code |
+-+
| Error Hint | Sig Type | Signature Leng. |
+-+
| Signature ... |
+-+
```
The ACK acknowledges receipt of an OPEN, Encapsulation, VENDOR PDU, etc.

The ACKed PDU is the PDU Type of the PDU being acknowledged, e.g., OPEN, one of the Encapsulations, etc.

If there was an error processing the received PDU, then the EType is non-zero. If the EType is zero, Error Code and Error Hint MUST also be zero.

A non-zero EType is the receiver’s way of telling the PDU’s sender that the receiver had problems processing the PDU. The Error Code and Error Hint will tell the sender more detail about the error.

The decimal value of EType gives a strong hint how the receiver sending the ACK believes things should proceed:

0 - No Error, Error Code and Error Hint MUST be zero
1 - Warning, something not too serious happened, continue
2 - Session should not be continued, try to restart
3 - Restart is hopeless, call the operator
4-15 - Reserved

The Error Codes, noting protocol failures, are listed in Section 22.4. Someone stuck in the 1990s might think the catenation of EType and Error Code as an echo of 0x1zzz, 0x2zzz, etc. They might be right; or not.

The Error Hint, an arbitrary 16 bits, is any additional data the sender of the error PDU thinks will help the recipient or the debugger with the particular error.

The Signature fields are described in Section 8.

12.1. Retransmission

If a PDU sender expects an ACK, e.g. for an OPEN, an Encapsulation, a VENDOR PDU, etc., and does not receive the ACK for a configurable time (default one second), and the interface is live at layer-2, the sender resends the PDU using exponential back-off, see [RFC1122]. This cycle MAY be repeated a configurable number of times (default three) before it is considered a failure. The session MAY BE considered closed in this case of this ACK failure.
If the link is broken at layer-2, retransmission MAY BE retried when the link is restored.

13. The Encapsulations

Once the devices know each other’s LLEIs, know each other’s upper layer (L2.5 and L3) identities, have means to ensure link state, etc., the L3DL session is considered established, and the devices SHOULD exchange L3 interface encapsulations, L3 addresses, and L2.5 labels.

The Encapsulation types the peers exchange may be IPv4 (Section 13.3), IPv6 (Section 13.4), MPLS IPv4 (Section 13.6), MPLS IPv6 (Section 13.7), and/or possibly others not defined here.

The sender of an Encapsulation PDU MUST NOT assume that the peer is capable of the same Encapsulation Type. An ACK (Section 12) merely acknowledges receipt. Only if both peers have sent the same Encapsulation Type is it safe for Layer-3 protocols to assume that they are compatible for that type.

A receiver of an encapsulation might recognize an addressing conflict, such as both ends of the link trying to use the same address. In this case, the receiver SHOULD respond with an error (Error Code 2) ACK. As there may be other usable addresses or encapsulations, this error might log and continue, letting an upper layer topology builder deal with what works.

Further, to consider a logical link of a type to formally be established so that it may be pushed up to upper layer protocols, the addressing for the type must be compatible, e.g. on the same IP subnet.

13.1. The Encapsulation PDU Skeleton

The header for all encapsulation PDUs is as follows:
An Encapsulation PDU describes zero or more addresses of the encapsulation type.

The 24-bit Count is the number of Encapsulations in the Encapsulation list.

The Serial Number is a monotonically increasing 32-bit value representing the sender’s state in time. It may be an integer, a timestamp, etc. On session restart (new OPEN), a receiver MAY send the last received Session Number to tell the sender to only send newer data.

If a sender has multiple links on the same interface, separate state: data, ACKs, etc. must be kept for each peer session.

Over time, multiple Encapsulation PDUs may be sent for an interface as configuration changes.

If the length of an Encapsulation PDU exceeds the Datagram size limit on media, the PDU is broken into multiple Datagrams. See Section 8.

The Signature fields are described in Section 8.

