
NTP Working Group A. Malhotra

Internet-Draft Boston University

Intended status: Informational K. Teichel

Expires: January 9, 2020 PTB

 M. Hoffmann

 W. Toorop

 NLnet Labs

 July 8, 2019

 On Implementing Time

 draft-aanchal-time-implementation-guidance-02

Abstract

 This document describes the properties of different types of clocks

 available on digital systems. It provides implementors of

 applications with guidance on choices they have to make when working

 with time to provide basic functionality and security guarantees.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

Malhotra, et al. Expires January 9, 2020 [Page 1]

Internet-Draft implementation-advice July 2019

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Scope of the document . 3

 3. Expressing Time . 3

 3.1. Absolute Time . 4

 3.2. Relative Time . 4

 4. Keeping Time: Different Clocks 4

 4.1. Native Clock . 4

 4.2. World Clock . 5

 5. Implementation Approaches 6

 6. Accessing the Native Clock on Selected Operating Systems . . 7

 6.1. POSIX . 7

 6.2. Microsoft Window . 7

 7. IANA Considerations . 7

 8. Security Considerations 7

 9. References . 8

 9.1. Normative References 8

 9.2. Informative References 8

 Appendix A. Acknowledgements 8

 Authors’ Addresses . 8

1. Introduction

 It is hard to overstate the importance of time in modern digital

 systems. The functionality and security of applications (distributed

 or local to one system) and that of network protocols generally hinge

 on some notion of time. For implementation, these applications and

 protocols have to choose one of the types of clocks available on

 their system, each of which has its own specific properties.

 However, currently many of these applications seem to be oblivious to

 the implications of choosing one or the other clock for

 implementation. This behavior can be attributed to:

 a. the lack of clear understanding of the distinct properties of

 these clocks,

 b. trade-offs of using one or the other for an application, and

 c. availability and compatibility of these clocks on different

 systems.

 This document discusses a) and b).

Malhotra, et al. Expires January 9, 2020 [Page 2]

Internet-Draft implementation-advice July 2019

 More specifically, in this document we first define different methods

 used by protocols and applications to express time. We then define

 properties of clocks maintained by modern digital systems. Next we

 describe how systems obtain these values from these clocks and the

 security considerations of using these values to implement protocols

 and applications that use time. Finally we discuss trade-offs

 between security and precision of choosing a clock. The document

 aims to provide guidance to the implementors make an informed choice

 with an example of POSIX system.

2. Scope of the document

 This document aims to provide software developers implementing

 protocols and applications that have to deal with time with the

 knowledge and understanding to make informed decisions regarding the

 available clocks and their respective trade-offs.

 It does not describe functionality that is specific to the

 architecture of a PC, or other devices such as phones, IoT devices,

 switches, routers, base stations, or synchrophasors. Nor is the

 document applicable to a specific operating system. Throughout the

 document we assume that one or the other clock is available on most

 devices. How these clocks are available on different PCs or other

 devices is out of scope of this document.

 We do not exactly recommend which clock should be used. We discuss

 the available options and trade-offs. The final decision would vary

 depending on the availability of clocks and the security requirements

 of the specific application under implementation.

 Note: Since there is a lack of standards on terminology related to

 time, we define some terms in the following section. Also,

 throughout the document, we define the terms as they become relevant.

 Different systems, depending on their OS, may use different terms for

 the same types of clocks. A survey on this is not in the scope of

 this document. We provide a discussion on how to access these values

 on POSIX and Windows systems. On other systems, implementors will

 have to determine themselves which of these values are available.

3. Expressing Time

 Protocols and applications can express time in several forms,

 depending on whether they need to express a point in time or a time

 interval.

Malhotra, et al. Expires January 9, 2020 [Page 3]

Internet-Draft implementation-advice July 2019

3.1. Absolute Time

 Absolute time expresses a universally agreed upon reference to a

 specific point in time. Such a reference can be expressed in

 different ways. For instance, Unix Time refers to the number of

 seconds since midnight UTC, January 1st, 1970, while in everyday

 life, we referenced such a point through year, month, day, and so on.

 Because absolute time expresses a shared view of time, a system needs

 to synchronize its clock with a common reference clock, for instance

 one base on UTC.

 Absolute time is often used to express the start or end of the

 validity of objects with a limited lifetime that are shared over the

 network.

3.2. Relative Time

 Relative time measures the time interval that has elapsed from some

 well-defined reference point (e.g., 20 minutes from the time of your

 query).

 Relative time is commonly used in network protocols, for instance to

 determine when a packet should be considered dropped or to express

 Time To Live (TTL) values that govern the length of time for which an

 object is valid or usable.

 Since relative time does not express a point in time, it does not

 rely on synchronized clocks between systems but only on a shared

 clock rate.

4. Keeping Time: Different Clocks

 In this section, we will have a look at the different clocks a system

 uses and how it maintains these clocks

4.1. Native Clock

 Each system has its own perception of time. It gains access it via

 its native clock. Typcially, this clock counts cycles of an

 oscillator but some systems use process CPU times or thread CPU

 timers (via timers provided by the CPU). The quality of the native

 clock therefore dependends on either the stability of the oscillator

 or the CPU timer.

 The timescale of the native clock is a purely subjective -- no

 general meaning can be attached to any specific clock value. One can

 only obtain relative time by comparing two values. Because the value

Malhotra, et al. Expires January 9, 2020 [Page 4]

Internet-Draft implementation-advice July 2019

 of the native clock always grows at a steady pace, never decreases,

 never make unexpected jumps, and never skips, the difference between

 two clock values provides the time intervall between the two

 measurements.

 The independence of the native clock from any external time sources

 renders it resistant to any manipulation but in return there is no

 guarantee that its clock rate is similar to that of any other system.

 This difference in rate, especially when compared to a reference

 clock, is called clock drift.

 Clock drift depends on the quality of the clock itself but also on

 factors such as system load or ambient temperatur which makes it hard

 to predict.

4.2. World Clock

 The native clock only provides means to measure relative time. In

 order to be able to also process absolute time, it needs to be

 synchronized with a global reference clock. Since this clock strives

 to be the same on all systems, we call it the world clock.

 There are a number of ways to maintain the world clock based on the

 system’s native clock.

 o The first is to manually maintain an offset between values of the

 native clock and the reference world clock. Because of the clock

 drift of the native clock, this offset needs to be updated from

 time to time if a minimal divergence from the reference clock is

 to be maintained.

 o Secondly, a hardware clock provided by the system and set to be

 equivalent to the reference time can be used, allowing the system

 to retain the offset across reboots.

 o Finally, the reference clock can be obtained from an external time

 source. Typically, the Internet is used through a variety of

 timing protocols including the Network Time Protocol2 (NTP),

 Chrony, SNTP, OpenNTP and others.

 Each of these approaches has own problems attached to it.

 o Manual configurations can be subject to errors and

 misconfiguration.

 o Accessing the hardware clock requires an I/O operation which is

 resource intensive, therefore many systems use the hardware clock

Malhotra, et al. Expires January 9, 2020 [Page 5]

Internet-Draft implementation-advice July 2019

 only upon reboot, to initialize the clock offset; subsequent

 updates are made either manually or through timing protocols.

 Further, on many systems the quality of the hardware clock isn’t

 very high, leading to a large clock drift if solely relying on it.

 Worse, systems like microcontrollers that operate within embedded

 systems (e.g., Raspberry Pi, Arduino, etc.) often lack hardware

 clocks altogether. These systems rely on external time sources

 upon reboot and have no means to process absolute time until

 synchronization with these sources has completed.

 o Relying on Internet timing protocols opens up the system time to

 attack. Recent papers show vulnerabilities in NTP

 [ANTP][ANABM][SECNTP] and SNTP [BPHSTS] that allow attackers to

 maliciously alter system’s world clock -- pushing it into the past

 or even into the future. Moreover, many of these time-shifting

 attacks can be performed by off-path attackers, who do not occupy

 a privileged position on the network between the victim system and

 its time sources on the Internet. Researchers have also

 demonstrated off-path denial of service attacks on timing

 protocols that prevent systems from synchronizing their clocks.

 In other words, the process of obtaining the offset necessary to

 provide a world clock creates dependencies that can be exploited.

5. Implementation Approaches

 Because absolute time relies on a shared interpretation of a value

 expressing time, the world clock is necessary when processing such

 values.

 For relative time, however, where only the rate of passage of time

 needs to be close enough to that of the other systems involved, there

 is no need to rely on the world clock when determining whether an

 interval has passed.

 Instead, by obtaining a value from the native clock when the interval

 has started only the native clock is necessary to determine when this

 interval ends. As the native clock does not rely on any external

 time sources, the implementation becomes resistant to the

 difficulties of coordinating with these sources.

 However, using the native clock in this way comes with a caveat.

 Since the native clock is not subject to any adjustments by timing

 protocols, it is not adjusted for the error introduced by clock

 drift. While this is likely of little consequence for short

 intervals, it may become significant for intervals that span long

 periods of time.

Malhotra, et al. Expires January 9, 2020 [Page 6]

Internet-Draft implementation-advice July 2019

 The choice of clock to be used is situation-specific. If a certain

 amount of clock drift can be tolerated or if time intervals are

 short, implementors may prefer to use the native clock. However, if

 precise timing over long periods is required, then the implementors

 have no choice but to fall back to world clock

6. Accessing the Native Clock on Selected Operating Systems

 In most operating systems, the standard functions to access time use

 the world clock since that is normally what users would expect. This

 section provides an overview how the native clock can be accesses on

 some common operating systems.

6.1. POSIX

 POSIX defines a system C API function which may provide native time:

 "clock_gettime()", when used with a "clock_id" of "CLOCK_MONOTONIC".

 Note that on some systems "CLOCK_MONOTONIC" is still influenced by an

 external time source (for syntonizing the clock rate) and the non-

 standard "CLOCK_MONITONIC_RAW" needs to be used for clock values not

 influenced by an external time source and not susceptible for time-

 shifting attacks.

6.2. Microsoft Window

 In the Microsoft Windows operating system, native time is called

 ’Windows Time’ and can be accessed through the "GetTickCount" and

 "GetTickCount64" API functions. The returned value is nomially the

 number of milliseconds since system start. "GetTickCount" will

 return a 32 bit value while "GetTickCount64" returns a value 64 bits

 wide that will wrap around less

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 Time is a fundamental component for the security guarantees claimed

 by various applications. A system that uses a time distribution

 protocol may be affected by the security aspects of the time

 protocol. The security considerations of time protocols in general

 are discussed in [RFC7384]. This document discusses the security

 considerations with respect to implementing time values in

 applications in various sections.

Malhotra, et al. Expires January 9, 2020 [Page 7]

Internet-Draft implementation-advice July 2019

9. References

9.1. Normative References

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in

 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,

 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

9.2. Informative References

 [ANABM] Malhotra, A. and S. Goldberg, "Attacking NTP’s

 Authenticated Broadcast Mode", 2016,

 <https://eprint.iacr.org/2016/055>.

 [ANTP] Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,

 "Attacking the Network Time Protocol", 2015,

 <https://eprint.iacr.org/2015/1020>.

 [BPHSTS] Jose, J., "Bypassing HTTP Strict Transport Security",

 2014, <https://www.blackhat.com/docs/eu-14/materials/eu-

 14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf>.

 [SECNTP] Malhotra, A., Gundy, M., Varia, M., Kennedy, H., Gardner,

 J., and S. Goldberg, "The Security of NTP’s Datagram

 Protocol", 2016, <http://eprint.iacr.org/2016/1006>.

Appendix A. Acknowledgements

 We are thankful to Sharon Goldberg and Benno Overreinder for useful

 discussions. Thanks to Dieter Sibold, Joachim Fabini and Denis

 Reilly, for value input and suggestions.

Authors’ Addresses

 Aanchal Malhotra

 Boston University

 111 Cummington Mall

 Boston 02215

 USA

 Email: aanchal4@bu.edu

Malhotra, et al. Expires January 9, 2020 [Page 8]

Internet-Draft implementation-advice July 2019

 Kristof Teichel

 Physikalisch-Technische Bundesanstalt

 Bundesallee 100

 Braunschweig D-38116

 Germany

 Email: kristof.teichel@ptb.de

 Martin Hoffmann

 NLnet Labs

 Science Park 400

 Amsterdam 1098 XH

 Netherlands

 Email: martin@nlnetlabs.nl

 Willem Toorop

 NLnet Labs

 Science Park 400

 Amsterdam 1098 XH

 Netherlands

 Email: willem@nlnetlabs.nl

Malhotra, et al. Expires January 9, 2020 [Page 9]

Network Time Protocol (ntp) Working Group F. Gont

Internet-Draft G. Gont

Updates: rfc5905 (if approved) SI6 Networks

Intended status: Standards Track August 6, 2019

Expires: February 7, 2020

 Port Randomization in the Network Time Protocol Version 4

 draft-gont-ntp-port-randomization-04

Abstract

 The Network Time Protocol can operate in several modes. Some of

 these modes are based on the receipt of unsolicited packets, and

 therefore require the use of a service/well-known port as the local

 port number. However, in the case of NTP modes where the use of a

 service/well-known port is not required, employing such well-known/

 service port unnecessarily increases the ability of attackers to

 perform blind/off-path attacks. This document formally updates

 RFC5905, recommending the use of port randomization for those modes

 where use of the NTP service port is not required.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

Gont & Gont Expires February 7, 2020 [Page 1]

Internet-Draft NTP Port Randomization August 2019

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

 This document may not be modified, and derivative works of it may not

 be created, and it may not be published except as an Internet-Draft.

Table of Contents

 1. Introduction . 2

 2. Terminology . 3

 3. Considerations About Port Randomization in NTP 3

 3.1. Mitigation Against Off-path Attacks 3

 3.2. Effects on Path Selection 4

 3.3. Filtering of NTP traffic 4

 3.4. Effect on NAT devices 5

 3.5. Relation to Other Mitigations for Off-Path Attacks . . . 5

 4. Update to RFC5905 . 5

 5. Possible Future Work . 6

 6. Implementation Status . 6

 7. IANA Considerations . 7

 8. Security Considerations 7

 9. Acknowledgments . 8

 10. References . 8

 10.1. Normative References 8

 10.2. Informative References 9

 Authors’ Addresses . 10

1. Introduction

 The Network Time Protocol (NTP) is one of the oldest Internet

 protocols, and currently specified in [RFC5905]. Since its original

 implementation, standardization, and deployment, a number of

 vulnerabilities have been found both in the NTP specification and in

 some of its implementations [NTP-VULN]. Some of these

 vulnerabilities allow for off-path/blind attacks, where an attacker

 can send forged packets to one or both NTP peers for achieving Denial

 of Service (DoS), time-shifts, and other undesirable outcomes. Many

 of these attacks require the attacker to guess or know at least a

 target NTP association, typically identified by the tuple {srcaddr,

 srcport, dstaddr, dstport, keyid}. Some of these parameters may be

 easily known or guessed.

 NTP can operate in several modes. Some of these modes rely on the

 ability of nodes to receive unsolicited packets, and therefore

 require the use of a service/well-known port number. However, for

Gont & Gont Expires February 7, 2020 [Page 2]

Internet-Draft NTP Port Randomization August 2019

 modes where the use of a service/well-known port is not required,

 employing such well-known/service port improves the ability of an

 attacker to perform blind/off-path attacks (since knowledge of such

 port number is typically required for such attacks). A recent study

 [NIST-NTP] that analyzes the port numbers employed by NTP clients

 suggests that a considerable number of NTP clients employ the NTP

 service/well-known port as their local port, or select predictable

 ephemeral port numbers, thus improving the ability of attackers to

 perform blind/off-path attacks against NTP.

 BCP 156 [RFC6056] already recommends the randomization of transport-

 protocol ephemeral ports. This document aligns NTP with the

 recommendation in BCP 156 [RFC6056], by formally updating [RFC5905]

 such that port randomization is employed for those NTP modes for

 which the use of the NTP service port is not required.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [RFC2119].

3. Considerations About Port Randomization in NTP

 The following subsections analyze a number of considerations about

 transport-protocol port randomization when applied to NTP.

3.1. Mitigation Against Off-path Attacks

 There has been a fair share of work in the area of off-path/blind

 attacks against transport protocols and upper-layer protocols, such

 as [RFC5927] and [RFC4953]. Whether the target of the attack is a

 transport protocol instance (e.g., TCP connection) or an upper-layer

 protocol instance (e.g., an application protocol instance), the

 attacker is required to know or guess the five-tuple {Protocol, IP

 Source Address, IP Destination Address, Source Port, Destination

 Port} that identifies the target transport protocol instance or the

 transport protocol instance employed by the target upper-layer

 protocol instance. Therefore, increasing the difficulty of guessing

 this five-tuple helps mitigate blind/off-path attacks.

 As a result of this considerations, BCP 156 [RFC6056] recommends the

 randomization of transport-protocol ephemeral ports. And as such,

 this document aims to bring the NTP specification [RFC5905] in line

 with the aforementioned recommendation.

 We note that the use of port randomization is a transport-layer

 mitigation against off-path/blind attacks, and does not preclude (nor

Gont & Gont Expires February 7, 2020 [Page 3]

Internet-Draft NTP Port Randomization August 2019

 is it precluded by), other possible mitigations for off-path attacks

 that might be implemented by an application protocol (e.g.

 [I-D.ietf-ntp-data-minimization]). For instance, some of the

 aforementioned mitigations may be ineffective against some off-path

 attacks [NTP-FRAG] or may benefit from the additional entropy

 provided by port randomization [NTP-security].

3.2. Effects on Path Selection

 Intermediate systems implementing the Equal-Cost Multi-Path (ECMP)

 algorithm may select the outgoing link by computing a hash over a

 number of values, that include the transport-protocol source port.

 Thus, as discussed in [NTP-CHLNG], the selected client port may have

 an influence on the measured delay and jitter values.

 This might mean, for example, that two systems in the same network

 that synchronize their clocks with the same NTP server might end up

 with a significant offset between their clocks as a result of their

 NTP samples taking paths with very different characteristics.

 If port randomization is applied for every NTP request, requests/

 responses would be distributed over the different available paths,

 including those with the smallest delay. The clock filter algorithm

 could readily select one of such samples with lowest delays, in the

 same way that the clock selection and clock cluster algorithms might

 also end up selecting other time sources with smaller resulting

 dispersion. On the other hand, if port-randomization is applied on a

 per-association basis, in scenarios where the aforementioned ECMP

 algorithm is employed, request/responses to the same association

 would likely follow the same path, since the IP addresses and

 transport port numbers employed for an association would not change.

 Section 4 recommends NTP implementations to randomize the ephemeral

 port number of non-symmetrical associations on a per-association

 basis (as opposed to "per-transaction"), since this more conservative

 approach avoids the possible negative implications of port

 randomization on time synchronization.

3.3. Filtering of NTP traffic

 In a number of scenarios (such as when mitigating DDoS attacks), a

 network operator may want to differentiate between NTP requests sent

 by clients, and NTP responses sent by NTP servers. If an

 implementation employs the NTP service port for the client port

 number, requests/responses cannot be readily differentiated by

 inspecting the source and destination port numbers. Implementation

 of port randomization for non-symmetrical modes allows for simple

 differentiation of NTP requests and responses, and for the

Gont & Gont Expires February 7, 2020 [Page 4]

Internet-Draft NTP Port Randomization August 2019

 enforcement of security policies that may be valuable for the

 mitigation of DDoS attacks.

3.4. Effect on NAT devices

 Some NAT devices will not translate the source port of a packet when

 a privileged port number is employed. In networks where such NAT

 devices are employed, use of the NTP service port for the client port

 will essentially limit the number of hosts that may successfully

 employ NTP client implementations.

 In the case of NAT devices that will translate the source port even

 when a privileged port is employed, packets reaching the external

 realm of the NAT will not employ the NTP service port as the local

 port, since the local port will normally be translated by the NAT

 device possibly, but not necessarily, with a random port.

3.5. Relation to Other Mitigations for Off-Path Attacks

 Ephemeral Port Randomization is a best current practice (BCP 156)

 that helps mitigate off-path attacks at the transport-layer. It is

 orthogonal to other possible mitigations for off-path attacks that

 may be implemented at other layers (such as the use of timestamps in

 NTP) which may or may not be effective against some off-path attacks

 (see e.g. [NTP-FRAG]. This document aligns NTP with the existing

 best current practice on ephemeral port selection, irrespective of

 other techniques that may (and should) be implemented for mitigating

 off-path attacks.

4. Update to RFC5905

 The following text from Section 9.1 ("Peer Process Variables") of

 [RFC5905]:

 dstport: UDP port number of the client, ordinarily the NTP port

 number PORT (123) assigned by the IANA. This becomes the source

 port number in packets sent from this association.

 is replaced with:

 dstport: UDP port number of the client. In the case of broadcast

 server mode (5) and symmetric modes (1 and 2), it must contain the

 NTP port number PORT (123) assigned by the IANA. In other cases,

 it SHOULD contain a randomized port number, as specified in

 [RFC6056]. The value in this variable becomes the source port

 number of packets sent from this association.

Gont & Gont Expires February 7, 2020 [Page 5]

Internet-Draft NTP Port Randomization August 2019

 NOTES:

 When port randomization is employed, the port number must be

 randomized on a per-association basis. That is, a random port

 number is selected when an association is first mobilized, and

 the selected port number is expected to remain constant during

 the life of an association.

 On most current operating systems (that implement ephemeral

 port randomization [RFC6056]), an NTP client may normally rely

 on the operating system for performing port randomization. For

 example, NTP implementations employing the Sockets API may

 achieve port randomization by *not* specifying the local port

 for the corresponding socket, or bind()ing the local socket to

 the "special" port 0 (which for the Sockets API has the special

 meaning of "any port"). connect()ing the docket will make the

 port inaccessible by other systems (that is, only packets from

 the specified remote socket will be received by the

 application).

5. Possible Future Work

 Port numbers could be randomized on a per-association basis, or on a

 per-request basis. When the port number is randomized on a per-

 association basis, a random port number is selected when an

 association is first mobilized, and the selected port remains

 constant during the life of the association. On the other hand, when

 the port number is randomized on a per-request basis, each client

 request will (statistically) employ a different ephemeral port for

 each request. As discussed in Section 3, varying the port number

 across requests may impact the time quality achieved with NTP. As a

 result, this document recommends the conservative approach of

 randomizing port numbers on a per-association basis (as opposed to a

 "per-transaction" basis). The possibility of randomizing port

 numbers on a per-transaction may be subject of future work, and is

 not recommended by this document.