The Receiver MUST acknowledge the Encapsulation PDU with a Type=3, ACK PDU (Section 12) with the Encapsulation Type being that of the encapsulation being announced, see Section 12.

If the Sender does not receive an ACK in a configurable interval (default one second), and the interface is live at layer-2, they SHOULD retransmit. After a user configurable number of failures (default three), the L3DL session should be considered dead and the OPEN process SHOULD be restarted.
If the link is broken at layer-2, retransmission MAY BE retried if data have not changed in the interim.

13.2. Encapsulation Flags

The Encapsulation Flags are a sequence of bit fields as follows:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann/With</td>
<td>Primary</td>
<td>Under/Over</td>
<td>Loopback</td>
<td>Reserved ..</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each encapsulation in an Encapsulation PDU of Type T may announce new and/or withdraw old encapsulations of Type T. It indicates this with the Ann/With Encapsulation Flag, Announce == 1, Withdraw == 0.

Each Encapsulation interface address in an Encapsulation PDU is either a new encapsulation be announced (Ann/With == 1) (yes, a la BGP) or requests one be withdrawn (Ann/With == 0). Adding an encapsulation which already exists SHOULD raise an Announce/Withdraw Error (see Section 22.4); the EType SHOULD be 2, suggesting a session restart (see Section 12 so all encapsulations will be resent.

If an LLEI has multiple addresses for an encapsulation type, one and only one address MAY be marked as primary (Primary Flag == 1) for that Encapsulation Type.

An Encapsulation interface address in an Encapsulation PDU MAY be marked as a loopback, in which case the Loopback bit is set. Loopback addresses are generally not seen directly on an external interface. One or more loopback addresses MAY be exposed by configuration on one or more L3DL speaking external interfaces, e.g. for iBGP peering. They SHOULD be marked as such, Loopback Flag == 1.

Each Encapsulation interface address in an Encapsulation PDU is that of the direct ‘underlay interface (Under/Over == 1), or an ‘overlay’ address (Under/Over == 0), likely that of a VM or container guest bridged or configured on to the interface already having an underlay address.

13.3. IPv4 Encapsulation

The IPv4 Encapsulation describes a device’s ability to exchange IPv4 packets on one or more subnets. It does so by stating the interface’s addresses and the corresponding prefix lengths.
The 24-bit Count is the sum of the number of IPv4 Encapsulations being announced and/or withdrawn.

13.4. IPv6 Encapsulation

The IPv6 Encapsulation describes a logical link’s ability to exchange IPv6 packets on one or more subnets. It does so by stating the interface’s addresses and the corresponding prefix lengths.
The 24-bit Count is the sum of the number of IPv6 Encapsulations being announced and/or withdrawn.

13.5. MPLS Label List

As an MPLS enabled interface may have a label stack, see [RFC3032], a variable length list of labels is needed. These are the labels the sender will accept for the prefix to which the list is attached.

```
+-----------------+-----------------+-----------------+-----------------+
| Label Count | Label | Exp | S |
| | | | |
+-----------------+-----------------+-----------------+-----------------+
| | | | |
+-----------------+-----------------+-----------------+-----------------+
| Label | Exp | S | more ... |
+-----------------+-----------------+-----------------+-----------------+
```

A Label Count of zero is an implicit withdraw of all labels for that prefix on that interface.

13.6. MPLS IPv4 Encapsulation

The MPLS IPv4 Encapsulation describes a logical link’s ability to exchange labeled IPv4 packets on one or more subnets. It does so by stating the interface’s addresses the corresponding prefix lengths, and the corresponding labels which will be accepted for each address.

```
+-----------------+-----------------+-----------------+-----------------+
| PDU Type = 6 | Payload Length | | |
| | | | |
+-----------------+-----------------+-----------------+-----------------+
| Count | | | |
+-----------------+-----------------+-----------------+-----------------+
| Serial Number | | | |
+-----------------+-----------------+-----------------+-----------------+
| Encaps Flags | MPLS Label List | | |
| | | | |
+-----------------+-----------------+-----------------+-----------------+
| IPv4 Address | PrefixLen | | |
| | | | |
+-----------------+-----------------+-----------------+-----------------+
| more ... | Sig Type | Signature Length|
+-----------------+-----------------+-----------------+-----------------+
| Signature | | | |
+-----------------+-----------------+-----------------+-----------------+
```

The 24-bit Count is the sum of the number of MPLSv4 Encapsulation being announced and/or withdrawn.