6. Implementation Status

 [RFC Editor: Please remove this section before publication of this

 document as an RFC.]

 This section records the status of known implementations of the

 protocol defined by this specification at the time of posting of this

 Internet-Draft, and is based on a proposal described in [RFC7942].

 The description of implementations in this section is intended to

 assist the IETF in its decision processes in progressing drafts to

 RFCs. Please note that the listing of any individual implementation

 here does not imply endorsement by the IETF. Furthermore, no effort

Gont & Gont Expires February 7, 2020 [Page 6]

Internet-Draft NTP Port Randomization August 2019

 has been spent to verify the information presented here that was

 supplied by IETF contributors. This is not intended as, and must not

 be construed to be, a catalog of available implementations or their

 features. Readers are advised to note that other implementations may

 exist.

 OpenNTPD:

 [OpenNTPD] has never explicitly set the local port of NTP clients,

 and thus employs the ephemeral port selection algorithm

 implemented by the operating system. Thus, on all operating

 systems that implement port randomization (such as current

 versions of OpenBSD, Linux, and FreeBSD), OpenNTPD will employ

 port randomization for client ports.

 chrony:

 [chrony] has never explicitly set the local port of NTP clients,

 and thus employs the ephemeral port selection algorithm

 implemented by the operating system. Thus, on all operating

 systems that implement port randomization (such as current

 versions of OpenBSD, Linux, and FreeBSD), chrony will employ port

 randomization for client ports.

 nwtime.org’s sntp client:

 sntp does not explicitly set the local port, and thus employs the

 ephemeral port selection algorithm implemented by the operating

 system. Thus, on all operating systems that implement port

 randomization (such as current versions of OpenBSD, Linux, and

 FreeBSD), it will employ port randomization for client ports.

7. IANA Considerations

 There are no IANA registries within this document. The RFC-Editor

 can remove this section before publication of this document as an

 RFC.

8. Security Considerations

 The security implications of predictable numeric identifiers

 [I-D.gont-predictable-numeric-ids] (and of predictable transport-

 protocol port numbers [RFC6056] in particular) have been known for a

 long time now. However, the NTP specification has traditionally

 followed a pattern of employing common settings and code even when

 not strictly necessary, which at times has resulted in negative

 security and privacy implications (see e.g.

 [I-D.ietf-ntp-data-minimization]). The use of the NTP service port

 (123) for the srcport and dstport variables is not required for all

 operating modes, and such unnecessary usage comes at the expense of

 reducing the amount of work required for an attacker to successfully

Gont & Gont Expires February 7, 2020 [Page 7]

Internet-Draft NTP Port Randomization August 2019

 perform off-path/blind attacks against NTP. Therefore, this document

 formally updates [RFC5905], recommending the use of transport-

 protocol port randomization when use of the NTP service port is not

 required.

 This issue has been tracked by US-CERT with VU#597821, and has been

 assigned CVE-2019-11331.

9. Acknowledgments

 Watson Ladd raised the problem of DDoS mitigation when the NTP

 service port is employed as the client port (discussed in Section 3.3

 of this document).

 Miroslav Lichvar suggested randomization of the client port on a per-

 request basis, to intentionally cause each request/response to employ

 different paths in scenarios where ECMP is employed.

 The authors would like to thank (in alphabetical order) Ivan Arce,

 Todd Glassey, Watson Ladd, Miroslav Lichvar, Aanchal Malhotra, Danny

 Mayer, Gary E. Miller, Dieter Sibold, Steven Sommars, and Ulrich

 Windl, for providing valuable comments on earlier versions of this

 document.

 The authors would like to thank Harlan Stenn for answering questions

 about nwtime.org’s NTP implementation.

 Fernando would like to thank Nelida Garcia and Jorge Oscar Gont, for

 their love and support.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

 "Network Time Protocol Version 4: Protocol and Algorithms

 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,

 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6056] Larsen, M. and F. Gont, "Recommendations for Transport-

 Protocol Port Randomization", BCP 156, RFC 6056,

 DOI 10.17487/RFC6056, January 2011,

 <https://www.rfc-editor.org/info/rfc6056>.

Gont & Gont Expires February 7, 2020 [Page 8]

Internet-Draft NTP Port Randomization August 2019

10.2. Informative References

 [chrony] "chrony", <https://chrony.tuxfamily.org/>.

 [I-D.gont-predictable-numeric-ids]

 Gont, F. and I. Arce, "Security and Privacy Implications

 of Numeric Identifiers Employed in Network Protocols",

 draft-gont-predictable-numeric-ids-03 (work in progress),

 March 2019.

 [I-D.ietf-ntp-data-minimization]

 Franke, D. and A. Malhotra, "NTP Client Data

 Minimization", draft-ietf-ntp-data-minimization-04 (work

 in progress), March 2019.

 [NIST-NTP]

 Sherman, J. and J. Levine, "Usage Analysis of the NIST

 Internet Time Service", Journal of Research of the

 National Institute of Standards and Technology Volume 121,

 March 2016, <https://tf.nist.gov/general/pdf/2818.pdf>.

 [NTP-CHLNG]

 Sommars, S., "Challenges in Time Transfer Using the

 Network Time Protocol (NTP)", Proceedings of the 48th

 Annual Precise Time and Time Interval Systems and

 Applications Meeting, Monterey, California pp. 271-290,

 January 2017, <http://leapsecond.com/ntp/

 NTP_Paper_Sommars_PTTI2017.pdf>.

 [NTP-FRAG]

 Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,

 "Attacking the Network Time Protocol", NDSS’17, San Diego,

 CA. Feb 2017, 2017,

 <http://www.cs.bu.edu/˜goldbe/papers/NTPattack.pdf>.

 [NTP-security]

 Malhotra, A., Van Gundy, M., Varia, V., Kennedy, H.,

 Gardner, J., and S. Goldberg, "The Security of NTP’s

 Datagram Protocol", Cryptology ePrint Archive Report

 2016/1006, 2016, <https://eprint.iacr.org/2016/1006>.

 [NTP-VULN]

 Network Time Foundation, "Security Notice", Network Time

 Foundation’s NTP Support Wiki ,

 <https://support.ntp.org/bin/view/Main/SecurityNotice>.

 [OpenNTPD]

 "OpenNTPD Project", <https://www.openntpd.org>.

Gont & Gont Expires February 7, 2020 [Page 9]

Internet-Draft NTP Port Randomization August 2019

 [RFC4953] Touch, J., "Defending TCP Against Spoofing Attacks",

 RFC 4953, DOI 10.17487/RFC4953, July 2007,

 <https://www.rfc-editor.org/info/rfc4953>.

 [RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927,

 DOI 10.17487/RFC5927, July 2010,

 <https://www.rfc-editor.org/info/rfc5927>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running

 Code: The Implementation Status Section", BCP 205,

 RFC 7942, DOI 10.17487/RFC7942, July 2016,

 <https://www.rfc-editor.org/info/rfc7942>.

Authors’ Addresses

 Fernando Gont

 SI6 Networks

 Evaristo Carriego 2644

 Haedo, Provincia de Buenos Aires 1706

 Argentina

 Phone: +54 11 4650 8472

 Email: fgont@si6networks.com

 URI: https://www.si6networks.com

 Guillermo Gont

 SI6 Networks

 Evaristo Carriego 2644

 Haedo, Provincia de Buenos Aires 1706

 Argentina

 Phone: +54 11 4650 8472

 Email: ggont@si6networks.com

 URI: https://www.si6networks.com

Gont & Gont Expires February 7, 2020 [Page 10]

Internet Engineering Task Force D. Reilly, Ed.

Internet-Draft Orolia USA

Intended status: Best Current Practice H. Stenn

Expires: September 27, 2019 Network Time Foundation

 D. Sibold

 PTB

 March 26, 2019

 Network Time Protocol Best Current Practices

 draft-ietf-ntp-bcp-13

Abstract

 The Network Time Protocol (NTP) is one of the oldest protocols on the

 Internet and has been widely used since its initial publication.

 This document is a collection of Best Practices for general operation

 of NTP servers and clients on the Internet. It includes

 recommendations for stable, accurate and secure operation of NTP

 infrastructure. This document is targeted at NTP version 4 as

 described in RFC 5905.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 27, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

Reilly, et al. Expires September 27, 2019 [Page 1]

Internet-Draft Network Time Protocol BCP March 2019

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Requirements Language 3

 2. General Network Security Best Practices 3

 2.1. BCP 38 . 3

 3. NTP Configuration Best Practices 4

 3.1. Keeping NTP up to date 4

 3.2. Use enough time sources 4

 3.3. Use a diversity of Reference Clocks 5

 3.4. Control Messages . 6

 3.5. Monitoring . 7

 3.6. Using Pool Servers 7

 3.7. Leap Second Handling 8

 3.7.1. Leap Smearing . 9

 4. NTP Security Mechanisms 10

 4.1. Pre-Shared Key Approach 10

 4.2. Autokey . 11

 4.3. Network Time Security 11

 4.4. External Security Protocols 11

 5. NTP Security Best Practices 11

 5.1. Minimizing Information Leakage 11

 5.2. Avoiding Daemon Restart Attacks 12

 5.3. Detection of Attacks Through Monitoring 14

 5.4. Kiss-o’-Death Packets 14

 5.5. Broadcast Mode Should Only Be Used On Trusted Networks . 15

 5.6. Symmetric Mode Should Only Be Used With Trusted Peers . . 15

 6. NTP in Embedded Devices 15

 6.1. Updating Embedded Devices 16

 6.2. Server configuration 16

 7. NTP over Anycast . 16

 8. Acknowledgments . 18

 9. IANA Considerations . 18

 10. Security Considerations 18

 11. References . 18

 11.1. Normative References 18

 11.2. Informative References 19

 11.3. URIs . 21

 Appendix A. Best Practices specific to the Network Time

 Foundation implementation 21

 A.1. Use enough time sources 22

 A.2. NTP Control and Facility Messages 22

Reilly, et al. Expires September 27, 2019 [Page 2]

Internet-Draft Network Time Protocol BCP March 2019

 A.3. Monitoring . 23

 A.4. Leap Second File . 23

 A.5. Leap Smearing . 23

 A.6. Configuring ntpd . 24

 A.7. Pre-Shared Keys . 24

 Authors’ Addresses . 24

1. Introduction

 NTP version 4 (NTPv4) has been widely used since its publication as

 [RFC5905]. This document is a collection of best practices for the

 operation of NTP clients and servers.

 The recommendations in this document are intended to help operators

 distribute time on their networks more accurately and more securely.

 It is intended to apply generally to a broad range of networks. Some

 specific networks may have higher accuracy requirements that require

 additional techniques beyond what is documented here.

 Among the best practices covered are recommendations for general

 network security, time protocol specific security, and NTP server and

 client configuration. NTP operation in embedded devices is also

 covered.

 This document also contains information for protocol implementors who

 want to develop their own implementations that are compliant to RFC

 5905.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

2. General Network Security Best Practices

2.1. BCP 38

 Many network attacks rely on modifying the IP source address of a

 packet to point to a different IP address than the computer which

 originated it. UDP-based protocols such as NTP are generally more

 susceptible to spoofing attacks than connection-oriented protocols.

 NTP control messages can generate a lot of data in response to a

 small query, which makes it attractive as a vector for distributed

 denial-of-service attacks. (NTP Control messages are discussed

 further in Section 3.4). One documented instance of such an attack

Reilly, et al. Expires September 27, 2019 [Page 3]

Internet-Draft Network Time Protocol BCP March 2019

 can be found here [1], and further discussion in [IMC14] and

 [NDSS14].

 BCP 38 [RFC2827] was published in 2000 to to provide some level of

 remediation against address-spoofing attacks. BCP 38 calls for

 filtering outgoing and incoming traffic to make sure that the source

 and destination IP addresses are consistent with the expected flow of

 traffic on each network interface. It is RECOMMENDED that ISP’s and

 large corporate networks implement ingress and egress filtering.

 More information is available at the BCP38 Info Web page [2] .

3. NTP Configuration Best Practices

 This section provides Best Practices for NTP configuration and

 operation. Application of these best practices that are specific to

 the Network Time Foundation implementation, including example

 configuration directives valid at the time of this writing, are

 compiled in Appendix A.

3.1. Keeping NTP up to date

 There are multiple versions of the NTP protocol in use, and multiple

 implementations, on many different platforms. The practices in this

 document are meant to apply generally to any implementation of

 [RFC5905]. NTP users should select an implementation that is

 actively maintained. Users should keep up to date on any known

 attacks on their selected implementation, and deploy updates

 containing security fixes as soon as practical.

3.2. Use enough time sources

 An NTP implementation that is compliant with [RFC5905] takes the

 available sources of time and submits this timing data to

 sophisticated intersection, clustering, and combining algorithms to

 get the best estimate of the correct time. The description of these

 algorithms is beyond the scope of this document. Interested readers

 should read [RFC5905] or the detailed description of NTP in

 [MILLS2006].

 o If there is only 1 source of time, the answer is obvious. It may

 not be a good source of time, but it’s the only source of time

 that can be considered. Any issue with the time at the source

 will be passed on to the client.

 o If there are 2 sources of time and they agree well enough, then

 the best time can be calculated easily. But if one source fails,

 then the solution degrades to the single-source solution outlined

 above. And if the two sources don’t agree, it will be difficult

Reilly, et al. Expires September 27, 2019 [Page 4]

Internet-Draft Network Time Protocol BCP March 2019

 to know which one is correct without making use of information

 from outside of the protocol.

 o If there are 3 sources of time, there is more data available to

 converge on the best calculated time, and this time is more likely

 to be accurate. And the loss of one of the sources (by becoming

 unreachable or unusable) can be tolerated. But at that point, the

 solution degrades to the 2 source solution.

 o 4 or more sources of time is better, as long as the sources are

 diverse (Section 3.3). If one of these sources develops a problem

 there are still at least 3 other time sources.

 This analysis assumes that a majority of the servers used in the

 solution are honest, even if some may be inaccurate. Operators

 should be aware of the possibility that if an attacker is in control

 of the network, the time coming from all servers could be

 compromised.

 Operators who are concerned with maintaining accurate time SHOULD use

 at least 4 independent, diverse sources of time. Four sources will

 provide sufficient backup in case one source goes down. If four

 sources are not available, operators MAY use fewer sources, subject

 to the risks outlined above.

 But even with 4 or more sources of time, systemic problems can

 happen. One example involves the leap smearing concept detailed in

 Section 3.7.1. For several hours before and after the June 2015 leap

 second, several operators configured their NTP servers with leap

 smearing while others did not. Many NTP end nodes could not

 determine an accurate time source because 2 of their 4 sources of

 time gave them consistent UTC/POSIX time, while the other 2 gave them

 consistent leap-smeared time. This is just one of many potential

 causes of disagreement among time sources.

 Operators are advised to monitor all time sources that are in use.

 If time sources do not generally agree, operators are encouraged to

 investigate the cause of this and either correct the problems or stop

 using defective servers. See Section 3.5 for more information.

3.3. Use a diversity of Reference Clocks

 When using servers with attached hardware reference clocks, it is

 suggested that different types of reference clocks be used. Having a

 diversity of sources with independent implementations means that any

 one issue is less likely to cause a service interruption.

Reilly, et al. Expires September 27, 2019 [Page 5]

Internet-Draft Network Time Protocol BCP March 2019

 Are all clocks on a network from the same vendor? They may have the

 same bugs. Even devices from different vendors may not be truly

 independent if they share common elements. Are they using the same

 base chipset? Are they all running the same version of firmware?

 Chipset and firmware bugs can happen, but they can be more difficult

 to diagnose than application software bugs. When having the correct

 time is of critical importance, it’s ultimately up to operators to

 ensure that their sources are sufficiently independent, even if they

 are not under the operator’s control.

 A systemic problem with time from any satellite navigation service is

 possible and has happened. Sunspot activity can render satellite or

 radio-based time source unusable. Depending on the application

 requirements, operators may need to consider backup scenarios in the

 rare circumstance when the satellite system is faulty or unavailable.

3.4. Control Messages

 Some implementations of NTPv4 provide the NTP Control Messages (also

 known as Mode 6 messages) that were originally specified in

 Appendix B of [RFC1305] which defined NTPv3. These messages were

 never included the NTPv4 specification, but they are still used. At

 the time of this writing, work is being done to formally document the

 structure of these control messages in [I-D.ietf-ntp-mode-6-cmds].

 The NTP Control Messages are designed to permit monitoring and

 optionally authenticated control of NTP and its configuration. Used

 properly, these facilities provide vital debugging and performance

 information and control. But these facilities can be a vector for

 amplification attacks when abused. For this reason, it is

 RECOMMENDED that publicly-facing NTP servers should block NTP Control

 Message queries from outside their organization.

 The ability to use NTP Control Messages beyond their basic monitoring

 capabilities SHOULD be limited to authenticated sessions that provide

 a ’controlkey’. It can also be limited through mechanisms outside of

 the NTP specification, such as Access Control Lists, that only allow

 access from approved IP addresses.

 The NTP Control Messages responses are much larger than the

 corresponding queries. Thus, they can be abused in high-bandwidth

 DDoS attacks. Section 2.1 gives more information on how to provide

 protection for this abuse by implementing BCP 38.

Reilly, et al. Expires September 27, 2019 [Page 6]

Internet-Draft Network Time Protocol BCP March 2019

3.5. Monitoring

 Operators SHOULD use their NTP implementation’s remote monitoring

 capabilities to quickly identify servers which are out of sync, and

 ensure correctness of the service. Operators SHOULD also monitor

 system logs for messages so problems and abuse attempts can be

 quickly identified.

 If a system starts to receive NTP Reply packets from a remote time

 server that do not correspond to any requests sent by the system,

 that can be an indication that an attacker is forging that system’s

 IP address in requests to the remote time server. The goal of this

 attack is to adversely impact the availability of time to the

 targeted system whose address is being forged. Based on these forged

 packets, the remote time server might decide to throttle or rate

 limit packets, or even stop sending packets to the targeted system.

 If a system is a broadcast client and its system log shows that it is

 receiving early time messages from its server, that is an indication

 that somebody may be forging packets from a broadcast server.

 (Broadcast client and server modes are defined in Section 3 of

 [RFC5905])

 If a server’s system log shows messages that indicates it is

 receiving NTP timestamps that are much earlier than the current

 system time, then either the system clock is unusually fast or

 somebody is trying to launch a replay attack against that server.

3.6. Using Pool Servers

 It only takes a small amount of bandwidth and system resources to

 synchronize one NTP client, but NTP servers that can service tens of

 thousands of clients take more resources to run. Network operators

 and advanced users who want to synchronize their computers MUST only

 synchronize to servers that they have permission to use.

 The NTP Pool Project is a group of volunteers who have donated their

 computing and bandwidth resources to freely distribute time from

 primary time sources to others on the Internet. The time is

 generally of good quality but comes with no guarantee whatsoever. If

 you are interested in using this pool, please review their

 instructions at http://www.pool.ntp.org/en/use.html [3].

 Vendors can obtain their own subdomain that is part of the NTP Pool

 Project. This offers vendors the ability to safely make use of the

 time distributed by the pool for their devices. Details are

 available at http://www.pool.ntp.org/en/vendors.html [4] .

Reilly, et al. Expires September 27, 2019 [Page 7]

Internet-Draft Network Time Protocol BCP March 2019

 If there is a need to synchronize many computers, an operator may

 want to run local NTP servers that are synchronized to the NTP Pool

 Project. NTP users on that operator’s networks can then be

 synchronized to local NTP servers.

3.7. Leap Second Handling

 UTC is kept in agreement with the astronomical time UT1 [5] to within

 +/- 0.9 seconds by the insertion (or possibly a deletion) of a leap

 second. UTC is an atomic time scale whereas UT1 is based on the

 rotational rate of the earth. Leap seconds are not introduced at a

 fixed rate. They are announced by the International Earth Rotation

 and Reference Systems Service (IERS) in its Bulletin C [6] when

 necessary to keep UTC and UT1 aligned.

 NTP time is based on the UTC timescale, and the protocol has the

 capability to broadcast leap second information. Some Global

 Navigation Satellite Systems (like GPS) or radio transmitters (like

 DCF77) broadcast leap second information. If an NTP client is synced

 to an NTP server that provides leap second notification, the client

 will get advance notification of impending leap seconds

 automatically.

 Since the length of the UT1 day is generally slowly increasing [7],

 all leap seconds that have been introduced since the practice started

 in 1972 have been positive leap seconds, where a second is added to

 UTC. NTP also supports a negative leap second, where a second is

 removed from UTC, if that ever becomes necessary.

 While earlier versions of NTP contained some ambiguity regarding when

 a leap second that is broadcast by a server should be applied by a

 client, RFC 5905 is clear that leap seconds are only applied on the

 last day of a month. However, because some older clients may apply

 it at the end of the current day, it is RECOMMENDED that NTP servers

 wait until the last day of the month before broadcasting leap

 seconds. Doing this will prevent older clients from applying a leap

 second at the wrong time. When implementing this recommendation,

 operators should ensure that clients are not configured to use

 polling intervals greater than 24 hours, so the leap second

 notification is not missed.

 In circumstances where an NTP server is not receiving leap second

 information from an automated source, certain organizations maintain

 files which are updated every time a new leap second is announced:

 NIST: ftp://time.nist.gov/pub/leap-seconds.list

Reilly, et al. Expires September 27, 2019 [Page 8]

Internet-Draft Network Time Protocol BCP March 2019

 US Navy (maintains GPS Time): ftp://tycho.usno.navy.mil/pub/ntp/leap-

 seconds.list

 IERS (announces leap seconds):

 https://hpiers.obspm.fr/iers/bul/bulc/ntp/leap-seconds.list

3.7.1. Leap Smearing

 Some NTP installations make use of a technique called Leap Smearing.

 With this method, instead of introducing an extra second (or

 eliminating a second) on a leap second event, NTP time will be slewed

 in small increments over a comparably large window of time (called

 the smear interval) around the leap second event. The smear interval

 should be large enough to make the rate that the time is slewed

 small, so that clients will follow the smeared time without

 objecting. Periods ranging from 2 to 24 hours have been used

 successfully. During the adjustment window, all the NTP clients’

 times may be offset from UTC by as much as a full second, depending

 on the implementation. But at least all clients will generally agree

 on what time they think it is.

 The purpose of Leap Smearing is to enable systems that don’t deal

 with the leap second event properly to function consistently, at the

 expense of fidelity to UTC during the smear window. During a

 standard leap second event, that minute will have 61 (or possibly 59)

 seconds in it, and some applications (and even some OS’s) are known

 to have problems with that.

 Operators who have legal obligations or other strong requirements to

 be synchronized with UTC or civil time SHOULD NOT use leap smearing,

 because the distributed time cannot be guaranteed to be traceable to

 UTC during the smear interval.

 Clients that are connected to leap smearing servers MUST NOT apply

 the standard NTP leap second handling. These clients must never have

 a leap second file loaded, and the smearing servers must never

 advertise to clients that a leap second is pending.

 Any use of leap smearing servers should be limited to within a

 single, well-controlled environment. Leap Smearing MUST NOT be used

 for public-facing NTP servers, as they will disagree with non-

 smearing servers (as well as UTC) during the leap smear interval, and

 there is no standardized way for a client to detect that a server is

 using leap smearing. However, be aware that some public-facing

 servers may be configured this way anyway in spite of this guidance.

 System Administrators are advised to be aware of impending leap

 seconds and how the servers (inside and outside their organization)

Reilly, et al. Expires September 27, 2019 [Page 9]

Internet-Draft Network Time Protocol BCP March 2019

 they are using deal with them. Individual clients MUST NOT be

 configured to use a mixture of smeared and non-smeared servers. If a

 client uses smeared servers, the servers it uses must all have the

 same leap smear configuration.

4. NTP Security Mechanisms

 In the standard configuration NTP packets are exchanged unprotected

 between client and server. An adversary that is able to become a

 Man-In-The-Middle is therefore able to drop, replay or modify the

 content of the NTP packet, which leads to degradation of the time

 synchronization or the transmission of false time information. A

 threat analysis for time synchronization protocols is given in

 [RFC7384]. NTP provides two internal security mechanisms to protect

 authenticity and integrity of the NTP packets. Both measures protect

 the NTP packet by means of a Message Authentication Code (MAC).

 Neither of them encrypts the NTP’s payload, because this payload

 information is not considered to be confidential.

4.1. Pre-Shared Key Approach

 This approach applies a symmetric key for the calculation of the MAC,

 which protects authenticity and integrity of the exchanged packets

 for an association. NTP does not provide a mechanism for the

 exchange of the keys between the associated nodes. Therefore, for

 each association, keys MUST be exchanged securely by external means,

 and they MUST be protected from disclosure. It is RECOMMENDED that

 each association be protected by its own unique key. It is

 RECOMMENDED that participants agree to refresh keys periodically.

 However, NTP does not provide a mechanism to assist in doing so.

 Each communication partner will need to keep track of its keys in its

 own local key storage.

 [RFC5905] specifies using the MD5 hash algorithm for calculation of

 the MAC, but other algorithms may be supported as well. The MD5 hash

 is now considered to be too weak and unsuitable for cryptographic

 usage. [RFC6151] has more information on the algorithm’s weaknesses.

 Implementations will soon be available based on AES-128-CMAC

 [I-D.ietf-ntp-mac], and users SHOULD use that when it is available.

 Some implementations store the key in clear text. Therefore it MUST

 only be readable by the NTP process.

 An NTP client has to be able to link a key to a particular server in

 order to establish a protected association. This linkage is

 implementation specific. Once applied, a key will be trusted until

 the link is removed.

Reilly, et al. Expires September 27, 2019 [Page 10]

Internet-Draft Network Time Protocol BCP March 2019

4.2. Autokey

 [RFC5906] specifies the Autokey protocol. It was published in 2010

 to provide automated key management and authentication of NTP

 servers. However, security researchers have identified

 vulnerabilities [8] in the Autokey protocol.

 Autokey SHOULD NOT be used.

4.3. Network Time Security

 Work is in progress on an enhanced replacement for Autokey. Refer to

 [I-D.ietf-ntp-using-nts-for-ntp] for more information.

4.4. External Security Protocols

 If applicable, external security protocols such as IPsec and MACsec

 can be applied to enhance integrity and authenticity protection of

 NTP time synchronization packets. Usage of such external security

 protocols can decrease time synchronization performance [RFC7384].

 Therefore, operators are advised to carefully evaluate if the

 decreased time synchronization performance meets their specific

 timing requirements.

 Note that none of the security measures described in Section 4 can

 prevent packet delay manipulation attacks on NTP. Such delay attacks

 can target time synchronization packets sent as clear-text or even

 within an encrypted tunnel. These attacks are described further in

 Section 3.2.6 of [RFC7384].

5. NTP Security Best Practices

 This section lists some general NTP security practices, but these

 issues may (or may not) have been mitigated in particular versions of

 particular implementations. Contact the maintainers of the relevant

 implementation for more information.

5.1. Minimizing Information Leakage

 The base NTP packet leaks important information (including reference

 ID and reference time) that may be used in attacks [NDSS16],

 [CVE-2015-8138], [CVE-2016-1548]. A remote attacker can learn this

 information by sending mode 3 queries to a target system and

 inspecting the fields in the mode 4 response packet. NTP control

 queries also leak important information (including reference ID,

 expected origin timestamp, etc.) that may be used in attacks

 [CVE-2015-8139]. A remote attacker can learn this information by

Reilly, et al. Expires September 27, 2019 [Page 11]

Internet-Draft Network Time Protocol BCP March 2019

 sending control queries to a target system and inspecting the leaked

 information in the response.

 As such, mechanisms outside of the NTP protocol, such as Access

 Control Lists, SHOULD be used to limit the exposure of this

 information to allowed IP addresses, and keep it from remote

 attackers not on the list. Hosts SHOULD only respond to NTP control

 queries from authorized parties.

 An NTP client that does not provide time on the network can

 additionally log and drop incoming mode 3 timing queries from

 unexpected sources. Note well that the easiest way to monitor the

 status of an NTP instance is to send it a mode 3 query, so it may not

 be desirable to drop all mode 3 queries. As an alternative,

 operators SHOULD either filter mode 3 queries from outside their

 networks, or make sure mode 3 queries are allowed only from trusted

 systems or networks.

 A "leaf-node host" is a host that is using NTP solely for the purpose

 of adjusting its own system time. Such a host is not expected to

 provide time to other hosts, and relies exclusively on NTP’s basic

 mode to take time from a set of servers. (That is, the host sends

 mode 3 queries to its servers and receives mode 4 responses from

 these servers containing timing information.) To minimize

 information leakage, leaf-node hosts SHOULD drop all incoming NTP

 packets except mode 4 response packets that come from known sources.

 An exception to this can be made if a leaf-node host is being

 actively monitored, in which case incoming packets from the

 monitoring server can be allowed.

 Please refer to [I-D.ietf-ntp-data-minimization] for more

 information.

5.2. Avoiding Daemon Restart Attacks

 [RFC5905] says NTP clients should not accept time shifts greater than

 the panic threshold. Specifically, RFC 5905 says "PANIC means the

 offset is greater than the panic threshold PANICT (1000 s) and SHOULD

 cause the program to exit with a diagnostic message to the system

 log."

 However, this behavior can be exploited by attackers as described in

 [NDSS16], when the following two conditions hold:

 1. The operating system automatically restarts the NTP client when

 it quits. (Modern *NIX operating systems are replacing

 traditional init systems with process supervisors, such as

 systemd, which can be configured to automatically restart any

Reilly, et al. Expires September 27, 2019 [Page 12]

Internet-Draft Network Time Protocol BCP March 2019

 daemons that quit. This behavior is the default in CoreOS and

 Arch Linux. As of the time of this writing, it appears likely to

 become the default behavior in other systems as they migrate

 legacy init scripts to process supervisors such as systemd.)

 2. The NTP client is configured to ignore the panic threshold on all

 restarts.

 In such cases, if the attacker can send the target an offset that

 exceeds the panic threshold, the client will quit. Then, when it

 restarts, it ignores the panic threshold and accepts the attacker’s

 large offset.

 Operators need to be aware that when operating with the above two

 conditions, the panic threshold offers no protection from attacks.

 The natural solution is not to run hosts with these conditions.

 Specifically, operators SHOULD NOT ignore the panic threshold in all

 cold-start situations unless sufficient oversight and checking is in

 place to make sure that this type of attack cannot happen.

 As an alternative, the following steps MAY be taken by operators to

 mitigate the risk of attack:

 o Monitor the NTP system log to detect when the NTP daemon has quit

 due to a panic event, as this could be a sign of an attack.

 o Request manual intervention when a timestep larger than the panic

 threshold is detected.

 o Configure the ntp client to only ignore the panic threshold in a

 cold start situation.

 o Increase the minimum number of servers required before the NTP

 client adjusts the system clock. This will make the NTP client

 wait until enough trusted sources of time agree before declaring

 the time to be correct.

 In addition, the following steps SHOULD be taken by those who

 implement the NTP protocol:

 o Prevent the NTP daemon from taking time steps that set the clock

 to a time earlier than the compile date of the NTP daemon.

 o Prevent the NTP daemon from putting ’INIT’ in the reference ID of

 its NTP packets upon initializing. This will make it more

 difficult for attackers to know when the daemon reboots.

Reilly, et al. Expires September 27, 2019 [Page 13]

Internet-Draft Network Time Protocol BCP March 2019

5.3. Detection of Attacks Through Monitoring

 Operators SHOULD monitor their NTP instances to detect attacks. Many

 known attacks on NTP have particular signatures. Common attack

 signatures include:

 1. Bogus packets - A packet whose origin timestamp does not match

 the value that expected by the client.

 2. Zero origin packet - A packet with an origin timestamp set to

 zero [CVE-2015-8138].

 3. A packet with an invalid cryptographic MAC [CCR16].

 The observation of many such packets could indicate that the client

 is under attack.

5.4. Kiss-o’-Death Packets

 The "Kiss-o’-Death" (KoD) packet includes a rate management mechanism

 where a server can tell a misbehaving client to reduce its query

 rate. KoD packets in general (and the RATE packet in particular) are

 defined in Section 7.4 of [RFC5905]. It is RECOMMENDED that all NTP

 devices respect these packets and back off when asked to do so by a

 server. It is even more important for an embedded device, which may

 not have an exposed control interface for NTP.

 That said, a client MUST only accept a KoD packet if it has a valid

 origin timestamp. Once a RATE packet is accepted, the client should

 increase its poll interval value (thus decreasing its polling rate)

 up to a reasonable maximum. This maximum can vary by implementation

 but should not exceed a poll interval value of 13 (2 hours). The

 mechanism to determine how much to increase the poll interval value

 is undefined in [RFC5905]. If the client uses the poll interval

 value sent by the server in the RATE packet, it MUST NOT simply

 accept any value. Using large interval values may open a vector for

 a denial-of-service attack that causes the client to stop querying

 its server [NDSS16].

 The KoD rate management mechanism relies on clients behaving properly

 in order to be effective. Some clients ignore the RATE packet

 entirely, and other poorly-implemented clients might unintentionally

 increase their poll rate and simulate a denial of service attack.

 Server administrators are advised to be prepared for this and take

 measures outside of the NTP protocol to drop packets from misbehaving

 clients when these clients are detected.

Reilly, et al. Expires September 27, 2019 [Page 14]

Internet-Draft Network Time Protocol BCP March 2019

 Kiss-o’-Death (KoD) packets can be used in denial of service attacks.

 Thus, the observation of even just one RATE packet with a high poll

 value could be sign that the client is under attack. And KoD packets

 are commonly accepted even when not cryptographically authenticated,

 which increases the risk of denial of service attacks.

5.5. Broadcast Mode Should Only Be Used On Trusted Networks

 Per [RFC5905], NTP’s broadcast mode is authenticated using symmetric

 key cryptography. The broadcast server and all its broadcast clients

 share a symmetric cryptographic key, and the broadcast server uses

 this key to append a message authentication code (MAC) to the

 broadcast packets it sends.

 Importantly, all broadcast clients that listen to this server have to

 know the cryptographic key. This mean that any client can use this

 key to send valid broadcast messages that look like they come from

 the broadcast server. Thus, a rogue broadcast client can use its

 knowledge of this key to attack the other broadcast clients.

 For this reason, an NTP broadcast server and all its clients have to

 trust each other. Broadcast mode SHOULD only be run from within a

 trusted network.

5.6. Symmetric Mode Should Only Be Used With Trusted Peers

 In symmetric mode, two peers Alice and Bob can both push and pull

 synchronization to and from each other using either ephemeral

 symmetric passive (mode 2) or persistent symmetric active (NTP mode

 1) packets. The persistent association is preconfigured and

 initiated at the active peer but not preconfigured at the passive

 peer (Bob). Upon receipt of a mode 1 NTP packet from Alice, Bob

 mobilizes a new ephemeral association if he does not have one

 already. This is a security risk for Bob because an arbitrary

 attacker can attempt to change Bob’s time by asking Bob to become its

 symmetric passive peer.

 For this reason, a host SHOULD only allow symmetric passive

 associations to be established with trusted peers. Specifically, a

 host SHOULD require each of its symmetric passive association to be

 cryptographically authenticated. Each symmetric passive association

 SHOULD be authenticated under a different cryptographic key.

6. NTP in Embedded Devices

 As computing becomes more ubiquitous, there will be many small

 embedded devices that require accurate time. These devices may not

 have a persistent battery-backed clock, so using NTP to set the

Reilly, et al. Expires September 27, 2019 [Page 15]

Internet-Draft Network Time Protocol BCP March 2019

 correct time on power-up may be critical for proper operation. These

 devices may not have a traditional user interface, but if they

 connect to the Internet they will be subject to the same security

 threats as traditional deployments.

6.1. Updating Embedded Devices

 Vendors of embedded devices are advised to pay attention to the

 current state of protocol security issues and bugs in their chosen

 implementation, because their customers don’t have the ability to

 update their NTP implementation on their own. Those devices may have

 a single firmware upgrade, provided by the manufacturer, that updates

 all capabilities at once. This means that the vendor assumes the

 responsibility of making sure their devices have an up-to-date and

 secure NTP implementation.

 Vendors of embedded devices SHOULD include the ability to update the

 list of NTP servers used by the device.

 There is a catalog of NTP server abuse incidents, some of which

 involve embedded devices, on the Wikipedia page for NTP Server Misuse

 and Abuse [9].

6.2. Server configuration

 Vendors of embedded devices with preconfigured NTP servers need to

 carefully consider which servers to use. There are several public-

 facing NTP servers available, but they may not be prepared to service

 requests from thousands of new devices on the Internet. Vendors MUST

 only preconfigure NTP servers that they have permission to use.

 Vendors are encouraged to invest resources into providing their own

 time servers for their devices to connect to. This may be done

 through the NTP Pool Project, as documented in Section 3.6.

 Vendors should read [RFC4085], which advises against embedding

 globally-routable IP addresses in products, and offers several better

 alternatives.

7. NTP over Anycast

 Anycast is described in BCP 126 [RFC4786]. (Also see [RFC7094]).

 With anycast, a single IP address is assigned to multiple servers,

 and routers direct packets to the closest active server.

 Anycast is often used for Internet services at known IP addresses,

 such as DNS. Anycast can also be used in large organizations to

 simplify configuration of many NTP clients. Each client can be

Reilly, et al. Expires September 27, 2019 [Page 16]

Internet-Draft Network Time Protocol BCP March 2019

 configured with the same NTP server IP address, and a pool of anycast

 servers can be deployed to service those requests. New servers can

 be added to or taken from the pool, and other than a temporary loss

 of service while a server is taken down, these additions can be

 transparent to the clients.

 Note well that using a single anycast address for NTP presents its

 own potential issues. It means each client will likely use a single

 time server source. A key element of a robust NTP deployment is each

 client using multiple sources of time. With multiple time sources, a

 client will analyze the various time sources, selecting good ones,

 and disregarding poor ones. If a single Anycast address is used,

 this analysis will not happen. This can be mitigated by creating

 multiple, separate anycast pools so clients can have multiple sources

 of time while still gaining the configuration benefits of the anycast

 pools.

 If clients are connected to an NTP server via anycast, the client

 does not know which particular server they are connected to. As

 anycast servers enter and leave the network, or the network topology

 changes, the server a particular client is connected to may change.

 This may cause a small shift in time from the perspective of the

 client when the server it is connected to changes. In extreme cases

 where the network topology is changing rapidly, this could cause the

 server seen by a client to rapidly change as well, which can lead to

 larger time inaccuracies. It is RECOMMENDED that network operators

 only deploy anycast NTP in environments where operators know these

 small shifts can be tolerated by the applications running on the

 clients being synchronized in this manner.

 Configuration of an anycast interface is independent of NTP. Clients

 will always connect to the closest server, even if that server is

 having NTP issues. It is RECOMMENDED that anycast NTP

 implementations have an independent method of monitoring the

 performance of NTP on a server. If the server is not performing to

 specification, it should remove itself from the Anycast network. It

 is also RECOMMENDED that each Anycast NTP server have an alternative

 method of access, such as an alternate Unicast IP address, so its

 performance can be checked independently of the anycast routing

 scheme.

 One useful application in large networks is to use a hybrid unicast/

 anycast approach. Stratum 1 NTP servers can be deployed with unicast

 interfaces at several sites. Each site may have several Stratum 2

 servers with two ethernet interfaces, or a single interface which can

 support multiple addresses. One interface has a unique unicast IP

 address. The second has an anycast IP interface (with a shared IP

 address per location). The unicast interfaces can be used to obtain

Reilly, et al. Expires September 27, 2019 [Page 17]

Internet-Draft Network Time Protocol BCP March 2019

 time from the Stratum 1 servers globally (and perhaps peer with the

 other Stratum 2 servers at their site). Clients at each site can be

 configured to use the shared anycast address for their site,

 simplifying their configuration. Keeping the anycast routing

 restricted on a per-site basis will minimize the disruption at the

 client if its closest anycast server changes. Each Stratum 2 server

 can be uniquely identified on their unicast interface, to make

 monitoring easier.

8. Acknowledgments

 The authors wish to acknowledge the contributions of Sue Graves,

 Samuel Weiler, Lisa Perdue, Karen O’Donoghue, David Malone, Sharon

 Goldberg, Martin Burnicki, Miroslav Lichvar, Daniel Fox Franke,

 Robert Nagy, and Brian Haberman.

9. IANA Considerations

 This memo includes no request to IANA.

10. Security Considerations

 Time is a fundamental component of security on the internet. The

 absence of a reliable source of current time subverts many common web

 authentication schemes, e.g., by allowing the use of expired

 credentials or by allowing for replay of messages only intended to be

 processed once.

 Much of this document directly addresses how to secure NTP servers.

 In particular, see Section 2, Section 4, and Section 5.

 There are several general threats to time synchronization protocols

 which are discussed in [RFC7384].

 [I-D.ietf-ntp-using-nts-for-ntp] specifies the Network Time Security

 (NTS) mechanism and applies it to NTP. Readers are encouraged to

 check the status of the draft, and make use of the methods it

 describes.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

Reilly, et al. Expires September 27, 2019 [Page 18]

Internet-Draft Network Time Protocol BCP March 2019

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:

 Defeating Denial of Service Attacks which employ IP Source

 Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,

 May 2000, <https://www.rfc-editor.org/info/rfc2827>.

 [RFC4085] Plonka, D., "Embedding Globally-Routable Internet

 Addresses Considered Harmful", BCP 105, RFC 4085,

 DOI 10.17487/RFC4085, June 2005,

 <https://www.rfc-editor.org/info/rfc4085>.

 [RFC4786] Abley, J. and K. Lindqvist, "Operation of Anycast

 Services", BCP 126, RFC 4786, DOI 10.17487/RFC4786,

 December 2006, <https://www.rfc-editor.org/info/rfc4786>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

 "Network Time Protocol Version 4: Protocol and Algorithms

 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,

 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [CCR16] Malhotra, A. and S. Goldberg, "Attacking NTP’s

 Authenticated Broadcast Mode", SIGCOMM Computer

 Communications Review (CCR) , 2016.

 [CVE-2015-8138]

 Van Gundy, M. and J. Gardner, "NETWORK TIME PROTOCOL

 ORIGIN TIMESTAMP CHECK IMPERSONATION VULNERABILITY", 2016,

 <http://www.talosintel.com/reports/TALOS-2016-0077>.

 [CVE-2015-8139]

 Van Gundy, M., "NETWORK TIME PROTOCOL NTPQ AND NTPDC

 ORIGIN TIMESTAMP DISCLOSURE VULNERABILITY", 2016,

 <http://www.talosintel.com/reports/TALOS-2016-0078>.

 [CVE-2016-1548]

 Gardner, J. and M. Lichvar, "Xleave Pivot: NTP Basic Mode

 to Interleaved", 2016,

 <http://blog.talosintel.com/2016/04/

 vulnerability-spotlight-further-ntpd_27.html>.

Reilly, et al. Expires September 27, 2019 [Page 19]

Internet-Draft Network Time Protocol BCP March 2019

 [I-D.ietf-ntp-data-minimization]

 Franke, D. and A. Malhotra, "NTP Client Data

 Minimization", draft-ietf-ntp-data-minimization-04 (work

 in progress), March 2019.

 [I-D.ietf-ntp-mac]

 Malhotra, A. and S. Goldberg, "Message Authentication Code

 for the Network Time Protocol", draft-ietf-ntp-mac-06

 (work in progress), January 2019.

 [I-D.ietf-ntp-mode-6-cmds]

 Haberman, B., "Control Messages Protocol for Use with

 Network Time Protocol Version 4", draft-ietf-ntp-mode-

 6-cmds-06 (work in progress), September 2018.

 [I-D.ietf-ntp-using-nts-for-ntp]

 Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.

 Sundblad, "Network Time Security for the Network Time

 Protocol", draft-ietf-ntp-using-nts-for-ntp-17 (work in

 progress), February 2019.

 [IMC14] Czyz, J., Kallitsis, M., Gharaibeh, M., Papadopoulos, C.,

 Bailey, M., and M. Karir, "Taming the 800 Pound Gorilla:

 The Rise and Decline of NTP DDoS Attacks", Internet

 Measurement Conference , 2014.

 [MILLS2006]

 Mills, D., "Computer network time synchronization: the

 Network Time Protocol", CRC Press , 2006.

 [NDSS14] Rossow, C., "Amplification Hell: Revisiting Network

 Protocols for DDoS Abuse", NDSS’14, San Diego, CA. , 2014.

 [NDSS16] Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,

 "Attacking the Network Time Protocol", NDSS’16, San Diego,

 CA. , 2016, <https://eprint.iacr.org/2015/1020.pdf>.

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)

 Specification, Implementation and Analysis", RFC 1305,

 DOI 10.17487/RFC1305, March 1992,

 <https://www.rfc-editor.org/info/rfc1305>.