13.7. MPLS IPv6 Encapsulation

The MPLS IPv6 Encapsulation describes a logical link’s ability to exchange labeled IPv6 packets on one or more subnets. It does so by stating the interface’s addresses, the corresponding prefix lengths, and the corresponding labels which will be accepted for each address.

The 24-bit Count is the sum of the number of MPLSv6 Encapsulations being announced and/or withdrawn.

14. VENDOR - Vendor Extensions
Vendors or enterprises may define TLVs beyond the scope of L3DL standards. This is done using a Private Enterprise Number [IANA-PEN] followed by Enterprise Data in a format defined for that Enterprise Number and Ent Type.

Ent Type allows a VENDOR PDU to be sub-typed in the event that the vendor/enterprise needs multiple PDU types.

As with Encapsulation PDUs, a receiver of a VENDOR PDU MUST respond with an ACK or an ERROR PDU. Similarly, a VENDOR PDU MUST only be sent over an open session.

15. KEEPALIVE - Layer-2 Liveness

L3DL devices SHOULD beacon frequent Layer-2 KEEPALIVE PDUs to ensure session continuity. The inter-KEEPALIVE interval is configurable, with a default of ten seconds. A receiver may choose to ignore KEEPALIVE PDUs.

An operational deployment MUST BE configured whether to use KEEPALIVEs or not, either globally, or as finely as to per-link granularity. Disagreement MAY result in repeated session failure and reestablishment.
KEEPALIVEs SHOULD be beaconed at a configured frequency. One per second is the default. Layer-3 liveness, such as BFD, may be more (or less) aggressive.

When a sender transmits a PDU which is not a KEEPALIVE, the sender SHOULD reset the KEEPALIVE timer. i.e. sending any PDU acts as a keepalive. Once the last fragment has been sent, the KEEPALIVE timer SHOULD be restarted. Do not wait for the ACK.

If a KEEPALIVE or other PDUs have not been received from a peer with which a receiver has an open session for a configurable time (default 30 seconds), the link SHOULD be presumed down. The devices MAY keep configuration state and restore it without retransmission if no data have changed. Otherwise, a new session SHOULD be established and new Encapsulation PDUs exchanged.

16. Layers-2.5 and 3 Liveness

Layer-2 liveness may be continuously tested by KEEPALIVE PDUs, see Section 15. As layer-2.5 or layer-3 connectivity could still break, liveness above layer-2 MAY be frequently tested using BFD ([RFC5880]) or a similar technique.

This protocol assumes that one or more Encapsulation addresses may be used to ping, run BFD, or whatever the operator configures.

17. The North/South Protocol

Thus far, a one-hop point-to-point logical link discovery protocol has been defined.

The devices know their unique LLEIs and know the unique peer LLEIs and Encapsulations on each logical link interface.

Full topology discovery is not appropriate at the L3DL layer, so Dijkstra a la IS-IS etc. is assumed to be done by higher level protocols such as BGP-SPF.

Therefore the LLEIs, link Encapsulations, and state changes are pushed North via a small subset of the BGP-LS API. The upper layer routing protocol(s), e.g. BGP-SPF, learn and maintain the topology, run Dijkstra, and build the routing database(s).

For example, if a neighbor’s IPv4 Encapsulation address changes, the devices seeing the change push that change Northbound.
17.1. Use BGP-LS as Much as Possible

BGP-LS [RFC7752] defines BGP-like Datagrams describing logical link state (links, nodes, link prefixes, and many other things), and a new BGP path attribute providing Northbound transport, all of which can be ingested by upper layer protocols such as BGP-SPF; see Section 4 of [I-D.ietf-lsvr-bgp-spf].