 [RFC5906] Haberman, B., Ed. and D. Mills, "Network Time Protocol

 Version 4: Autokey Specification", RFC 5906,

 DOI 10.17487/RFC5906, June 2010,

 <https://www.rfc-editor.org/info/rfc5906>.

Reilly, et al. Expires September 27, 2019 [Page 20]

Internet-Draft Network Time Protocol BCP March 2019

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations

 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

 RFC 6151, DOI 10.17487/RFC6151, March 2011,

 <https://www.rfc-editor.org/info/rfc6151>.

 [RFC7094] McPherson, D., Oran, D., Thaler, D., and E. Osterweil,

 "Architectural Considerations of IP Anycast", RFC 7094,

 DOI 10.17487/RFC7094, January 2014,

 <https://www.rfc-editor.org/info/rfc7094>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in

 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,

 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

11.3. URIs

 [1] https://blog.cloudflare.com/technical-details-behind-a-400gbps-

 ntp-amplification-ddos-attack/

 [2] http://www.bcp38.info

 [3] http://www.pool.ntp.org/en/use.html

 [4] http://www.pool.ntp.org/en/vendors.html

 [5] https://en.wikipedia.org/wiki/Solar_time#Mean_solar_time

 [6] https://www.iers.org/IERS/EN/Publications/Bulletins/

 bulletins.html

 [7] https://en.wikipedia.org/wiki/Solar_time#Mean_solar_time

 [8] https://lists.ntp.org/pipermail/ntpwg/2011-August/001714.html

 [9] https://en.wikipedia.org/wiki/NTP_server_misuse_and_abuse

 [10] http://www.ntp.org/downloads.html

 [11] http://bk1.ntp.org/ntp-stable/README.leapsmear?PAGE=anno

 [12] https://support.ntp.org/bin/view/Support/ConfiguringNTP

Appendix A. Best Practices specific to the Network Time Foundation

 implementation

 The Network Time Foundation (NTF) provides a widely used

 implementation of NTP, known as ntpd [10]. It is an evolution of the

 first NTP implementations developed by David Mills at the University

Reilly, et al. Expires September 27, 2019 [Page 21]

Internet-Draft Network Time Protocol BCP March 2019

 of Delaware. This appendix contains additional recommendations

 specific to this implementation that are valid at the time of this

 writing.

A.1. Use enough time sources

 In addition to the recommendation given in Section 3.2 the ntpd

 implementation provides the ’pool’ directive. Starting with ntp-

 4.2.6, using this directive in the ntp.conf file will spin up enough

 associations to provide robust time service, and will disconnect poor

 servers and add in new servers as-needed. The ’minclock’ and

 ’maxclock’ options of the ’tos’ command may be used to override the

 default values of how many servers are discovered through the ’pool’

 directive.

A.2. NTP Control and Facility Messages

 In addition to NTP Control Messages the ntpd implementation also

 offers the Mode 7 commands for monitoring and configuration.

 If Mode 7 has been explicitly enabled to be used for more than basic

 monitoring it should be limited to authenticated sessions that

 provide a ’requestkey’.

 As mentioned above, there are two general ways to use Mode 6 and Mode

 7 requests. One way is to query ntpd for information, and this mode

 can be disabled with:

 restrict ... noquery

 The second way to use Mode 6 and Mode 7 requests is to modify ntpd’s

 behavior. Modification of ntpd’s configuration requires an

 authenticated session by default. If no authentication keys have

 been specified no modifications can be made. For additional

 protection, the ability to perform these modifications can be

 controlled with:

 restrict ... nomodify

 Users can prevent their NTP servers from considering query/

 configuration traffic by default by adding the following to their

 ntp.conf file:

 restrict default -4 nomodify notrap nopeer noquery

 restrict default -6 nomodify notrap nopeer noquery

 restrict source nomodify notrap noquery

Reilly, et al. Expires September 27, 2019 [Page 22]

Internet-Draft Network Time Protocol BCP March 2019

A.3. Monitoring

 The ntpd implementation allows remote monitoring. Access to this

 service is generally controlled by the "noquery" directive in NTP’s

 configuration file (ntp.conf) via a "restrict" statement. The syntax

 reads:

 restrict address mask address_mask noquery

 If a system is using broadcast mode and is running ntp-4.2.8p6 or

 later, use the 4th field of the ntp.keys file to specify the IPs of

 machines that are allowed to serve time to the group.

A.4. Leap Second File

 The use of leap second files requires ntpd 4.2.6 or later. After

 fetching the leap seconds file onto the server, add this line to

 ntpd.conf to apply and use the file, substituting the proper path:

 leapfile "/path/to/leap-file"

 There may need to restart ntpd to apply this change.

 ntpd servers with a manually configured leap second file will ignore

 leap second information broadcast from upstream NTP servers until the

 leap second file expires. If no valid leap second file is available

 then a leap second notification from an attached reference clock is

 always accepted by ntpd.

 If no valid leap second file is available, a leap second notification

 may be accepted from upstream NTP servers. As of ntp-4.2.6, a

 majority of servers must provide the notification before it is

 accepted. Before 4.2.6, a leap second notification would be accepted

 if a single upstream server of a group of configured servers provided

 a leap second notification. This would lead to misbehavior if single

 NTP servers sent an invalid leap second warning, e.g. due to a faulty

 GPS receiver in one server, but this behavior was once chosen because

 in the "early days" there was a greater chance that leap second

 information would be available from a very limited number of sources.

A.5. Leap Smearing

 Leap Smearing was introduced in ntpd versions 4.2.8.p3 and 4.3.47, in

 response to client requests. Support for leap smearing is not

 configured by default and must be added at compile time. In

 addition, no leap smearing will occur unless a leap smear interval is

 specified in ntpd.conf . For more information, refer to

 http://bk.ntp.org/ntp-stable/README.leapsmear?PAGE=anno [11].

Reilly, et al. Expires September 27, 2019 [Page 23]

Internet-Draft Network Time Protocol BCP March 2019

A.6. Configuring ntpd

 See https://support.ntp.org/bin/view/Support/ConfiguringNTP [12] for

 additional information on configuring ntpd.

A.7. Pre-Shared Keys

 Each communication partner must add the key information to their key

 file in the form:

 keyid type key

 where "keyid" is a number between 1 and 65534, inclusive, "type" is

 an ASCII character which defines the key format, and "key" is the key

 itself.

 An ntpd client establishes a protected association by appending the

 option "key keyid" to the server statement in ntp.conf:

 server address key keyid

 substituting the server address in the "address" field and the

 numerical keyid to use with that server in the "keyid" field.

 A key is deemed trusted when its keyid is added to the list of

 trusted keys by the "trustedkey" statement in ntp.conf.

 trustedkey keyid_1 keyid_2 ... keyid_n

 Starting with ntp-4.2.8p7 the ntp.keys file accepts an optional 4th

 column, a comma-separated list of IPs that are allowed to serve time.

 Use this feature. Note, however, that an adversarial client that

 knows the symmetric broadcast key could still easily spoof its source

 IP to an IP that is allowed to serve time. (This is easy to do

 because the origin timestamp on broadcast mode packets is not

 validated by the client. By contrast, client/server and symmetric

 modes do require origin timestamp validation, making it more

 difficult to spoof packets [CCR16]).

Authors’ Addresses

 Denis Reilly (editor)

 Orolia USA

 1565 Jefferson Road, Suite 460

 Rochester, NY 14623

 US

 Email: denis.reilly@orolia.com

Reilly, et al. Expires September 27, 2019 [Page 24]

Internet-Draft Network Time Protocol BCP March 2019

 Harlan Stenn

 Network Time Foundation

 P.O. Box 918

 Talent, OR 97540

 US

 Email: stenn@nwtime.org

 Dieter Sibold

 Physikalisch-Technische Bundesanstalt

 Bundesallee 100

 Braunschweig D-38116

 Germany

 Phone: +49-(0)531-592-8420

 Fax: +49-531-592-698420

 Email: dieter.sibold@ptb.de

Reilly, et al. Expires September 27, 2019 [Page 25]

Network Working Group D. Franke

Internet-Draft Akamai

Updates: 5905 (if approved) A. Malhotra

Intended status: Standards Track Boston University

Expires: September 26, 2019 March 25, 2019

 NTP Client Data Minimization

 draft-ietf-ntp-data-minimization-04

Abstract

 This memo proposes backward-compatible updates to the Network Time

 Protocol to strip unnecessary identifying information from client

 requests and to improve resilience against blind spoofing of

 unauthenticated server responses.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 26, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Franke & Malhotra Expires September 26, 2019 [Page 1]

Internet-Draft NTP Client Data Minimization March 2019

Table of Contents

 1. Introduction . 2

 2. Requirements Language . 2

 3. Client Packet Format . 2

 4. Security and Privacy Considerations 3

 4.1. Data Minimization . 3

 4.2. Transmit Timestamp Randomization 4

 5. IANA Considerations . 4

 6. Implementation status - RFC EDITOR: REMOVE BEFORE PUBLICATION 4

 7. References . 5

 7.1. Normative References 5

 7.2. Informative References 5

 Appendix A. Acknowledgements 6

 Authors’ Addresses . 6

1. Introduction

 Network Time Protocol (NTP) packets, as specified by RFC 5905

 [RFC5905], carry a great deal of information about the state of the

 NTP daemon which transmitted them. In the case of mode 4 packets

 (responses sent from server to client), as well as in broadcast (mode

 5) and symmetric peering modes (mode 1/2), most of this information

 is essential for accurate and reliable time synchronizaton. However,

 in mode 3 packets (requests sent from client to server), most of

 these fields serve no purpose. Server implementations never need to

 inspect them, and they can achieve nothing by doing so. Populating

 these fields with accurate information is harmful to privacy of

 clients because it allows a passive observer to fingerprint clients

 and track them as they move across networks.

 This memo updates RFC 5905 to redact unnecessary data from mode 3

 packets. This is a fully backwards-compatible proposal. It calls

 for no changes on the server side, and clients which implement these

 updates will remain fully interoperable with existing servers.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Client Packet Format

 In every client-mode packet sent by a Network Time Protocol [RFC5905]

 implementation:

Franke & Malhotra Expires September 26, 2019 [Page 2]

Internet-Draft NTP Client Data Minimization March 2019

 The first octet, which contains the leap indicator, version

 number, and mode fields, SHOULD be set to 0x23 (LI = 0, VN = 4,

 Mode = 3).

 The Transmit Timestamp field SHOULD be set uniformly at random,

 generated by a mechanism suitable for cryptographic purposes.

 [RFC4086] provides guidance on the generation of random values.

 The Poll field SHOULD be set to either the actual polling interval

 as specified by RFC 5905 or zero.

 The Precision field SHOULD be set to 0x20.

 All other header fields, specifically the Stratum, Root Delay,

 Root Dispersion, Reference ID, Reference Timestamp, Origin

 Timestamp, and Receive Timestamp, SHOULD be set to zero.

 Servers MUST allow client packets to conform to the above

 recommendations. This requirement shall not be construed so as to

 prohibit servers from rejecting conforming packets for unrelated

 reasons, such as access control or rate limiting.

4. Security and Privacy Considerations

4.1. Data Minimization

 Zeroing out unused fields in client requests prevents disclosure of

 information that can be used for fingerprinting [RFC6973].

 While populating any of these fields with authentic data reveals at

 least some identifying information about the client, the Origin

 Timestamp and Receive Timestamp fields constitute a particularly

 severe information leak. RFC 5905 calls for clients to copy the

 transmit timestamp and destination timestamp of the server’s most

 recent response into the origin timestamp and receive timestamp

 (respectively) of their next request to that server. Therefore, when

 a client moves between networks, a passive observer of both network

 paths can determine with high confidence that the old and new IP

 addresses belong to the same system by noticing that the transmit

 timestamp of a response sent to the old IP matches the origin

 timestamp of a request sent from the new one.

 Zeroing the poll field is made optional (MAY rather than SHOULD) so

 as not to preclude future development of schemes wherein the server

 uses information about the client’s current poll interval in order to

 recommend adjustments back to the client. Putting accurate

 information into this field has no significant impact on privacy

Franke & Malhotra Expires September 26, 2019 [Page 3]

Internet-Draft NTP Client Data Minimization March 2019

 since an observer can already obtain this information simply by

 observing the actual interval between requests.

4.2. Transmit Timestamp Randomization

 While this memo calls for most fields in client packets to be set to

 zero, the transmit timestamp SHOULD be randomized. This decision is

 motivated by security as well as privacy.

 NTP servers copy the transmit timestamp from the client’s request

 into the origin timestamp of the response; this memo calls for no

 change in this behavior. Clients discard any response whose origin

 timestamp does not match the transmit timestamp of any request

 currently in flight.

 In the absence of cryptographic authentication, verification of

 origin timestamps is clients’ primary defense against blind spoofing

 of NTP responses. It is therefore important that clients’ transmit

 timestamps be unpredictable. Their role in this regard is closely

 analagous to that of TCP Initial Sequence Numbers [RFC6528].

 The traditional behavior of the NTP reference implementation is to

 randomize only a few (typically 10-15 depending on the precision of

 the system clock) low-order bits of transmit timestamp, with all

 higher bits representing the system time, as measured just before the

 packet was sent. This is suboptimal, because with so few random

 bits, an adversary sending spoofed packets at high volume will have a

 good chance of correctly guessing a valid origin timestamp.

5. IANA Considerations

 [RFC EDITOR: DELETE PRIOR TO PUBLICATION]

 This memo introduces no new IANA considerations.

6. Implementation status - RFC EDITOR: REMOVE BEFORE PUBLICATION

 This section records the status of known implementations of the

 protocol defined by this specification at the time of posting of this

 Internet-Draft, and is based on a proposal described in RFC7942. The

 description of implementations in this section is intended to assist

 the IETF in its decision processes in progressing drafts to RFCs.

 Please note that the listing of any individual implementation here

 does not imply endorsement by the IETF. Furthermore, no effort has

 been spent to verify the information presented here that was supplied

 by IETF contributors. This is not intended as, and must not be

 construed to be, a catalog of available implementations or their

Franke & Malhotra Expires September 26, 2019 [Page 4]

Internet-Draft NTP Client Data Minimization March 2019

 features. Readers are advised to note that other implementations may

 exist.

 As of today the following vendors have produced an implementation of

 the NTP Client Data Minimization recommendations described in this

 document.

 OpenNTPD

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

 "Network Time Protocol Version 4: Protocol and Algorithms

 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,

 <https://www.rfc-editor.org/info/rfc5905>.

7.2. Informative References

 [RFC2030] Mills, D., "Simple Network Time Protocol (SNTP) Version 4

 for IPv4, IPv6 and OSI", RFC 2030, DOI 10.17487/RFC2030,

 October 1996, <https://www.rfc-editor.org/info/rfc2030>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,

 "Randomness Requirements for Security", BCP 106, RFC 4086,

 DOI 10.17487/RFC4086, June 2005,

 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC6528] Gont, F. and S. Bellovin, "Defending against Sequence

 Number Attacks", RFC 6528, DOI 10.17487/RFC6528, February

 2012, <https://www.rfc-editor.org/info/rfc6528>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,

 Morris, J., Hansen, M., and R. Smith, "Privacy

 Considerations for Internet Protocols", RFC 6973,

 DOI 10.17487/RFC6973, July 2013,

 <https://www.rfc-editor.org/info/rfc6973>.

Franke & Malhotra Expires September 26, 2019 [Page 5]

Internet-Draft NTP Client Data Minimization March 2019

7.3. URIs

 [1] https://github.com/openbsd/src/

 commit/1346900e6d0ac3aeb0e3f9eb60b94c66586978c6

Appendix A. Acknowledgements

 The possibility of minimizing data in client packets was described in

 RFC 2030 [RFC2030]. The authors would like to acknowledge Alexander

 Guy for pioneering the idea of randomization of all bits of the

 transmit timestamp in the rdate program of the OpenBSD project as

 early as May 2004 [1].

 The authors would also like to thank Prof. Sharon Goldberg and

 Miroslav Lichvar for encouraging standardisation of the approach

 described in this document.

Authors’ Addresses

 Daniel Fox Franke

 Akamai Technologies, Inc.

 150 Broadway

 Cambridge, MA 02142

 United States

 Email: dafranke@akamai.com

 URI: https://www.dfranke.us

 Aanchal Malhotra

 Boston University

 111 Cummington St

 Boston, MA/ 02215

 United States

 Email: aanchal4@bu.edu

Franke & Malhotra Expires September 26, 2019 [Page 6]

Internet Engineering Task Force M. Lichvar
Internet-Draft Red Hat
Updates: 5905 (if approved) A. Malhotra
Intended status: Standards Track Boston University
Expires: 21 April 2022 18 October 2021

 NTP Interleaved Modes
 draft-ietf-ntp-interleaved-modes-07

Abstract

 This document extends the specification of Network Time Protocol
 (NTP) version 4 in RFC 5905 with special modes called the NTP
 interleaved modes, that enable NTP servers to provide their clients
 and peers with more accurate transmit timestamps that are available
 only after transmitting NTP packets. More specifically, this
 document describes three modes: interleaved client/server,
 interleaved symmetric, and interleaved broadcast.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 21 April 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Lichvar & Malhotra Expires 21 April 2022 [Page 1]

Internet-Draft NTP Interleaved Modes October 2021

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 4
 2. Interleaved Client/server mode 4
 3. Interleaved Symmetric mode 9
 4. Interleaved Broadcast mode 10
 5. Protocol Failures . 11
 6. Security Considerations 13
 7. IANA Considerations . 14
 8. Acknowledgements . 14
 9. References . 14
 9.1. Normative References 14
 9.2. Informative References 15
 Authors’ Addresses . 15

1. Introduction

 RFC 5905 [RFC5905] describes the operations of NTPv4 in a client/
 server, symmetric, and broadcast mode. The transmit and receive
 timestamps are two of the four timestamps included in every NTPv4
 packet used for time synchronization.

 For a highly accurate and stable synchronization, the transmit and
 receive timestamp should be captured close to the beginning of the
 actual transmission and the end of the reception respectively. An
 asymmetry in the timestamping causes the offset measured by NTP to
 have an error.

 There are at least four options where a timestamp of an NTP packet
 may be captured with a software NTP implementation running on a
 general-purpose operating system:

 1. User space (software)

 2. Network device driver or kernel (software)

 3. Data link layer (hardware - MAC chip)

Lichvar & Malhotra Expires 21 April 2022 [Page 2]

Internet-Draft NTP Interleaved Modes October 2021

 4. Physical layer (hardware - PHY chip)

 Software timestamps captured in user space in the NTP implementation
 itself are least accurate. They do not include system calls used for
 sending and receiving packets, processing and queuing delays in the
 system, network device drivers, and hardware. Hardware timestamps
 captured at the physical layer are most accurate.

 A transmit timestamp captured in the driver or hardware is more
 accurate than the user-space timestamp, but it is available to the
 NTP implementation only after it sent the packet using a system call.
 The timestamp cannot be included in the packet itself unless the
 driver or hardware supports NTP and can modify the packet before or
 during the actual transmission.

 The protocol described in RFC 5905 does not specify any mechanism for
 a server to provide its clients and peers with a more accurate
 transmit timestamp that is known only after the transmission. A
 packet that strictly follows RFC 5905, i.e. it contains a transmit
 timestamp corresponding to the packet itself, is said to be in basic
 mode.

 Different mechanisms could be used to exchange timestamps known after
 the transmission. The server could respond to each request with two
 packets. The second packet would contain the transmit timestamp
 corresponding to the first packet. However, such a protocol would
 enable a traffic amplification attack, or it would use packets with
 an asymmetric length, which would cause an asymmetry in the network
 delay and an error in the measured offset.

 This document describes an interleaved client/server, interleaved
 symmetric, and interleaved broadcast mode. In these modes, the
 server sends a packet which contains a transmit timestamp
 corresponding to the transmission of the previous packet that was
 sent to the client or peer. This transmit timestamp can be captured
 in any software or hardware component involved in the transmission of
 the packet. Both servers and clients/peers are required to keep some
 state specific to the interleaved mode.

 An NTPv4 implementation that supports the client/server and broadcast
 interleaved modes interoperates with NTPv4 implementations without
 this capability. A peer using the symmetric interleaved mode does
 not fully interoperate with a peer which does not support it. The
 mode needs to be configured specifically for each symmetric
 association.

Lichvar & Malhotra Expires 21 April 2022 [Page 3]

Internet-Draft NTP Interleaved Modes October 2021

 The interleaved modes do not change the NTP packet header format and
 do not use new extension fields. The negotiation is implicit. The
 protocol is extended with new values that can be assigned to the
 origin and transmit timestamp. Servers and peers check the origin
 timestamp to detect requests conforming to the interleaved mode. A
 response can be valid only in one mode. If a client or peer that
 does not support interleaved mode received a response conforming to
 the interleaved mode, it would be rejected as bogus.

 An explicit negotiation would require a new extension field. RFC
 5905 does not specify how servers should handle requests with an
 unknown extension field. The original use of extension fields was
 authentication with Autokey [RFC5906], which cannot be negotiated.
 Some existing implementations do not respond to requests with unknown
 extension fields. This behavior would prevent clients from reliably
 detecting support for the interleaved mode.

 Requests and responses cannot always be formed in interleaved mode.
 It cannot be used exclusively. Servers, clients, and peers that
 support the interleaved mode need to support also the basic mode.

 This document assumes familiarity with RFC 5905.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Interleaved Client/server mode

 The interleaved client/server mode is similar to the basic client/
 server mode. The difference between the two modes is in the values
 saved to the origin and transmit timestamp fields.

 The origin timestamp is a cookie which is used to detect that a
 received packet is a response to the last packet sent in the other
 direction of the association. It is a copy of one of the timestamps
 from the packet to which it is responding, or zero if it is not a
 response. Servers following RFC 5905 ignore the origin timestamp in
 client requests. A server response which does not have a matching
 origin timestamp is called bogus.

 A client request in the basic mode has an origin timestamp equal to
 the transmit timestamp from the last valid server response, or is
 zero (which indicates the first request of the association). A

Lichvar & Malhotra Expires 21 April 2022 [Page 4]

Internet-Draft NTP Interleaved Modes October 2021

 server response in the basic mode has an origin timestamp equal to
 the transmit timestamp from the client request. The transmit
 timestamp in the response corresponds to the transmission of the
 response in which the timestamp is contained.