For IPv4 links, TLVs 259 and 260 are used. For IPv6 links, TLVs 261 and 262. If there are multiple addresses on a link, multiple TLV pairs are pushed North, having the same ID pairs.

17.2. Extensions to BGP-LS

The Northbound protocol needs a few minor extensions to BGP-LS. Luckily, others have needed the same extensions.

Similarly to BGP-SPF, the BGP protocol is used in the Protocol-ID field specified in table 1 of [I-D.ietf-idr-bgp-ls-segment-routing-ext]. The local and remote node descriptors for all NLRI are the IDs described in Section 11. This is equivalent to an adjacency SID or a node SID if the address is a loopback address.

Label Sub-TLVs from [I-D.ietf-idr-bgp-ls-segment-routing-ext] Section 2.1.1, are used to associate one or more MPLS Labels with a link.

18. Discussion

This section explores some trade-offs taken and some considerations.

18.1. HELLO Discussion

A device with multiple Layer-2 interfaces, traditionally called a switch, may be used to forward frames and therefore packets from multiple devices to one logical interface (LLEI), I, on an L3DL speaking device. Interface I could discover a peer J across the switch. Later, a prospective peer K could come up across the switch. If I was not still sending and listening for HELLOs, the potential peering with K could not be discovered. Therefore, on multi-link interfaces, L3DL MUST continue to send HELLOs as long as they are turned up.
18.2. HELLO versus KEEPALIVE

Both HELLO and KEEPALIVE are periodic. KEEPALIVE might be eliminated in favor of keeping only HELLOs. But KEEPALIVEs are unicast, and thus less noisy on the network, especially if HELLO is configured to transit layer-2-only switches, see Section 18.1.

19. VLANs/SVIs/Sub-interfaces

One can think of the protocol as an instance (i.e. state machine) which runs on each logical link of a device.

As the upper routing layer must view VLAN topologies as separate graphs, L3DL treats VLAN ports as separate links.

L3DL PDUs learned over VLAN-ports may be interpreted by upper layer-3 routing protocols as being learned on the corresponding layer-3 SVI interface for the VLAN.

As Sub-Interfaces each have their own LLIEs, they act as separate interfaces, forming their own links.

20. Implementation Considerations

An implementation SHOULD provide the ability to configure each logical interface as L3DL speaking or not.

An implementation SHOULD provide the ability to configure whether HELLOs on an L3DL enabled interface send Nearest Bridge or the MAC which is propagated by switches from that interface; see Section 10.

An implementation SHOULD provide the ability to distribute one or more loopback addresses or interfaces into L3DL on an external L3DL speaking interface.

An implementation SHOULD provide the ability to distribute one or more overlay and/or underlay addresses or interfaces into L3DL on an external L3DL speaking interface.

An implementation SHOULD provide the ability to configure one of the addresses of an encapsulation as primary on an L3DL speaking interface. If there is only one address for a particular encapsulation, the implementation MAY mark it as primary by default.

An implementation MAY allow optional configuration which updates the local forwarding table with overlay and underlay data both learned from L3DL peers and configured locally.
21. Security Considerations

The protocol as is MUST NOT be used outside a datacenter or similarly closed environment without authentication and authorization mechanisms such as [I-D.ymbk-lsvr-l3dl-signing].

Many MDC operators have a strange belief that physical walls and firewalls provide sufficient security. This is not credible. All MDC protocols need to be examined for exposure and attack surface. In the case of L3DL, Authentication and Integrity as provided in [I-D.ymbk-lsvr-l3dl-signing] is strongly recommended.

It is generally unwise to assume that on the wire Layer-2 is secure. Strange/unauthorized devices may plug into a port. Mis-wiring is very common in datacenter installations. A poisoned laptop might be plugged into a device’s port, form malicious sessions, etc. to divert, intercept, or drop traffic.