 A client request in the interleaved mode has an origin timestamp
 equal to the receive timestamp from the last valid server response.
 A server response in the interleaved mode has an origin timestamp
 equal to the receive timestamp from the client request. The transmit
 timestamp in the response corresponds to the transmission of the
 previous response which had the receive timestamp equal to the origin
 timestamp from the request.

 A server which supports the interleaved mode needs to save pairs of
 local receive and transmit timestamps. The server SHOULD discard old
 timestamps to limit the amount of memory needed to support clients
 using the interleaved mode. The server MAY separate the timestamps
 by IP addresses, but it SHOULD NOT separate them by port numbers to
 support clients that change their port between requests, as
 recommended in RFC 9109 [RFC9109].

 The server MAY restrict the interleaved mode to specific IP addresses
 and/or authenticated clients.

 Both servers and clients that support the interleaved mode MUST NOT
 send a packet that has a transmit timestamp equal to the receive
 timestamp in order to reliably detect whether received packets
 conform to the interleaved mode. One way to ensure that is to
 increment the transmit timestamp by 1 unit (i.e. about 1/4 of a
 nanosecond) if the two timestamps are equal, or a new timestamp can
 be generated.

 The transmit and receive timestamps in server responses need to be
 unique to prevent two different clients from sending requests with
 the same origin timestamp and the server responding in the
 interleaved mode with an incorrect transmit timestamp. If the
 timestamps are not guaranteed to be monotonically increasing, the
 server SHOULD check that the transmit and receive timestamps are not
 already saved as a receive timestamp of a previous request (from the
 same IP address if the server separates timestamps by addresses), and
 generate a new timestamp if necessary.

 When the server receives a request from a client, it SHOULD respond
 in the interleaved mode if the following conditions are met:

 1. The request does not have a receive timestamp equal to the
 transmit timestamp.

Lichvar & Malhotra Expires 21 April 2022 [Page 5]

Internet-Draft NTP Interleaved Modes October 2021

 2. The origin timestamp from the request matches the local receive
 timestamp of a previous request that the server has saved (for
 the IP address if it separates timestamps by addresses).

 A response in the interleaved mode MUST contain the transmit
 timestamp of the response which contained the receive timestamp
 matching the origin timestamp from the request. The server SHOULD
 drop the timestamps after sending the response. The receive
 timestamp MUST NOT be used again to detect a request conforming to
 the interleaved mode.

 If the conditions are not met (i.e. the request is not detected to
 conform to the interleaved mode), the server MUST NOT respond in the
 interleaved mode. The server MAY always respond in the basic mode.
 In any case, the server SHOULD save the new receive and transmit
 timestamps.

 The first request from a client is always in the basic mode and so is
 the server response. It has a zero origin timestamp and zero receive
 timestamp. Only when the client receives a valid response from the
 server, it will be able to send a request in the interleaved mode.

 The protocol recovers from packet loss. When a client request or
 server response is lost, the client will use the same origin
 timestamp in the next request. The server can respond in the
 interleaved mode if it still has the timestamps corresponding to the
 origin timestamp. If the server already responded to the timestamp
 in the interleaved mode, or it had to drop the timestamps for other
 reasons, it will respond in the basic mode and save new timestamps,
 which will enable an interleaved response to the subsequent request.
 The client SHOULD limit the number of requests in the interleaved
 mode between server responses to prevent processing of very old
 timestamps in case a large number of consecutive requests is lost.

 An example of packets in a client/server exchange using the
 interleaved mode is shown in Figure 1. The packets in the basic and
 interleaved mode are indicated with B and I respectively. The
 timestamps t1˜, t3˜ and t11˜ point to the same transmissions as t1,
 t3 and t11, but they may be less accurate. The first exchange is in
 the basic mode followed by a second exchange in the interleaved mode.
 For the third exchange, the client request is in the interleaved
 mode, but the server response is in the basic mode, because the
 server did not have the pair of timestamps t6 and t7 (e.g. they were
 dropped to save timestamps for other clients using the interleaved
 mode).

Lichvar & Malhotra Expires 21 April 2022 [Page 6]

Internet-Draft NTP Interleaved Modes October 2021

 Server t2 t3 t6 t7 t10 t11
 -----+----+----------------+----+----------------+----+-----
 / \ / \ / \
 Client / \ / \ / \
 --+----------+----------+----------+----------+----------+--
 t1 t4 t5 t8 t9 t12

 Mode: B B I I I B
 +----+ +----+ +----+ +----+ +----+ +----+
 Org | 0 | | t1˜| | t2 | | t4 | | t6 | | t5 |
 Rx | 0 | | t2 | | t4 | | t6 | | t8 | |t10 |
 Tx | t1˜| | t3˜| | t1 | | t3 | | t5 | |t11˜|
 +----+ +----+ +----+ +----+ +----+ +----+

 Figure 1: Packet timestamps in interleaved client/server mode

 When the client receives a response from the server, it performs the
 tests described in RFC 5905. Two of the tests are modified for the
 interleaved mode:

 1. The check for duplicate packets SHOULD compare both receive and
 transmit timestamps in order to not drop a valid response in the
 interleaved mode if it follows a response in the basic mode and
 they contain the same transmit timestamp.

 2. The check for bogus packets SHOULD compare the origin timestamp
 with both transmit and receive timestamps from the request. If
 the origin timestamp is equal to the transmit timestamp, the
 response is in the basic mode. If the origin timestamp is equal
 to the receive timestamp, the response is in the interleaved
 mode.

 The client SHOULD NOT update its NTP state when an invalid response
 is received, to not lose the timestamps which will be needed to
 complete a measurement when the subsequent response in the
 interleaved mode is received.

 If the packet passed the tests and conforms to the interleaved mode,
 the client can compute the offset and delay using the formulas from
 RFC 5905 and one of two different sets of timestamps. The first set
 is RECOMMENDED for clients that filter measurements based on the
 delay. The corresponding timestamps from Figure 1 are written in
 parentheses.

 T1 - local transmit timestamp of the previous request (t1)

 T2 - remote receive timestamp from the previous response (t2)

Lichvar & Malhotra Expires 21 April 2022 [Page 7]

Internet-Draft NTP Interleaved Modes October 2021

 T3 - remote transmit timestamp from the latest response (t3)

 T4 - local receive timestamp of the previous response (t4)

 The second set gives a more accurate measurement of the current
 offset, but the delay is much more sensitive to a frequency error
 between the server and client due to a much longer interval between
 T1 and T4.

 T1 - local transmit timestamp of the latest request (t5)

 T2 - remote receive timestamp from the latest response (t6)

 T3 - remote transmit timestamp from the latest response (t3)

 T4 - local receive timestamp of the previous response (t4)

 Clients MAY filter measurements based on the mode. The maximum
 number of dropped measurements in the basic mode SHOULD be limited in
 case the server does not support or is not able to respond in the
 interleaved mode. Clients that filter measurements based on the
 delay will implicitly prefer measurements in the interleaved mode
 over the basic mode, because they have a shorter delay due to a more
 accurate transmit timestamp (T3).

 The server MAY limit saving of the receive and transmit timestamps to
 requests which have an origin timestamp specific to the interleaved
 mode in order to not waste resources on clients using the basic mode.
 Such an optimization will delay the first interleaved response of the
 server to a client by one exchange.

 A check for a non-zero origin timestamp works with SNTP clients that
 always set the timestamp to zero and clients that implement NTP data
 minimization [I-D.ietf-ntp-data-minimization]. From the server’s
 point of view, such clients start a new association with each
 request.

 To avoid searching the saved receive timestamps for non-zero origin
 timestamps from requests conforming to the basic mode, the server can
 encode in low-order bits of the receive and transmit timestamps below
 precision of the clock a flag indicating whether the timestamp is a
 receive timestamp. If the server receives a request with a non-zero
 origin timestamp which does not indicate it is a receive timestamp of
 the server, the request does not conform to the interleaved mode and
 it is not necessary to perform the search and/or save the new receive
 and transmit timestamp.

Lichvar & Malhotra Expires 21 April 2022 [Page 8]

Internet-Draft NTP Interleaved Modes October 2021

3. Interleaved Symmetric mode

 The interleaved symmetric mode uses the same principles as the
 interleaved client/server mode. A packet in the interleaved
 symmetric mode has a transmit timestamp which corresponds to the
 transmission of the previous packet sent to the peer and an origin
 timestamp equal to the receive timestamp from the last packet
 received from the peer.

 To enable synchronization in both directions of a symmetric
 association, both peers need to support the interleaved mode. For
 this reason, it SHOULD be disabled by default and enabled with an
 option in the configuration of the active side of the association.

 In order to prevent the peer from matching the transmit timestamp
 with an incorrect packet when the peers’ transmissions do not
 alternate (e.g. they use different polling intervals) and a previous
 packet was lost, the use of the interleaved mode in symmetric
 associations requires additional restrictions.

 Peers which have an association need to count valid packets received
 between their transmissions to determine in which mode a packet
 should be formed. A valid packet in this context is a packet which
 passed all NTP tests for duplicate, replayed, bogus, and
 unauthenticated packets. Other received packets may update the NTP
 state to allow the (re)initialization of the association, but they do
 not change the selection of the mode.

 A peer A SHOULD send a peer B a packet in the interleaved mode only
 when all of the following conditions are met:

 1. The peer A has an active association with the peer B which was
 specified with the option enabling the interleaved mode, OR the
 peer A received at least one valid packet in the interleaved mode
 from the peer B.

 2. The peer A did not send a packet to the peer B since it received
 the last valid packet from the peer B.

 3. The previous packet that the peer A sent to the peer B was the
 only response to a packet received from the peer B.

 The first condition is needed for compatibility with implementations
 that do not support or are not configured for the interleaved mode.
 The other conditions prevent a missing response from causing a
 mismatch between the remote transmit (T2) and local receive timestamp
 (T3), which would cause a large error in the measured offset and
 delay.

Lichvar & Malhotra Expires 21 April 2022 [Page 9]

Internet-Draft NTP Interleaved Modes October 2021

 An example of packets exchanged in a symmetric association is shown
 in Figure 2. The minimum polling interval of the peer A is twice as
 long as the maximum polling interval of the peer B. The first
 packets sent by the peers are in the basic mode. The second and
 third packet sent by the peer A is in the interleaved mode. The
 second packet sent by the peer B is in the interleaved mode, but the
 following packets sent by the peer B are in the basic mode, because
 multiple responses are sent per request.

 Peer A t2 t3 t6 t8 t9 t12 t14 t15
 -----+--+--------+-----------+--+--------+-----------+--+-----
 / \ / / \ / / \
 Peer B / \ / / \ / / \
 --+--------+--+-----------+--------+--+-----------+--------+--
 t1 t4 t5 t7 t10 t11 t13 t16

 Mode: B B I B I B B I
 +----+ +----+ +----+ +----+ +----+ +----+ +----+ +----+
 Org | 0 | | t1˜| | t2 | | t3˜| | t4 | | t3 | | t3 | |t10 |
 Rx | 0 | | t2 | | t4 | | t4 | | t8 | |t10 | |t10 | |t14 |
 Tx | t1˜| | t3˜| | t1 | | t7˜| | t3 | |t11˜| |t13˜| | t9 |
 +----+ +----+ +----+ +----+ +----+ +----+ +----+ +----+

 Figure 2: Packet timestamps in interleaved symmetric mode

 If the peer A has no association with the peer B and it responds with
 symmetric passive packets, it does not need to count the packets in
 order to meet the restrictions, because each request has at most one
 response. The peer SHOULD process the requests in the same way as a
 server which supports the interleaved client/server mode. It MUST
 NOT respond in the interleaved mode if the request was not in the
 interleaved mode.

 The peers SHOULD compute the offset and delay using one of the two
 sets of timestamps specified in the client/server section. They MAY
 switch between them to minimize the interval between T1 and T4 in
 order to reduce the error in the measured delay.

4. Interleaved Broadcast mode

 A packet in the interleaved broadcast mode contains two transmit
 timestamps. One corresponds to the packet itself and is saved in the
 transmit timestamp field. The other corresponds to the previous
 packet and is saved in the origin timestamp field. The packet is
 compatible with the basic mode, which uses a zero origin timestamp.

 An example of packets sent in the broadcast mode is shown in
 Figure 3.

Lichvar & Malhotra Expires 21 April 2022 [Page 10]

Internet-Draft NTP Interleaved Modes October 2021

 Server t1 t3 t5 t7
 ------+------------+------------+------------+---------
 \ \ \ \
 Client \ \ \ \
 ---------+------------+------------+------------+------
 t2 t4 t6 t8

 Mode: B I I I
 +----+ +----+ +----+ +----+
 Org | 0 | | t1 | | t3 | | t5 |
 Rx | 0 | | 0 | | 0 | | 0 |
 Tx | t1˜| | t3˜| | t5˜| | t7˜|
 +----+ +----+ +----+ +----+

 Figure 3: Packet timestamps in interleaved broadcast mode

 A client which does not support the interleaved mode ignores the
 origin timestamp and processes all packets as if they were in the
 basic mode.

 A client which supports the interleaved mode SHOULD check if the
 origin timestamp is not zero to detect packets in the interleaved
 mode. The client SHOULD also compare the origin timestamp with the
 transmit timestamp from the previous packet to detect lost packets.
 If the difference is larger than a specified maximum (e.g. 1 second),
 the packet SHOULD NOT be used for synchronization in the interleaved
 mode.

 The client SHOULD compute the offset using the origin timestamp from
 the received packet and the local receive timestamp of the previous
 packet. If the client needs to measure the network delay, it SHOULD
 use the interleaved client/server mode.

5. Protocol Failures

 An incorrect client implementation of the basic mode (RFC 5905) can
 work reliably with servers that implement only the basic mode, but
 the protocol can fail intermittently with servers that implement the
 interleaved mode.

 If the client sets the origin timestamp to other values than the
 transmit timestamp from the last valid server response, or zero, the
 origin timestamp can match a receive timestamp of a previous server
 response (possibly to a different client), causing an unexpected
 interleaved response. The client is expected to drop the response as
 bogus. If it did not check for bogus packets, it would be vulnerable
 to off-path attacks.

Lichvar & Malhotra Expires 21 April 2022 [Page 11]

Internet-Draft NTP Interleaved Modes October 2021

 If the client set the origin timestamp to a constant non-zero value,
 this mismatch would be expected to happen once per the NTP era (about
 136 years) if the NTP server was responding at the maximum rate
 needed to go through all timestamp values (about 2 billion responses
 per second). With lower rates of requests the chance of hitting a
 server timestamp decreases proportionally.

 The worst case of this failure would be a client that specifically
 sets the origin timestamp to the server’s receive timestamp, i.e. the
 client accidentally implemented the interleaved mode, but it does not
 accept interleaved responses. This client would still be able to
 synchronize its clock. It would drop interleaved responses as bogus
 and set the origin timestamp to the receive timestamp from the last
 valid response in the basic mode. As servers are required to not
 respond twice to the same origin timestamp in the interleaved mode,
 at least every other response would be in the basic mode and accepted
 by the client.

 Intermittent protocol failures can be caused also by an incorrect
 server implementation of the interleaved mode. A server which does
 not ensure the receive and transmit timestamps in its responses are
 unique in a sufficiently long interval can misinterpret requests
 formed correctly in the basic mode as interleaved and respond in the
 interleaved mode. The response would be dropped by the client as
 bogus.

 A duplicated server receive timestamp can cause an expected
 interleaved response to contain a transmit timestamp which does not
 correspond to the transmission of the previous response from which
 the client copied the receive timestamp to the origin timestamp in
 the request, but a different response which contained the same
 receive timestamp. The response would be accepted by the client with
 a small error in the transmit timestamp equal to the difference
 between the transmit timestamps of the two different responses. As
 the two requests to which the responses responded were received at
 the same time (according to the server’s clock), the two
 transmissions would be expected to be close to each other and the
 difference between them would be comparable to the error a basic
 response normally has in its transmit timestamp.

 One reason for a duplicated server timestamp can be a large backward
 step of the server’s clock. If the timestamps the server has saved
 do not fully cover the second pass of the clock over the repeated
 interval, two requests received in different passes of the clock can
 get the same receive timestamp. The client which made the first
 request can get the transmit timestamp corresponding to the
 transmission of the second response. From the server’s point of
 view, the error of the transmit timestamp would be still small, but

Lichvar & Malhotra Expires 21 April 2022 [Page 12]

Internet-Draft NTP Interleaved Modes October 2021

 from the client’s point of view the server already failed when it
 made the step as it was serving wrong time before or after the step
 with a much larger error than the error caused by the protocol
 failure.

6. Security Considerations

 The security considerations of time protocols in general are
 discussed in RFC 7384 [RFC7384], and specifically the security
 considerations of NTP are discussed in RFC 5905.

 Security issues that apply to the basic modes apply also to the
 interleaved modes. They are described in The Security of NTP’s
 Datagram Protocol [SECNTP].

 Clients and peers SHOULD NOT leak the receive timestamp in packets
 sent to other peers or clients (e.g. as a reference timestamp) to
 prevent off-path attackers from easily getting the origin timestamp
 needed to make a valid response in the interleaved mode.

 Clients using the interleaved mode SHOULD randomize all bits of both
 receive and transmit timestamps, as recommended for the transmit
 timestamp in the NTP client data minimization
 [I-D.ietf-ntp-data-minimization], to make it more difficult for off-
 path attackers to guess the origin timestamp in the server response.

 The client data minimization cannot be fully implemented in the
 interleaved mode. The origin timestamp cannot be zeroed out, which
 makes the clients more vulnerable to tracking as they move between
 networks.

 Attackers can force the server to drop its timestamps in order to
 prevent clients from getting an interleaved response. They can send
 a large number of requests, send requests with a spoofed source
 address, or replay an authenticated request if the interleaved mode
 is enabled only for authenticated clients. Clients SHOULD NOT rely
 on servers to be able to respond in the interleaved mode.

Lichvar & Malhotra Expires 21 April 2022 [Page 13]

Internet-Draft NTP Interleaved Modes October 2021

 Protecting symmetric associations in the interleaved mode against
 replay attacks is even more difficult than in the basic mode. In
 both modes, the NTP state needs to be protected between the reception
 of the last non-replayed response and transmission of the next
 request in order for the request to contain the origin timestamp
 expected by the peer. The difference is in the timestamps needed to
 complete a measurement. In the basic mode only one valid response is
 needed at a time and it is used as soon as it is received, but the
 interleaved mode needs two consecutive valid responses. The NTP
 state needs to be protected all the time to not lose the timestamps
 which are needed to complete the measurement when the second response
 is received.

7. IANA Considerations

 This memo includes no request to IANA.

8. Acknowledgements

 The interleaved modes described in this document are based on the
 implementation written by David Mills in the NTP project
 (http://www.ntp.org). The specification of the broadcast mode is
 based purely on this implementation. The specification of the
 symmetric mode has some modifications. The client/server mode is
 specified as a new mode compatible with the symmetric mode, similarly
 to the basic symmetric and client/server modes.

 The authors would like to thank Theresa Enghardt, Daniel Franke,
 Benjamin Kaduk, Erik Kline, Tal Mizrahi, Steven Sommars, Harlan
 Stenn, and Kristof Teichel for their useful comments.

9. References

9.1. Normative References

 [I-D.ietf-ntp-data-minimization]
 Franke, D. F. and A. Malhotra, "NTP Client Data
 Minimization", Work in Progress, Internet-Draft, draft-
 ietf-ntp-data-minimization-04, 25 March 2019,
 <https://www.ietf.org/archive/id/draft-ietf-ntp-data-
 minimization-04.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Lichvar & Malhotra Expires 21 April 2022 [Page 14]

Internet-Draft NTP Interleaved Modes October 2021

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [RFC5906] Haberman, B., Ed. and D. Mills, "Network Time Protocol
 Version 4: Autokey Specification", RFC 5906,
 DOI 10.17487/RFC5906, June 2010,
 <https://www.rfc-editor.org/info/rfc5906>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC9109] Gont, F., Gont, G., and M. Lichvar, "Network Time Protocol
 Version 4: Port Randomization", RFC 9109,
 DOI 10.17487/RFC9109, August 2021,
 <https://www.rfc-editor.org/info/rfc9109>.

 [SECNTP] Malhotra, A., Gundy, M. V., Varia, M., Kennedy, H.,
 Gardner, J., and S. Goldberg, "The Security of NTP’s
 Datagram Protocol", 2016,
 <http://eprint.iacr.org/2016/1006>.

Authors’ Addresses

 Miroslav Lichvar
 Red Hat
 Purkynova 115
 612 00 Brno
 Czech Republic

 Email: mlichvar@redhat.com

 Aanchal Malhotra
 Boston University
 111 Cummington St
 Boston, 02215
 United States of America

 Email: aanchal4@bu.edu

Lichvar & Malhotra Expires 21 April 2022 [Page 15]

Network Working Group B. Haberman, Ed.
Internet-Draft JHU
Intended status: Historic February 2022
Expires: 19 August 2022

 Control Messages Protocol for Use with Network Time Protocol Version 4
 draft-ietf-ntp-mode-6-cmds-11

Abstract

 This document describes the structure of the control messages that
 were historically used with the Network Time Protocol before the
 advent of more modern control and management approaches. These
 control messages have been used to monitor and control the Network
 Time Protocol application running on any IP network attached
 computer. The information in this document was originally described
 in Appendix B of RFC 1305. The goal of this document is to provide
 an updated description of the control messages described in RFC 1305
 in order to conform with the updated Network Time Protocol
 specification documented in RFC 5905.

 The publication of this document is not meant to encourage the
 development and deployment of these control messages. This document
 is only providing a current reference for these control messages
 given the current status of RFC 1305.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 August 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Haberman Expires 19 August 2022 [Page 1]

Internet-Draft NTP Control Messages February 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 1.1. Control Message Overview 3
 1.2. Remote Facility Message Overview 5
 2. NTP Control Message Format 5
 3. Status Words . 7
 3.1. System Status Word 8
 3.2. Peer Status Word . 10
 3.3. Clock Status Word . 12
 3.4. Error Status Word . 12
 4. Commands . 13
 5. IANA Considerations . 16
 6. Security Considerations 16
 7. Contributors . 18
 8. Acknowledgements . 18
 9. References . 18
 9.1. Normative References 18
 9.2. Informative References 19
 Appendix A. NTP Remote Facility Message Format 20
 Author’s Address . 22

Haberman Expires 19 August 2022 [Page 2]

Internet-Draft NTP Control Messages February 2022

1. Introduction

 RFC 1305 [RFC1305] described a set of control messages for use within
 the Network Time Protocol (NTP) when a comprehensive network
 management solution was not available. The definitions of these
 control messages were not promulgated to RFC 5905 [RFC5905] when NTP
 version 4 was documented. These messages were intended for use only
 in systems where no other management facilities were available or
 appropriate, such as in dedicated-function bus peripherals. Support
 for these messages is not required in order to conform to RFC 5905
 [RFC5905]. The control messages are described here as a current
 reference for use with an RFC 5905 implementation of NTP.

 The publication of this document is not meant to encourage the
 development and deployment of these control messages. This document
 is only providing a current reference for these control messages
 given the current status of RFC 1305.

1.1. Control Message Overview

 The NTP Mode 6 control messages are used by NTP management programs
 (e.g., ntpq) when a more robust network management facility (e.g.,
 SNMP) is not available. These control messages provide rudimentary
 control and monitoring functions to manage a running instance of an
 NTP server. These commands are not designed to be used for
 communication between instances of running NTP servers.

 The NTP Control Message has the value 6 specified in the mode field
 of the first octet of the NTP header and is formatted as shown in
 Figure 1. The format of the data field is specific to each command
 or response; however, in most cases the format is designed to be
 constructed and viewed by humans and so is coded in free-form ASCII.
 This facilitates the specification and implementation of simple
 management tools in the absence of fully evolved network-management
 facilities. As in ordinary NTP messages, the authenticator field
 follows the data field. If the authenticator is used the data field
 is zero-padded to a 32-bit boundary, but the padding bits are not
 considered part of the data field and are not included in the field
 count.

Haberman Expires 19 August 2022 [Page 3]

Internet-Draft NTP Control Messages February 2022

 IP hosts are not required to reassemble datagrams over a certain size
 (576 octets for IPv4 [RFC0791] and 1280 octets for IPv6 [RFC2460]);
 however, some commands or responses may involve more data than will
 fit into a single datagram. Accordingly, a simple reassembly feature
 is included in which each octet of the message data is numbered
 starting with zero. As each fragment is transmitted the number of
 its first octet is inserted in the offset field and the number of
 octets is inserted in the count field. The more-data (M) bit is set
 in all fragments except the last.

 Most control functions involve sending a command and receiving a
 response, perhaps involving several fragments. The sender chooses a
 distinct, nonzero sequence number and sets the status field and "R"
 and "E" bits to zero. The responder interprets the opcode and
 additional information in the data field, updates the status field,
 sets the "R" bit to one and returns the three 32-bit words of the
 header along with additional information in the data field. In case
 of invalid message format or contents the responder inserts a code in
 the status field, sets the "R" and "E" bits to one and, optionally,
 inserts a diagnostic message in the data field.

 Some commands read or write system variables (e.g., s.offset) and
 peer variables (e.g., p.stratum) for an association identified in the
 command. Others read or write variables associated with a radio
 clock or other device directly connected to a source of primary
 synchronization information. To identify which type of variable and
 association the Association ID is used. System variables are
 indicated by the identifier zero. As each association is mobilized a
 unique, nonzero identifier is created for it. These identifiers are
 used in a cyclic fashion, so that the chance of using an old
 identifier which matches a newly created association is remote. A
 management entity can request a list of current identifiers and
 subsequently use them to read and write variables for each
 association. An attempt to use an expired identifier results in an
 exception response, following which the list can be requested again.

 Some exception events, such as when a peer becomes reachable or
 unreachable, occur spontaneously and are not necessarily associated
 with a command. An implementation may elect to save the event
 information for later retrieval or to send an asynchronous response
 (called a trap) or both. In case of a trap the IP address and port
 number is determined by a previous command and the sequence field is
 set as described below. Current status and summary information for
 the latest exception event is returned in all normal responses. Bits
 in the status field indicate whether an exception has occurred since
 the last response and whether more than one exception has occurred.

Haberman Expires 19 August 2022 [Page 4]

Internet-Draft NTP Control Messages February 2022

 Commands need not necessarily be sent by an NTP peer, so ordinary
 access-control procedures may not apply; however, the optional mask/
 match mechanism suggested in Section Section 6 elsewhere in this
 document provides the capability to control access by mode number, so
 this could be used to limit access for control messages (mode 6) to
 selected address ranges.

1.2. Remote Facility Message Overview

 The original development of the NTP daemon included a remote facility
 for monitoring and configuration. This facility used mode 7 commands
 to communicate with the NTP daemon. This document illustrates the
 mode 7 packet format only. The commands embedded in the mode 7
 messages are implementation specific and not standardized in any way.
 The mode 7 message format is described in Appendix A.

2. NTP Control Message Format

 The format of the NTP Control Message header, which immediately
 follows the UDP header, is shown in Figure 1. Following is a
 description of its fields.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |LI | VN |Mode |R|E|M| OpCode | Sequence Number |
 +-+
 | Status | Association ID |
 +-+
 | Offset | Count |
 +-+
 | |
 / Data (up to 468 bytes) /
 | |
 +-+
 | Padding (optional) |
 +-+
 | |
 / Authenticator (optional, 20 or 24 bits) /
 | |
 +-+

 Figure 1: NTP Control Message Header

 Leap Indicator (LI): This is a two-bit integer that is set to b00 for
 control message requests and responses. The Leap Indicator value
 used at this position in most NTP modes is in the System Status Word
 provided in some control message responses.

Haberman Expires 19 August 2022 [Page 5]

Internet-Draft NTP Control Messages February 2022

 Version Number (VN): This is a three-bit integer indicating a minimum
 NTP version number. NTP servers do not respond to control messages
 with an unrecognized version number. Requests may intentionally use
 a lower version number to enable interoperability with earlier
 versions of NTP. Responses carry the same version as the
 corresponding request.

 Mode: This is a three-bit integer indicating the mode. The value 6
 indicates an NTP control message.

 Response Bit (R): Set to zero for commands, one for responses.

 Error Bit (E): Set to zero for normal response, one for error
 response.

 More Bit (M): Set to zero for last fragment, one for all others.

 Operation Code (OpCode): This is a five-bit integer specifying the
 command function. Values currently defined include the following:

 +-------+--+
 | Code | Meaning |
 +-------+--+
 | 0 | reserved |
 | 1 | read status command/response |
 | 2 | read variables command/response |
 | 3 | write variables command/response |
 | 4 | read clock variables command/response |
 | 5 | write clock variables command/response |
 | 6 | set trap address/port command/response |
 | 7 | trap response |
 | 8 | runtime configuration command/response |
 | 9 | export configuration to file command/response |
 | 10 | retrieve remote address stats command/response |
 | 11 | retrieve ordered list command/response |
 | 12 | request client-specific nonce command/response |
 | 13-30 | reserved |
 | 31 | unset trap address/port command/response |
 +-------+--+

 Sequence Number: This is a 16-bit integer indicating the sequence
 number of the command or response. Each request uses a different
 sequence number. Each response carries the same sequence number as
 its corresponding request. For asynchronous trap responses, the
 responder increments the sequence number by one for each response,
 allowing trap receivers to detect missing trap responses. The
 sequence number of each fragment of a multiple-datagram response
 carries the same sequence number, copied from the request.

Haberman Expires 19 August 2022 [Page 6]

Internet-Draft NTP Control Messages February 2022

 Status: This is a 16-bit code indicating the current status of the
 system, peer or clock, with values coded as described in following
 sections.

 Association ID: This is a 16-bit unsigned integer identifying a valid
 association, or zero for the system clock.

 Offset: This is a 16-bit unsigned integer indicating the offset, in
 octets, of the first octet in the data area. The offset is set to
 zero in requests. Responses spanning multiple datagrams use a
 positive offset in all but the first datagram.

 Count: This is a 16-bit unsigned integer indicating the length of the
 data field, in octets.

 Data: This contains the message data for the command or response.
 The maximum number of data octets is 468.

 Padding (optional): Contains zero to three octets with value zero, as
 needed to ensure the overall control message size is a multiple of 4
 octets.

 Authenticator (optional): When the NTP authentication mechanism is
 implemented, this contains the authenticator information defined in
 Appendix C of [RFC1305].

3. Status Words

 Status words indicate the present status of the system, associations
 and clock. They are designed to be interpreted by network-monitoring
 programs and are in one of four 16-bit formats shown in Figure 2 and
 described in this section. System and peer status words are
 associated with responses for all commands except the read clock
 variables, write clock variables and set trap address/port commands.
 The association identifier zero specifies the system status word,
 while a nonzero identifier specifies a particular peer association.
 The status word returned in response to read clock variables and
 write clock variables commands indicates the state of the clock
 hardware and decoding software. A special error status word is used
 to report malformed command fields or invalid values.

Haberman Expires 19 August 2022 [Page 7]

Internet-Draft NTP Control Messages February 2022

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | LI| Clock Src | Count | Code |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 System Status Word

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Status | SEL | Count | Code |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Peer Status Word

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Clock Status | Code |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Radio Status Word

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Error Code | Reserved |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Error Status Word

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Reserved | Count | Code |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Clock Status Word

 Figure 2: Status Word Formats

3.1. System Status Word

 The system status word appears in the status field of the response to
 a read status or read variables command with a zero association
 identifier. The format of the system status word is as follows:

 Leap Indicator (LI): This is a two-bit code warning of an impending
 leap second to be inserted/deleted in the last minute of the current
 day, with bit 0 and bit 1, respectively, coded as follows:

 +------+--+
 | LI | Meaning |
 +------+--+
00	no warning
01	insert second after 23:59:59 of the current day
10	delete second 23:59:59 of the current day
11	unsynchronized
 +------+--+

Haberman Expires 19 August 2022 [Page 8]

Internet-Draft NTP Control Messages February 2022

 Clock Source (Clock Src): This is a six-bit integer indicating the
 current synchronization source, with values coded as follows:

 +-------+---+
 | Code | Meaning |
 +-------+---+
0	unspecified or unknown
1	Calibrated atomic clock (e.g., PPS, HP 5061)
2	VLF (band 4) or LF (band 5) radio (e.g., OMEGA,, WWVB)
3	HF (band 7) radio (e.g., CHU, MSF, WWV/H)
4	UHF (band 9) satellite (e.g., GOES, GPS)
5	local net (e.g., DCN, TSP, DTS)
6	UDP/NTP
7	UDP/TIME
8	eyeball-and-wristwatch
9	telephone modem (e.g., NIST)
10-63	reserved
 +-------+---+

 System Event Counter (Count): This is a four-bit integer indicating
 the number of system events occurring since the last time the System
 Event Code changed. Upon reaching 15, subsequent events with the
 same code are not counted.

 System Event Code (Code): This is a four-bit integer identifying the
 latest system exception event, with new values overwriting previous
 values, and coded as follows:

Haberman Expires 19 August 2022 [Page 9]

Internet-Draft NTP Control Messages February 2022

 +------+---+
 | Code | Meaning |
 +------+---+
 | 0 | unspecified |
 | 1 | frequency correction (drift) file not available |
 | 2 | frequency correction started (frequency stepped) |
 | 3 | spike detected and ignored, starting stepout timer |
 | 4 | frequency training started |
 | 5 | clock synchronized |
 | 6 | system restart |
 | 7 | panic stop (required step greater than panic threshold) |
 | 8 | no system peer |
 | 9 | leap second insertion/deletion armed for the |
 | | of the current month |
 | 10 | leap second disarmed |
 | 11 | leap second inserted or deleted |
 | 12 | clock stepped (stepout timer expired) |
 | 13 | kernel loop discipline status changed |
 | 14 | leapseconds table loaded from file |
 | 15 | leapseconds table outdated, updated file needed |
 +------+---+

3.2. Peer Status Word

 A peer status word is returned in the status field of a response to a
 read status, read variables or write variables command and appears
 also in the list of association identifiers and status words returned
 by a read status command with a zero association identifier. The
 format of a peer status word is as follows:

 Peer Status (Status): This is a five-bit code indicating the status
 of the peer determined by the packet procedure, with bits assigned as
 follows:

 +-------------+---+
 | Peer Status | Meaning |
 | bit | |
 +-------------+---+
 | 0 | configured (peer.config) |
 | 1 | authentication enabled (peer.authenable) |
 | 2 | authentication okay (peer.authentic) |
 | 3 | reachability okay (peer.reach != 0) |
 | 4 | broadcast association |
 +-------------+---+

 Peer Selection (SEL): This is a three-bit integer indicating the
 status of the peer determined by the clock-selection procedure, with
 values coded as follows:

Haberman Expires 19 August 2022 [Page 10]

Internet-Draft NTP Control Messages February 2022

 +-----+---+
 | Sel | Meaning |
 +-----+---+
0	rejected
1	discarded by intersection algorithm
2	discarded by table overflow (not currently used)
3	discarded by the cluster algorithm
4	included by the combine algorithm
5	backup source (with more than sys.maxclock survivors)
6	system peer (synchronization source)
7	PPS (pulse per second) peer
 +-----+---+

 Peer Event Counter (Count): This is a four-bit integer indicating the
 number of peer exception events that occurred since the last time the
 peer event code changed. Upon reaching 15, subsequent events with
 the same code are not counted.

 Peer Event Code (Code): This is a four-bit integer identifying the
 latest peer exception event, with new values overwriting previous
 values, and coded as follows:

 +-------+--+
 | Peer | |
 | Event | Meaning |
 | Code | |
 +-------+--+
 | 0 | unspecified |
 | 1 | association mobilized |
 | 2 | association demobilized |
 | 3 | peer unreachable (peer.reach was nonzero now zero) |
 | 4 | peer reachable (peer.reach was zero now nonzero) |
 | 5 | association restarted or timed out |
 | 6 | no reply (only used with one-shot clock set command) |
 | 7 | peer rate limit exceeded (kiss code RATE received) |
 | 8 | access denied (kiss code DENY received) |
 | 9 | leap second insertion/deletion at month’s end armed |
 | | by peer vote |
 | 10 | became system peer (sys.peer) |
 | 11 | reference clock event (see clock status word) |
 | 12 | authentication failed |
 | 13 | popcorn spike suppressed by peer clock filter register |
 | 14 | entering interleaved mode |
 | 15 | recovered from interleave error |
 +-------+--+

Haberman Expires 19 August 2022 [Page 11]

Internet-Draft NTP Control Messages February 2022

3.3. Clock Status Word

 There are two ways a reference clock can be attached to a NTP service
 host, as a dedicated device managed by the operating system and as a
 synthetic peer managed by NTP. As in the read status command, the
 association identifier is used to identify which one, zero for the
 system clock and nonzero for a peer clock. Only one system clock is
 supported by the protocol, although many peer clocks can be
 supported. A system or peer clock status word appears in the status
 field of the response to a read clock variables or write clock
 variables command. This word can be considered an extension of the
 system status word or the peer status word as appropriate. The
 format of the clock status word is as follows:

 Reserved: An eight-bit integer that is ignored by requesters and
 zeroed by responders.

 Count: This is a four-bit integer indicating the number of clock
 events that occurred since the last time the clock event code
 changed. Upon reaching 15, subsequent events with the same code are
 not counted.

 Clock Code (Code): This is a four-bit integer indicating the current
 clock status, with values coded as follows:

 +--------------+--+
 | Clock Status | Meaning |
 +--------------+--+
 | 0 | clock operating within nominals |
 | 1 | reply timeout |
 | 2 | bad reply format |
 | 3 | hardware or software fault |
 | 4 | propagation failure |
 | 5 | bad date format or value |
 | 6 | bad time format or value |
 | 7-15 | reserved |
 +--------------+--+

3.4. Error Status Word

 An error status word is returned in the status field of an error
 response as the result of invalid message format or contents. Its
 presence is indicated when the E (error) bit is set along with the
 response (R) bit in the response. It consists of an eight-bit
 integer coded as follows:

Haberman Expires 19 August 2022 [Page 12]

Internet-Draft NTP Control Messages February 2022

 +--------------+--+
 | Error Status | Meaning |
 +--------------+--+
 | 0 | unspecified |
 | 1 | authentication failure |
 | 2 | invalid message length or format |
 | 3 | invalid opcode |
 | 4 | unknown association identifier |
 | 5 | unknown variable name |
 | 6 | invalid variable value |
 | 7 | administratively prohibited |
 | 8-255 | reserved |
 +--------------+--+

4. Commands

 Commands consist of the header and optional data field shown in
 Figure 1. When present, the data field contains a list of
 identifiers or assignments in the form
 <<identifier>>[=<<value>>],<<identifier>>[=<<value>>],... where
 <<identifier>> is the ASCII name of a system or peer variable such as
 the ones specified in RFC 5905 and <<value>> is expressed as a
 decimal, hexadecimal or string constant in the syntax of the C
 programming language. Where no ambiguity exists, the "sys." or
 "peer." prefixes can be suppressed. Whitespace (ASCII nonprinting
 format effectors) can be added to improve readability for simple
 monitoring programs that do not reformat the data field. Internet
 addresses are represented as follows: IPv4 addresses are written in
 the form [n.n.n.n], where n is in decimal notation and the brackets
 are optional; IPv6 addresses are formulated based on the guidelines
 defined in [RFC5952]. Timestamps, including reference, originate,
 receive and transmit values, as well as the logical clock, are
 represented in units of seconds and fractions, preferably in
 hexadecimal notation. Delay, offset, dispersion and distance values
 are represented in units of milliseconds and fractions, preferably in
 decimal notation. All other values are represented as-is, preferably
 in decimal notation.

 Implementations may define variables other than those described in
 RFC 5905. Called extramural variables, these are distinguished by
 the inclusion of some character type other than alphanumeric or "."
 in the name. For those commands that return a list of assignments in
 the response data field, if the command data field is empty, it is
 expected that all available variables defined in RFC 5905 will be
 included in the response. For the read commands, if the command data
 field is nonempty, an implementation may choose to process this field
 to individually select which variables are to be returned.

Haberman Expires 19 August 2022 [Page 13]

Internet-Draft NTP Control Messages February 2022

 Commands are interpreted as follows:

 Read Status (1): The command data field is empty or contains a list
 of identifiers separated by commas. The command operates in two ways
 depending on the value of the association identifier. If this
 identifier is nonzero, the response includes the peer identifier and
 status word. Optionally, the response data field may contain other
 information, such as described in the Read Variables command. If the
 association identifier is zero, the response includes the system
 identifier (0) and status word, while the data field contains a list
 of binary-coded pairs <<association identifier>> <<status word>>, one
 for each currently defined association.

 Read Variables (2): The command data field is empty or contains a
 list of identifiers separated by commas. If the association
 identifier is nonzero, the response includes the requested peer
 identifier and status word, while the data field contains a list of
 peer variables and values as described above. If the association
 identifier is zero, the data field contains a list of system
 variables. If a peer has been selected as the synchronization
 source, the response includes the peer identifier and status word;
 otherwise, the response includes the system identifier (0) and status
 word.

 Write Variables (3): The command data field contains a list of
 assignments as described above. The variables are updated as
 indicated. The response is as described for the Read Variables
 command.

 Read Clock Variables (4): The command data field is empty or contains
 a list of identifiers separated by commas. The association
 identifier selects the system clock variables or peer clock variables
 in the same way as in the Read Variables command. The response
 includes the requested clock identifier and status word and the data
 field contains a list of clock variables and values, including the
 last timecode message received from the clock.

 Write Clock Variables (5): The command data field contains a list of
 assignments as described above. The clock variables are updated as
 indicated. The response is as described for the Read Clock Variables
 command.

 Set Trap Address/Port (6): The command association identifier, status
 and data fields are ignored. The address and port number for
 subsequent trap messages are taken from the source address and port
 of the control message itself. The initial trap counter for trap
 response messages is taken from the sequence field of the command.
 The response association identifier, status and data fields are not

Haberman Expires 19 August 2022 [Page 14]

Internet-Draft NTP Control Messages February 2022

 significant. Implementations should include sanity timeouts which
 prevent trap transmissions if the monitoring program does not renew
 this information after a lengthy interval.

 Trap Response (7): This message is sent when a system, peer or clock
 exception event occurs. The opcode field is 7 and the R bit is set.
 The trap counter is incremented by one for each trap sent and the
 sequence field set to that value. The trap message is sent using the
 IP address and port fields established by the set trap address/port
 command. If a system trap the association identifier field is set to
 zero and the status field contains the system status word. If a peer
 trap the association identifier field is set to that peer and the
 status field contains the peer status word. Optional ASCII-coded
 information can be included in the data field.

 Configure (8): The command data is parsed and applied as if supplied
 in the daemon configuration file.

 Save Configuration (9): Write a snapshot of the current configuration
 to the file name supplied as the command data. Further, the command
 is refused unless a directory in which to store the resulting files
 has been explicitly configured by the operator.

 Read Most Recently Used (MRU) list (10): Retrieves records of
 recently seen remote addresses and associated statistics. This
 command supports all of the state variables defined in Section 9 of
 [RFC5905]. Command data consists of name=value pairs controlling the
 selection of records, as well as a requestor-specific nonce
 previously retrieved using this command or opcode 12, Request Nonce.
 The response consists of name=value pairs where some names can appear
 multiple times using a dot followed by a zero-based index to
 distinguish them, and to associate elements of the same record with
 the same index. A new nonce is provided with each successful
 response.

 Read ordered list (11): Retrieves a list ordered by IP address (IPv4
 information precedes IPv6 information). If the command data is empty
 or the seven characters "ifstats", the associated statistics, status
 and counters for each local address are returned. If the command
 data is the characters "addr_restrictions" then the set of IPv4
 remote address restrictions followed by the set of IPv6 remote
 address restrictions (access control lists) are returned. Other
 command data returns error code 5 (unknown variable name). Similar
 to Read MRU, response information uses zero-based indexes as part of
 the variable name preceding the equals sign and value, where each
 index relates information for a single address or network. This
 opcode requires authentication.

Haberman Expires 19 August 2022 [Page 15]

Internet-Draft NTP Control Messages February 2022

 Request Nonce (12): Retrieves a 96-bit nonce specific to the
 requesting remote address, which is valid for a limited period.
 Command data is not used in the request. The nonce consists of a
 64-bit NTP timestamp and 32 bits of hash derived from that timestamp,
 the remote address, and salt known only to the server which varies
 between daemon runs. Inclusion of the nonce by a management agent
 demonstrates to the server that the agent can receive datagrams sent
 to the source address of the request, making source address
 "spoofing" more difficult in a similar way as TCP’s three-way
 handshake.

 Unset Trap (31): Removes the requesting remote address and port from
 the list of trap receivers. Command data is not used in the request.
 If the address and port are not in the list of trap receivers, the
 error code is 4, bad association.

5. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

6. Security Considerations

 A number of security vulnerabilities have been identified with these
 control messages.