Similarly, malicious nodes/devices could mis-announce addressing.

If OPENs are not being authenticated, an attacker could forge an OPEN for an existing session and cause the session to be reset.

For these reasons, the OPEN PDU’s authentication data exchange SHOULD be used.

If the KEEPALIVE PDU is not signed (as suggested in Section 8) to save computation, then a MITM could fake a session being alive.

22. IANA Considerations

22.1. PDU Types

This document requests the IANA create a registry for L3DL PDU Type, which may range from 0 to 255. The name of the registry should be L3DL-PDU-Type. The policy for adding to the registry is RFC Required per [RFC5226], either standards track or experimental. The initial entries should be the following:
### 22.2. Signature Type

This document requests the IANA create a registry for L3DL Signature Type, AKA Sig Type, which may range from 0 to 255. The name of the registry should be L3DL-Signature-Type. The policy for adding to the registry is RFC Required per [RFC5226], either standards track or experimental. The initial entries should be the following:

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Null</td>
</tr>
<tr>
<td>1-255</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

### 22.3. Flag Bits

This document requests the IANA create a registry for L3DL PL Flag Bits, which may range from 0 to 7. The name of the registry should be L3DL-PL-Flag-Bits. The policy for adding to the registry is RFC Required per [RFC5226], either standards track or experimental. The initial entries should be the following:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Announce/Withdraw (ann == 0)</td>
</tr>
<tr>
<td>1</td>
<td>Primary</td>
</tr>
<tr>
<td>2</td>
<td>Underlay/Overlay (under == 0)</td>
</tr>
<tr>
<td>3</td>
<td>Loopback</td>
</tr>
<tr>
<td>4-7</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
22.4. Error Codes

This document requests the IANA create a registry for L3DL Error Codes, a 16 bit integer. The name of the registry should be L3DL-Error-Codes. The policy for adding to the registry is RFC Required per [RFC5226], either standards track or experimental. The initial entries should be the following:

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Error</td>
</tr>
<tr>
<td>1</td>
<td>Checksum Error</td>
</tr>
<tr>
<td>2</td>
<td>Logical Link Addressing Conflict</td>
</tr>
<tr>
<td>3</td>
<td>Authorization Failure</td>
</tr>
<tr>
<td>4</td>
<td>Announce/Withdraw Error</td>
</tr>
</tbody>
</table>

23. IEEE Considerations

This document requires a new EtherType.

This document requires a new multicast MAC address that will be broadcast through a switch.

24. Acknowledgments

The authors thank Cristel Pelsser for multiple reviews, Harsha Kovuru for comments during implementation, Jeff Haas for review and comments, Joerg Ott for an early but deep transport review, Joe Clarke for a useful review, John Scudder for deeply serious review and comments, Larry Kreeger for a lot of layer-2 clue, Martijn Schmidt for his contribution, Nalinaksh Pai for transport discussions, Neeraj Malhotra for review, Paul Congdon for Ethernet hints, Russ Housley for checksum discussion and sBox, and Steve Bellovin for checksum advice.

25. References

25.1. Normative References

[I-D.ietf-idr-bgp-ls-segment-routing-ext]
[I-D.ietf-idr-bgpls-segment-routing-epe]

[I-D.ietf-lsvr-bgp-spf]

[I-D.ymbk-lsvr-l3dl-signing]


[IEEE.802_2001]

[IEEE802-2014]
Institute of Electrical and Electronics Engineers, "Local and Metropolitan Area Networks: Overview and Architecture", IEEE Std 802-2014, 2014.

[RFC1213]

[RFC1629]

25.2. Informative References


[I-D.malhotra-bess-evpn-lsoe]


Authors’ Addresses

Randy Bush
Arrcus & Internet Initiative Japan
5147 Crystal Springs
Bainbridge Island, WA 98110
United States of America
Email: randy@psg.com

Rob Austein
Arrcus, Inc
Email: sra@hactrn.net