 NTP’s control query interface allows reading and writing of system,
 peer, and clock variables remotely from arbitrary IP addresses using
 commands mentioned in Section 4. Traditionally, overwriting these
 variables, but not reading them, requires authentication by default.
 However, this document argues that an NTP host must authenticate all
 control queries and not just ones that overwrite these variables.
 Alternatively, the host can use an access control list to explicitly
 list IP addresses that are allowed to control query the clients.
 These access controls are required for the following reasons:

 * NTP as a Distributed Denial-of-Service (DDoS) vector. NTP timing
 query and response packets (modes 1-2, 3-4, 5) are usually short
 in size. However, some NTP control queries generate a very long
 packet in response to a short query. As such, there is a history
 of use of NTP’s control queries, which exhibit such behavior, to
 perform DDoS attacks. These off-path attacks exploit the large
 size of NTP control queries to cause UDP-based amplification
 attacks (e.g., mode 7 monlist command generates a very long packet
 in response to a small query [CVE-DOS]). These attacks only use
 NTP as a vector for DoS attacks on other protocols, but do not

Haberman Expires 19 August 2022 [Page 16]

Internet-Draft NTP Control Messages February 2022

 affect the time service on the NTP host itself. To limit the
 sources of these malicious commands, NTP server operators are
 recommended to deploy ingress filtering [RFC3704].

 * Time-shifting attacks through information leakage/overwriting.
 NTP hosts save important system and peer state variables. An off-
 path attacker who can read these variables remotely can leverage
 the information leaked by these control queries to perform time-
 shifting and DoS attacks on NTP clients. These attacks do affect
 time synchronization on the NTP hosts. For instance,

 - In the client/server mode, the client stores its local time
 when it sends the query to the server in its xmt peer variable.
 This variable is used to perform TEST2 to non-cryptographically
 authenticate the server, i.e., if the origin timestamp field in
 the corresponding server response packet matches the xmt peer
 variable, then the client accepts the packet. An off-path
 attacker, with the ability to read this variable can easily
 spoof server response packets for the client, which will pass
 TEST2, and can deny service or shift time on the NTP client.
 The specific attack is described in [CVE-SPOOF].

 - The client also stores its local time when the server response
 is received in its rec peer variable. This variable is used
 for authentication in interleaved-pivot mode. An off-path
 attacker with the ability to read this state variable can
 easily shift time on the client by passing this test. This
 attack is described in [CVE-SHIFT].

 * Fast-Scanning. NTP mode 6 control messages are usually small UDP
 packets. Fast-scanning tools like ZMap can be used to spray the
 entire (potentially reachable) Internet with these messages within
 hours to identify vulnerable hosts. To make things worse, these
 attacks can be extremely low-rate, only requiring a control query
 for reconnaissance and a spoofed response to shift time on
 vulnerable clients.

 * The mode 6 and 7 messages are vulnerable to replay attacks
 [CVE-Replay]. If an attacker observes mode 6/7 packets that
 modify the configuration of the server in any way, the attacker
 can apply the same change at any time later simply by sending the
 packets to the server again. The use of the nonce (Request Nonce
 command) provides limited protection against replay attacks.

 NTP best practices recommend configuring NTP with the no-query
 parameter. The no-query parameter blocks access to all remote
 control queries. However, sometimes the hosts do not want to block
 all queries and want to give access for certain control queries

Haberman Expires 19 August 2022 [Page 17]

Internet-Draft NTP Control Messages February 2022

 remotely. This could be for the purpose of remote management and
 configuration of the hosts in certain scenarios. Such hosts tend to
 use firewalls or other middleboxes to blacklist certain queries
 within the network.

 Significantly fewer hosts respond to mode 7 monlist queries as
 compared to other control queries because it is a well-known and
 exploited control query. These queries are likely blocked using
 blacklists on firewalls and middleboxes rather than the no-query
 option on NTP hosts. The remaining control queries that can be
 exploited likely remain out of the blacklist because they are
 undocumented in the current NTP specification [RFC5905].

 This document describes all of the mode 6 control queries allowed by
 NTP and can help administrators make informed decisions on security
 measures to protect NTP devices from harmful queries and likely make
 those systems less vulnerable. The use of the legacy mode 6
 interface is NOT RECOMMENDED.Regardless of which mode 6 commands an
 administrator may elect to allow, remote access to this facility
 needs to be protected from unauthorized access (e.g., strict ACLs).
 Additionally, the legacy interface for mode 6 commands SHOULD NOT be
 utilized in new deployments or implementation of NTP.

7. Contributors

 Dr. David Mills specified the vast majority of the mode 6 commands
 during the development of RFC 1305 [RFC1305] and deserves the credit
 for their existence and use.

8. Acknowledgements

 Tim Plunkett created the original version of this document. Aanchal
 Malhotra provided the initial version of the Security Considerations
 section.

 Karen O’Donoghue, David Hart, Harlan Stenn, and Philip Chimento
 deserve credit for portions of this document due to their earlier
 efforts to document these commands.

 Miroshav Lichvar, Ulrich Windl, Dieter Sibold, J Ignacio Alvarez-
 Hamelin, and Alex Campbell provided valuable comments on various
 versions of this document.

9. References

9.1. Normative References

Haberman Expires 19 August 2022 [Page 18]

Internet-Draft NTP Control Messages February 2022

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation and Analysis", RFC 1305,
 DOI 10.17487/RFC1305, March 1992,
 <https://www.rfc-editor.org/info/rfc1305>.

 [RFC3704] Baker, F. and P. Savola, "Ingress Filtering for Multihomed
 Networks", BCP 84, RFC 3704, DOI 10.17487/RFC3704, March
 2004, <https://www.rfc-editor.org/info/rfc3704>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <https://www.rfc-editor.org/info/rfc5952>.

9.2. Informative References

 [CVE-DOS] NIST National Vulnerability Database, "CVE-2013-5211,
 https://nvd.nist.gov/vuln/detail/CVE-2013-5211", 2 January
 2014.

 [CVE-Replay]
 NIST National Vulnerability Database, "CVE-2015-8140,
 https://nvd.nist.gov/vuln/detail/CVE-2015-8140", 30
 January 2015.

 [CVE-SHIFT]
 NIST National Vulnerability Database, "CVE-2016-1548,
 https://nvd.nist.gov/vuln/detail/CVE-2016-1548", 6 January
 2017.

 [CVE-SPOOF]
 NIST National Vulnerability Database, "CVE-2015-8139,
 https://nvd.nist.gov/vuln/detail/CVE-2015-8139", 30
 January 2017.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <https://www.rfc-editor.org/info/rfc2460>.

Haberman Expires 19 August 2022 [Page 19]

Internet-Draft NTP Control Messages February 2022

Appendix A. NTP Remote Facility Message Format

 The format of the NTP Remote Facility Message header, which
 immediately follows the UDP header, is shown in Figure 3. Following
 is a description of its fields. Bit positions marked as zero are
 reserved and should always be transmitted as zero.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R|M| VN |Mode |A| Sequence | Implementation| Req Code |
 +-+
 | Err | Count | MBZ | Size |
 +-+
 | |
 / Data (up to 500 bytes) /
 | |
 +-+
 | Encryption KeyID (when A bit set) |
 +-+
 | |
 / Message Authentication Code (when A bit set) /
 | |
 +-+

 Figure 3: NTP Remote Facility Message Header

 Response Bit (R) : Set to 0 if the packet is a request. Set to 1 if
 the packet is a response.

 More Bit (M) : Set to 0 if this is the last packet in a response,
 otherwise set to 1 in responses requiring more than one packet.

 Version Number (VN) : Set to the version number of the NTP daemon.

 Mode : Set to 7 for Remote Facility messages.

 Authenticated Bit (A) : If set to 1, this packet contains
 authentication information.

 Sequence : For a multi-packet response, this field contains the
 sequence number of this packet. Packets in a multi-packet response
 are numbered starting with 0. The More Bit is set to 1 for all
 packets but the last.

Haberman Expires 19 August 2022 [Page 20]

Internet-Draft NTP Control Messages February 2022

 Implementation : The version number of the implementation that
 defined the request code used in this message. An implementation
 number of 0 is used for a Request Code supported by all versions of
 the NTP daemon. The value 255 is reserved for future extensions.

 Request Code (Req Code) : An implementation-specific code which
 specifies the operation being requested. A Request Code definition
 includes the format and semantics of the data included in the packet.

 Error (Err) : Set to 0 for a request. For a response, this field
 contains an error code relating to the request. If the Error is non-
 zero, the operation requested wasn’t performed.

 0 - no error

 1 - incompatible implementation number

 2 - unimplemented request code

 3 - format error

 4 - no data available

 7 - authentication failure

 Count : The number of data items in the packet. Range is 0 to 500.

 Must Be Zero (MBZ) : A reserved field set to 0 in requests and
 responses.

 Size : The size of each data item in the packet. Range is 0 to 500.

 Data : A variable-sized field containing request/response data. For
 requests and responses, the size in octets must be greater than or
 equal to the product of the number of data items (Count) and the size
 of a data item (Size). For requests, the data area is exactly 40
 octets in length. For responses, the data area will range from 0 to
 500 octets, inclusive.

 Encryption KeyID : A 32-bit unsigned integer used to designate the
 key used for the Message Authentication Code. This field is included
 only when the A bit is set to 1.

 Message Authentication Code : An optional Message Authentication Code
 defined by the version of the NTP daemon indicated in the
 Implementation field. This field is included only when the A bit is
 set to 1.

Haberman Expires 19 August 2022 [Page 21]

Internet-Draft NTP Control Messages February 2022

Author’s Address

 Brian Haberman (editor)
 JHU

 Email: brian@innovationslab.net

Haberman Expires 19 August 2022 [Page 22]

NTP Working Group T. Mizrahi
Internet-Draft Huawei Smart Platforms iLab
Intended status: Informational J. Fabini
Expires: September 12, 2020 TU Wien
 A. Morton
 AT&T Labs
 March 11, 2020

 Guidelines for Defining Packet Timestamps
 draft-ietf-ntp-packet-timestamps-09

Abstract

 Various network protocols make use of binary-encoded timestamps that
 are incorporated in the protocol packet format, referred to as packet
 timestamps for short. This document specifies guidelines for
 defining packet timestamp formats in networking protocols at various
 layers. It also presents three recommended timestamp formats. The
 target audience of this document includes network protocol designers.
 It is expected that a new network protocol that requires a packet
 timestamp will, in most cases, use one of the recommended timestamp
 formats. If none of the recommended formats fits the protocol
 requirements, the new protocol specification should specify the
 format of the packet timestamp according to the guidelines in this
 document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2020.

Mizrahi, et al. Expires September 12, 2020 [Page 1]

Internet-Draft Packet Timestamps March 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Background . 3
 1.2. Scope of this Document 3
 1.3. How to Use This Document 3
 2. Terminology . 4
 2.1. Requirements Language 4
 2.2. Abbreviations . 4
 2.3. Terms used in this Document 4
 3. Packet Timestamp Specification Template 5
 4. Recommended Timestamp Formats 6
 4.1. Using a Recommended Timestamp Format 7
 4.2. NTP Timestamp Formats 7
 4.2.1. NTP 64-bit Timestamp Format 7
 4.2.2. NTP 32-bit Timestamp Format 9
 4.3. The PTP Truncated Timestamp Format 10
 5. Synchronization Aspects 11
 6. Timestamp Use Cases . 12
 6.1. Example 1 . 13
 6.2. Example 2 . 14
 7. Packet Timestamp Control Field 14
 7.1. High-level Control Field Requirements 15
 8. IANA Considerations . 16
 9. Security Considerations 16
 10. Acknowledgments . 17
 11. References . 17
 11.1. Normative References 17
 11.2. Informative References 17
 Authors’ Addresses . 19

Mizrahi, et al. Expires September 12, 2020 [Page 2]

Internet-Draft Packet Timestamps March 2020

1. Introduction

1.1. Background

 Timestamps are widely used in network protocols for various purposes:
 timestamps are used for logging or reporting the time of an event,
 delay measurement and clock synchronization protocols both make use
 of timestamped messages, and in security protocols a timestamp is
 often used as part of a value that is unlikely to repeat (nonce).

 Timestamps are represented in the RFC series in one of two forms:
 text-based timestamps, and packet timestamps. Text-based timestamps
 [RFC3339] are represented as user-friendly strings, and are widely
 used in the RFC series, for example in information objects and data
 models, e.g., [RFC5646], [RFC6991], and [RFC7493]. Packet
 timestamps, on the other hand, are represented by a compact binary
 field that has a fixed size, and are not intended to have a human-
 friendly format. Packet timestamps are also very common in the RFC
 series, and are used for example for measuring delay and for
 synchronizing clocks, e.g., [RFC5905], [RFC4656], and [RFC7323].

1.2. Scope of this Document

 This document presents guidelines for defining a packet timestamp
 format in network protocols. Three recommended timestamp formats are
 presented. It is expected that a new network protocol that requires
 a packet timestamp will, in most cases, use one of these recommended
 timestamp formats. In some cases a network protocol may use more
 than one of the recommended timestamp formats. However, if none of
 the recommended formats fits the protocol requirements, the new
 protocol specification should specify the format of the packet
 timestamp according to the guidelines in this document.

 The rationale behind defining a relatively small set of recommended
 formats is that it enables significant reuse; network protocols can
 typically reuse the timestamp format of the Network Time Protocol
 (NTP) or the Precision Time Protocol (PTP), allowing a
 straightforward integration with an NTP or a PTP-based timer.
 Moreover, since accurate timestamping mechanisms are often
 implemented in hardware, a new network protocol that reuses an
 existing timestamp format can be quickly deployed using existing
 hardware timestamping capabilities.

1.3. How to Use This Document

 This document is intended as a reference for network protocol
 designers. When defining a network protocol that uses a packet
 timestamp, the recommended timestamp formats should be considered

Mizrahi, et al. Expires September 12, 2020 [Page 3]

Internet-Draft Packet Timestamps March 2020

 first (Section 4). If one of these formats is used, it should be
 referenced along the lines of the examples in Section 6.1 and
 Section 6.2. If none of the recommended formats fits the required
 functionality, then a new timestamp format should be defined using
 the template of Section 3.

2. Terminology

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.2. Abbreviations

 NTP Network Time Protocol [RFC5905]

 PTP Precision Time Protocol [IEEE1588]

 TAI International Atomic Time

 UTC Coordinated Universal Time

2.3. Terms used in this Document

 Timestamp: A value that represents a point in time,
 corresponding to an event that occurred or is
 scheduled to occur.

 Timestamp error: The difference between the timestamp value and
 the value of a reference clock at the time of
 the event that the timestamp was intended to
 indicate.

 Timestamp format: The specification of a timestamp, which is
 represented by a set of attributes that
 unambiguously define the syntax and semantics
 of a timestamp.

 Timestamp accuracy: The mean over an ensemble of measurements of
 the timestamp error.

 Timestamp precision: The variation over an ensemble of measurements
 of the timestamp error.

Mizrahi, et al. Expires September 12, 2020 [Page 4]

Internet-Draft Packet Timestamps March 2020

 Timestamp resolution: The minimal time unit used for representing
 the timestamp.

3. Packet Timestamp Specification Template

 This document recommends to use the timestamp formats defined in
 Section 4. In cases where these timestamp formats do not satisfy the
 protocol requirements, the timestamp specification should clearly
 state the reasons for defining a new format. Moreover, it is
 recommended to derive the new timestamp format from an existing
 timestamp format, either a timestamp format from this document, or
 any other previously defined timestamp format.

 The timestamp specification must unambiguously define the syntax and
 the semantics of the timestamp. The current section defines the
 minimum set of attributes, but it should be noted that in some cases
 additional attributes or aspects will need to be defined in the
 timestamp specification.

 This section defines a template for specifying packet timestamps. A
 timestamp format specification MUST include at least the following
 aspects:

 Timestamp syntax:

 - Size: The number of bits (or octets) used to represent the
 packet timestamp field. If the timestamp is comprised of more
 than one field, the size of each field is specified. Network
 order (big endian) is assumed by default; if this is not the case
 then this section explicitly specifies the endianity.

 Timestamp semantics:

 - Units: The units used to represent the timestamp. If the
 timestamp is comprised of more than one field, the units of each
 field are specified. If a field is limited to a specific range of
 values, this section specifies the permitted range of values.

 - Resolution: The timestamp resolution; the resolution is equal to
 the timestamp field unit. If the timestamp consists of two or
 more fields using different time units, then the resolution is the
 smallest time unit.

 - Wraparound: The wraparound period of the timestamp; any further
 wraparound-related considerations should be described here.

 - Epoch: The origin of the timescale used for the timestamp; the
 moment in time used as a reference for the timestamp value. For

Mizrahi, et al. Expires September 12, 2020 [Page 5]

Internet-Draft Packet Timestamps March 2020

 example, the epoch may be based on a standard time scale, such as
 UTC. Another example is a relative timestamp, in which the epoch
 could be the time at which the device using the timestamp was
 powered up, and is not affected by leap seconds (see the next
 attribute).

 - Leap seconds: This subsection specifies whether the timestamp is
 affected by leap seconds. If the timestamp is affected by leap
 seconds, then it represents the time elapsed since the epoch minus
 the number of leap seconds that have occurred since the epoch.

 Synchronization aspects:

 The specification of a network protocol that makes use of a packet
 timestamp is expected to include the synchronization aspects of
 using the timestamp. While the synchronization aspects are not
 strictly part of the timestamp format specification, these aspects
 provide the necessary context for using the timestamp within the
 scope of the protocol. In some cases timestamps are used without
 synchronization, e.g., a timestamp that indicates the number of
 seconds since power up. In such cases the Synchronization Aspects
 section will specify that the timestamp does not correspond to a
 synchronized time reference, and may discuss how this affects the
 usage of the timestamp. Further details about synchronization
 aspects are discussed in Section 5.

4. Recommended Timestamp Formats

 This document defines a set of recommended timestamp formats.
 Clearly, different network protocols may have different requirements
 and constraints, and consequently may use different timestamp
 formats. The choice of the specific timestamp format for a given
 protocol may depend on a various factors. A few examples of factors
 that may affect the choice of the timestamp format:

 o Timestamp size: while some network protocols use a large timestamp
 field, in some cases there may be constraints with respect to the
 timestamp size, affecting the choice of the timestamp format.

 o Resolution: the time resolution is another factor that may
 directly affect the selected timestamp format. A potentially
 important factor in this context is extensibility; it may be
 desirable to allow a timestamp format to be extensible to a higher
 resolution by extending the field. For example, the resolution of
 the NTP 32-bit timestamp format can be improved by extending it to
 the NTP 64-bit timestamp format in a straightforward way.

Mizrahi, et al. Expires September 12, 2020 [Page 6]

Internet-Draft Packet Timestamps March 2020

 o Wraparound period: the length of the time interval in which the
 timestamp is unique may also be an important factor in choosing
 the timestamp format. Along with the timestamp resolution, these
 two factors determine the required number of bits in the
 timestamp.

 o Common format for multiple protocols: if there are two or more
 network protocols that use timestamps and are often used together
 in typical systems, using a common timestamp format should be
 preferred if possible. For example, if the network protocol that
 is being defined typically runs on a PC, then an NTP-based
 timestamp format may allow easier integration with an NTP-
 synchronized timer. In contrast, a protocol that is typically
 deployed on a hardware-based platform, may make better use of a
 PTP-based timestamp, allowing more efficient integration with a
 PTP-synchronized timer.

4.1. Using a Recommended Timestamp Format

 A specification that uses one of the recommended timestamp formats
 should specify explicitly that this is a recommended timestamp
 format, and point to the relevant section in the current document.

4.2. NTP Timestamp Formats

4.2.1. NTP 64-bit Timestamp Format

 The Network Time Protocol (NTP) 64-bit timestamp format is defined in
 [RFC5905]. This timestamp format is used in several network
 protocols, including [RFC6374], [RFC4656], and [RFC5357]. Since this
 timestamp format is used in NTP, this timestamp format should be
 preferred in network protocols that are typically deployed in concert
 with NTP.

 The format is presented in this section according to the template
 defined in Section 3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Seconds |
 +-+
 | Fraction |
 +-+

 Figure 1: NTP [RFC5905] 64-bit Timestamp Format

Mizrahi, et al. Expires September 12, 2020 [Page 7]

Internet-Draft Packet Timestamps March 2020

 Timestamp field format:

 Seconds: specifies the integer portion of the number of seconds
 since the epoch.

 - Size: 32 bits.

 - Units: seconds.

 Fraction: specifies the fractional portion of the number of
 seconds since the epoch.

 - Size: 32 bits.

 - Units: the unit is 2^(-32) seconds, which is roughly equal to
 233 picoseconds.

 Epoch:

 The epoch is 1 January 1900 at 00:00 UTC.

 Note: As pointed out in [RFC5905], strictly speaking, UTC did not
 exist prior to 1 January 1972, but it is convenient to assume it
 has existed for all eternity. The current epoch implies that the
 timestamp specifies the number of seconds since 1 January 1972 at
 00:00 UTC plus 2272060800 (which is the number of seconds between
 1 January 1900 and 1 January 1972).

 Leap seconds:

 This timestamp format is affected by leap seconds. The timestamp
 represents the number of seconds elapsed since the epoch minus the
 number of leap seconds. Thus, during and possibly before and/or
 after the occurrence of a leap second, the value of the timestamp
 may temporarily be ambiguous, as further discussed in Section 5.

 Resolution:

 The resolution is 2^(-32) seconds.

 Wraparound:

 This time format wraps around every 2^32 seconds, which is roughly
 136 years. The next wraparound will occur in the year 2036.

Mizrahi, et al. Expires September 12, 2020 [Page 8]

Internet-Draft Packet Timestamps March 2020

4.2.2. NTP 32-bit Timestamp Format

 The Network Time Protocol (NTP) 32-bit timestamp format is defined in
 [RFC5905]. This timestamp format is used in
 [I-D.ietf-ippm-initial-registry] and
 [I-D.ietf-sfc-nsh-dc-allocation]. This timestamp format should be
 preferred in network protocols that are typically deployed in concert
 with NTP. The 32-bit format can be used either when space
 constraints do not allow the use of the 64-bit format, or when the
 32-bit format satisfies the resolution and wraparound requirements.

 The format is presented in this section according to the template
 defined in Section 3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Seconds | Fraction |
 +-+

 Figure 2: NTP [RFC5905] 32-bit Timestamp Format

 Timestamp field format:

 Seconds: specifies the integer portion of the number of seconds
 since the epoch.

 - Size: 16 bits.

 - Units: seconds.

 Fraction: specifies the fractional portion of the number of
 seconds since the epoch.

 - Size: 16 bits.

 - Units: the unit is 2^(-16) seconds, which is roughly equal to
 15.3 microseconds.

 Epoch:

 The epoch is 1 January 1900 at 00:00 UTC.

 Note: As pointed out in [RFC5905], strictly speaking, UTC did not
 exist prior to 1 January 1972, but it is convenient to assume it
 has existed for all eternity. The current epoch implies that the
 timestamp specifies the number of seconds since 1 January 1972 at

Mizrahi, et al. Expires September 12, 2020 [Page 9]

Internet-Draft Packet Timestamps March 2020

 00:00 UTC plus 2272060800 (which is the number of seconds between
 1 January 1900 and 1 January 1972).

 Leap seconds:

 This timestamp format is affected by leap seconds. The timestamp
 represents the number of seconds elapsed since the epoch minus the
 number of leap seconds. Thus, during and possibly after the
 occurrence of a leap second, the value of the timestamp may
 temporarily be ambiguous, as further discussed in Section 5.

 Resolution:

 The resolution is 2^(-16) seconds.

 Wraparound:

 This time format wraps around every 2^16 seconds, which is roughly
 18 hours.

4.3. The PTP Truncated Timestamp Format

 The Precision Time Protocol (PTP) [IEEE1588] uses an 80-bit timestamp
 format. The truncated timestamp format is a 64-bit field, which is
 the 64 least significant bits of the 80-bit PTP timestamp. Since
 this timestamp format is similar to the one used in PTP, this
 timestamp format should be preferred in network protocols that are
 typically deployed in PTP-capable devices.

 The PTP truncated timestamp format was defined in [IEEE1588v1] and is
 used in several protocols, such as [RFC6374], [RFC7456], [RFC8186]
 and [ITU-T-Y.1731].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Seconds |
 +-+
 | Nanoseconds |
 +-+

 Figure 3: PTP [IEEE1588] Truncated Timestamp Format

 Timestamp field format:

 Seconds: specifies the integer portion of the number of seconds
 since the epoch.

Mizrahi, et al. Expires September 12, 2020 [Page 10]

Internet-Draft Packet Timestamps March 2020

 - Size: 32 bits.

 - Units: seconds.

 Nanoseconds: specifies the fractional portion of the number of
 seconds since the epoch.

 - Size: 32 bits.

 - Units: nanoseconds. The value of this field is in the range 0
 to (10^9)-1.

 Epoch:

 The PTP [IEEE1588] epoch is 1 January 1970 00:00:00 TAI.

 Leap seconds:

 This timestamp format is not affected by leap seconds.

 Resolution:

 The resolution is 1 nanosecond.

 Wraparound:

 This time format wraps around every 2^32 seconds, which is roughly
 136 years. The next wraparound will occur in the year 2106.

5. Synchronization Aspects

 A specification that defines a new timestamp format or uses one of
 the recommended timestamp formats should include a section on
 Synchronization Aspects. Note that the recommended timestamp formats
 defined in this document (Section 4) do not include the
 synchronization aspects of these timestamp formats, but it is
 expected that specifications of network protocols that make use of
 these formats should include the synchronization aspects. Examples
 of a Synchronization Aspects section can be found in Section 6.

 The Synchronization Aspects section should specify all the
 assumptions and requirements related to synchronization. For
 example, the synchronization aspects may specify whether nodes
 populating the timestamps should be synchronized among themselves,
 and whether the timestamp is measured with respect to a central
 reference clock such as an NTP server. If time is assumed to be
 synchronized to a time standard such as UTC or TAI, it should be
 specified in this section. Further considerations may be discussed

Mizrahi, et al. Expires September 12, 2020 [Page 11]

Internet-Draft Packet Timestamps March 2020

 in this section, such as the required timestamp accuracy and
 precision.

 Another aspect that should be discussed in this section is leap
 second [RFC5905] considerations. The timestamp specification
 template (Section 3) specifies whether the timestamp is affected by
 leap seconds. It is often the case that further details about leap
 seconds will need to be defined in the Synchronization Aspects
 section. Generally speaking, a leap second is a one-second
 adjustment that is occasionally applied to UTC in order to keep it
 aligned to the solar time. A leap second may be either positive or
 negative, i.e., the clock may either be shifted one second forwards
 or backwards. All leap seconds that have occurred up to the
 publication of this document have been in the backwards direction,
 and although forward leap seconds are theoretically possible, the
 text throughout this document focuses on the common case, which is
 the backward leap second. In a timekeeping system that considers
 leap seconds, the system clock may be affected by a leap second in
 one of three possible ways:

 o The clock is turned backwards one second at the end of the leap
 second.

 o The clock is frozen during the duration of the leap second.

 o The clock is slowed down during the leap second and adjacent time
 intervals until the new time value catches up. The interval for
 this process, commonly referred to as leap smear, can range from
 several seconds to several hours before, during, and/or after the
 occurrence of the leap second.

 The way leap seconds are handled depends on the synchronization
 protocol, and is thus not specified in this document. However, if a
 timestamp format is defined with respect to a timescale that is
 affected by leap seconds, the Synchronization Aspects section should
 specify how the use of leap seconds affects the timestamp usage.

6. Timestamp Use Cases

 Packet timestamps are used in various network protocols. Typical
 applications of packet timestamps include delay measurement, clock
 synchronization, and others. The following table presents a (non-
 exhaustive) list of protocols that use packet timestamps, and the
 timestamp formats used in each of these protocols.

Mizrahi, et al. Expires September 12, 2020 [Page 12]

Internet-Draft Packet Timestamps March 2020

+----------------------+-----------------------------------+-----------+
| | Recommended formats | Other |
+----------------------+-----------+-----------+-----------+-----------+
| Protocol |NTP 64-bit |NTP 32-bit |PTP Trunc. | |
+----------------------+-----------+-----------+-----------+-----------+
| NTP [RFC5905] | + | | | |
+----------------------+-----------+-----------+-----------+-----------+
| OWAMP [RFC4656] | + | | | |
+----------------------+-----------+-----------+-----------+-----------+
| TWAMP [RFC5357] | + | | | |
| TWAMP [RFC8186] | + | | + | |
+----------------------+-----------+-----------+-----------+-----------+
| TRILL [RFC7456] | | | + | |
+----------------------+-----------+-----------+-----------+-----------+
| MPLS [RFC6374] | | | + | |
+----------------------+-----------+-----------+-----------+-----------+
| TCP [RFC7323] | | | | + |
+----------------------+-----------+-----------+-----------+-----------+
| RTP [RFC3550] | + | | | + |
+----------------------+-----------+-----------+-----------+-----------+
| IPFIX [RFC7011] | | | | + |
+----------------------+-----------+-----------+-----------+-----------+
| BinaryTime [RFC6019] | | | | + |
+----------------------+-----------+-----------+-----------+-----------+
| [I-D.ietf-ippm- | + | + | | |
| initial-registry] | | | | |
+----------------------+-----------+-----------+-----------+-----------+
| [I-D.ietf-sfc-nsh | | + | + | |
| -dc-allocation] | | | | |
+----------------------+-----------+-----------+-----------+-----------+

 Figure 4: Protocols that use Packet Timestamps

 The rest of this section presents two hypothetic examples of network
 protocol specifications that use one of the recommended timestamp
 formats. The examples include the text that specifies the
 information related to the timestamp format.

6.1. Example 1

 Timestamp:

 The timestamp format used in this specification is the NTP
 [RFC5905] 64-bit format, as specified in Section 4.2.1 of
 [I-D.ietf-ntp-packet-timestamps].

 Synchronization aspects:

Mizrahi, et al. Expires September 12, 2020 [Page 13]

Internet-Draft Packet Timestamps March 2020

 It is assumed that nodes that run this protocol are synchronized
 to UTC using a synchronization mechanism that is outside the scope
 of this document. In typical deployments this protocol will run
 on a machine that uses NTP [RFC5905] for synchronization. Thus,
 the timestamp may be derived from the NTP-synchronized clock,
 allowing the timestamp to be measured with respect to the clock of
 an NTP server. Since the NTP time format is affected by leap
 seconds, the current timestamp format is similarly affected.
 Thus, the value of a timestamp during or slightly after a leap
 second may be temporarily inaccurate.

6.2. Example 2

 Timestamp:

 The timestamp format used in this specification is the PTP
 [IEEE1588] Truncated format, as specified in Section 4.3 of
 [I-D.ietf-ntp-packet-timestamps].

 Synchronization aspects:

 It is assumed that nodes that run this protocol are synchronized
 among themselves. Nodes may be synchronized to a global reference
 time. Note that if PTP [IEEE1588] is used for synchronization,
 the timestamp may be derived from the PTP-synchronized clock,
 allowing the timestamp to be measured with respect to the clock of
 an PTP Grandmaster clock.

7. Packet Timestamp Control Field

 In some cases it is desirable to have a control field that describes
 structure, format, content, and properties of timestamps. Control
 information about the timestamp format can be conveyed in some
 protocols using a dedicated control plane protocol, or may be made
 available at the management plane, for example using a YANG data
 model. An optional control field allows some of the control
 information to be attached to the timestamp.

 An example of a packet timestamp control field is the Error Estimate
 field, defined by Section 4.1.2 in [RFC4656], which is used in OWAMP
 [RFC4656] and TWAMP [RFC5357]. The Root Dispersion and Root Delay
 fields in the NTP header [RFC5905] are two examples of fields that
 provide information about the timestamp precision. Another example
 of an auxiliary field is the Correction Field in the PTP header
 [IEEE1588]; its value is used as a correction to the timestamp, and
 may be assigned by the sender of the PTP message and updated by
 transit nodes (Transparent Clocks) in order to account for the delay
 along the path.

Mizrahi, et al. Expires September 12, 2020 [Page 14]

Internet-Draft Packet Timestamps March 2020

 This section defines high-level guidelines for defining packet
 timestamp control fields in network protocols that can benefit from
 such timestamp-related control information. The word ’requirements’
 is used in its informal context in this section.

7.1. High-level Control Field Requirements

 A control field for packet timestamps must offer an adequate feature
 set and fulfill a series of requirements to be usable and accepted.
 The following list captures the main high-level requirements for
 timestamp fields.

 1. Extensible Feature Set: protocols and applications depend on
 various timestamp characteristics. A timestamp control field
 must support a variable number of elements (components) that
 either describe or quantify timestamp-specific characteristics or
 parameters. Examples of potential elements include timestamp
 size, encoding, accuracy, leap seconds, reference clock
 identifiers, etc.

 2. Size: Essential for an efficient use of timestamp control fields
 is the trade-off between supported features and control field
 size. Protocols and applications may select the specific control
 field elements that are needed for their operation from the set
 of available elements.

 3. Composition: Applications may depend on specific control field
 elements being present in messages. The status of these elements
 may be either mandatory, conditional mandatory, or optional,
 depending on the specific application and context. A control
 field specification must support applications in conveying or
 negotiating (a) the set of control field elements along with (b)
 the status of any element (i.e., mandatory, conditional
 mandatory, or optional) by defining appropriate data structures
 and identity codes.

 4. Category: Control field elements can characterize either static
 timestamp information (like, e.g., timestamp size in bytes and
 timestamp semantics: NTP 64 bit format) or runtime timestamp
 information (like, e.g., estimated timestamp accuracy at the time
 of sampling: 20 microseconds to UTC). For efficiency reason it
 may be meaningful to support separation of these two concepts:
 while the former (static) information is typically valid
 throughout a protocol session and may be conveyed only once, at
 session establishment time, the latter (runtime) information
 augments any timestamp instance and may cause substantial
 overhead for high-traffic protocols.

Mizrahi, et al. Expires September 12, 2020 [Page 15]

Internet-Draft Packet Timestamps March 2020

 Proposals for timestamp control fields will be defined in separate
 documents and are out of scope of this document.

8. IANA Considerations

 This document includes no request to IANA.

9. Security Considerations

 A network protocol that uses a packet timestamp MUST specify the
 security considerations that result from using the timestamp. This
 section provides an overview of some of the common security
 considerations of using timestamps.

 Any metadata that is attached to control or data packets, and
 specifically packet timestamps, can facilitate network
 reconnaissance; by passively eavesdropping to timestamped packets an
 attacker can gather information about the network performance, and
 about the level of synchronization between nodes.

 In some cases timestamps could be spoofed or modified by on-path
 attackers, thus attacking the application that uses the timestamps.
 For example, if timestamps are used in a delay measurement protocol,
 an attacker can modify en route timestamps in a way that manipulates
 the measurement results. Integrity protection mechanisms, such as
 Message Authentication Codes (MAC), can mitigate such attacks. The
 specification of an integrity protection mechanism is outside the
 scope of this document, as typically integrity protection will be
 defined on a per-network-protocol basis, and not specifically for the
 timestamp field.

 Another potential threat that can have a similar impact is delay
 attacks. An attacker can maliciously delay some or all of the en
 route messages, with the same harmful implications as described in
 the previous paragraph. Mitigating delay attacks is a significant
 challenge; in contrast to spoofing and modification attacks, the
 delay attack cannot be prevented by cryptographic integrity
 protection mechanisms. In some cases delay attacks can be mitigated
 by sending the timestamped information through multiple paths,
 allowing to detect and to be resilient to an attacker that has access
 to one of the paths.

 In many cases timestamping relies on an underlying synchronization
 mechanism. Thus, any attack that compromises the synchronization
 mechanism can also compromise protocols that use timestamping.
 Attacks on time protocols are discussed in detail in [RFC7384].

Mizrahi, et al. Expires September 12, 2020 [Page 16]

Internet-Draft Packet Timestamps March 2020

10. Acknowledgments

 The authors thank Russ Housley, Yaakov Stein, Greg Mirsky, Warner
 Losh, Rodney Cummings, Miroslav Lichvar, Denis Reilly, Daniel Franke,
 Eric Vyncke, Ben Kaduk, Ian Swett, Francesca Palombini, Watson Ladd,
 and other members of the NTP working group for many helpful comments.
 The authors gratefully acknowledge Harlan Stenn and the people from
 the Network Time Foundation for sharing their thoughts and ideas.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.ietf-ippm-initial-registry]
 Morton, A., Bagnulo, M., Eardley, P., and K. D’Souza,
 "Initial Performance Metrics Registry Entries", draft-
 ietf-ippm-initial-registry-16 (work in progress), March
 2020.

 [I-D.ietf-ntp-packet-timestamps]
 Mizrahi, T., Fabini, J., and A. Morton, "Guidelines for
 Defining Packet Timestamps", draft-ietf-ntp-packet-
 timestamps-08 (work in progress), February 2020.

 [I-D.ietf-sfc-nsh-dc-allocation]
 Guichard, J., Smith, M., Kumar, S., Majee, S., and T.
 Mizrahi, "Network Service Header (NSH) MD Type 1: Context
 Header Allocation (Data Center)", draft-ietf-sfc-nsh-dc-
 allocation-02 (work in progress), September 2018.

 [IEEE1588]
 IEEE, "IEEE 1588 Standard for a Precision Clock
 Synchronization Protocol for Networked Measurement and
 Control Systems Version 2", 2008.

Mizrahi, et al. Expires September 12, 2020 [Page 17]

Internet-Draft Packet Timestamps March 2020

 [IEEE1588v1]
 IEEE, "IEEE 1588 Standard for a Precision Clock
 Synchronization Protocol for Networked Measurement and
 Control Systems", 2002.

 [ITU-T-Y.1731]
 ITU-T, "OAM functions and mechanisms for Ethernet based
 Networks", 2013.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <https://www.rfc-editor.org/info/rfc3550>.

 [RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
 Zekauskas, "A One-way Active Measurement Protocol
 (OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,
 <https://www.rfc-editor.org/info/rfc4656>.

 [RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
 Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
 RFC 5357, DOI 10.17487/RFC5357, October 2008,
 <https://www.rfc-editor.org/info/rfc5357>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6019] Housley, R., "BinaryTime: An Alternate Format for
 Representing Date and Time in ASN.1", RFC 6019,
 DOI 10.17487/RFC6019, September 2010,
 <https://www.rfc-editor.org/info/rfc6019>.

 [RFC6374] Frost, D. and S. Bryant, "Packet Loss and Delay
 Measurement for MPLS Networks", RFC 6374,
 DOI 10.17487/RFC6374, September 2011,
 <https://www.rfc-editor.org/info/rfc6374>.

Mizrahi, et al. Expires September 12, 2020 [Page 18]

Internet-Draft Packet Timestamps March 2020

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,
 RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <https://www.rfc-editor.org/info/rfc7011>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",
 RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <https://www.rfc-editor.org/info/rfc7323>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC7456] Mizrahi, T., Senevirathne, T., Salam, S., Kumar, D., and
 D. Eastlake 3rd, "Loss and Delay Measurement in
 Transparent Interconnection of Lots of Links (TRILL)",
 RFC 7456, DOI 10.17487/RFC7456, March 2015,
 <https://www.rfc-editor.org/info/rfc7456>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC8186] Mirsky, G. and I. Meilik, "Support of the IEEE 1588
 Timestamp Format in a Two-Way Active Measurement Protocol
 (TWAMP)", RFC 8186, DOI 10.17487/RFC8186, June 2017,
 <https://www.rfc-editor.org/info/rfc8186>.

Authors’ Addresses

 Tal Mizrahi
 Huawei Smart Platforms iLab
 8-2 Matam
 Haifa 3190501
 Israel

 Email: tal.mizrahi.phd@gmail.com

Mizrahi, et al. Expires September 12, 2020 [Page 19]

Internet-Draft Packet Timestamps March 2020

 Joachim Fabini
 TU Wien
 Gusshausstrasse 25/E389
 Vienna 1040
 Austria

 Phone: +43 1 58801 38813
 Fax: +43 1 58801 38898
 Email: Joachim.Fabini@tuwien.ac.at
 URI: http://www.tc.tuwien.ac.at/about-us/staff/joachim-fabini/

 Al Morton
 AT&T Labs
 200 Laurel Avenue South
 Middletown,, NJ 07748
 USA

 Phone: +1 732 420 1571
 Fax: +1 732 368 1192
 Email: acmorton@att.com

Mizrahi, et al. Expires September 12, 2020 [Page 20]

Internet Engineering Task Force H. Stenn

Internet-Draft Network Time Foundation

Intended status: Standards Track S. Goldberg

Expires: September 26, 2019 Boston University

 March 25, 2019

 Network Time Protocol REFID Updates

 draft-ietf-ntp-refid-updates-05

Abstract

 RFC 5905 [RFC5905], section 7.3, "Packet Header Variables", defines

 the value of the REFID, the system peer for the responding host. In

 the past, for IPv4 associations the IPv4 address is used, and for

 IPv6 associations the first four octets of the MD5 hash of the IPv6

 are used. There are two recognized shortcomings to this approach,

 and this proposal addresses them. One is that knowledge of the

 system peer is "abusable" information and should not be generally

 available. The second is that the four octet hash of the IPv6

 address looks very much like an IPv4 address, and this is confusing.

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH BEFORE PUBLISHING:

 The source code and issues list for this draft can be found in

 https://github.com/hstenn/ietf-ntp-refid-updates

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 26, 2019.

Stenn & Goldberg Expires September 26, 2019 [Page 1]

Internet-Draft Network Time Protocol REFID Updates March 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 1.1. The REFID . 2

 1.2. NOT-YOU REFID . 3

 1.3. IPv6 REFID . 4

 1.4. Requirements Language 4

 2. The NOT-YOU REFID . 4

 2.1. Proposal . 5

 3. Augmenting the IPv6 REFID Hash 5

 3.1. Background . 5

 3.2. Potential Problems 6

 4. Acknowledgements . 6

 5. IANA Considerations . 6

 6. Security Considerations 6

 7. References . 7

 7.1. Normative References 7

 7.2. Informative References 7

 Authors’ Addresses . 7

1. Introduction

1.1. The REFID

 The interpretation of a REFID is based on the stratum, as documented

 in RFC 5905 [RFC5905], section 7.3, "Packet Header Variables". The

 core reason for the REFID in the NTP Protocol is to prevent a degree-

 one timing loop, where server B decides to follow A as its time

 source, and A then decides to follow B as its time source.

 At Stratum 2+, which will be the case if two servers A and B are

 exchanging timing information, then if server B follows A as its time

 source, A’s address will be B’s REFID. When A uses IPv4, the default

Stenn & Goldberg Expires September 26, 2019 [Page 2]

Internet-Draft Network Time Protocol REFID Updates March 2019

 REFID is A’s IPv4 address. When A uses IPv6, the default REFID is a

 four-octet digest of A’s IPv6 address. Now, if A queries B for its

 time, then A will learn that B is using A as its time source by

 observing A’s address in the REFID field of the response packet sent

 by B. Thus, A will not select B as a potential time source, as this

 would cause a timing loop.

1.2. NOT-YOU REFID

 The traditional REFID mechanism, however, also allows a third-party C

 to learn that A is the time source that is being used by B. When A

 is using IPv4, C can learn this by querying B for its time, and

 observing that the REFID in B’s response is the IPv4 address of A.

 Meanwhile, when A is using IPv6, then C can again query B for its

 time, and then can use an offline dictionary attack to attempt to

 determine the IPv6 address that corresponds to the digest value in

 the response sent by B. C could construct the necessary dictionary

 by compiling a list of publicly accessible IPv6 servers. Remote

 attackers can use this technique to attempt to identify the time

 sources used by a target, and then send spoofed packets to the target

 or its time source in an attempt to disrupt time service, as was done

 e.g., in [NDSS16] or [CVE-2015-8138].

 The REFID thus unnecessarily leaks information about a target’s time

 server to remote attackers. The best way to mitigate this

 vulnerability is to decouple the IP address of the time source from

 the REFID. To do this, a system can use an otherwise-impossible

 value for its REFID, called the NOT-YOU REFID value, when it believes

 that a querying system is not its time source.

 The NOT-YOU REFID proposal is backwards-compatible and provides the

 bare minimum diagnostic information to third parties. It can be

 implemented by one peer in an NTP association without any changes to

 the other peer. This holds as long as responding NOT-YOU system can

 accurately detect when it’s getting a request from its system peer.

 The NOT-YOU REFID proposal does have a small risk. Consider system A

 that returns the NOT-YOU REFID and system B that has two network

 interfaces B1 and B2. Suppose that system A is using system B as his

 time source, via network interface B1. Now suppose that system B

 queries system A for time via network interface B2. In this case,

 system A returns the NOT-YOU REFID value to system B, since system A

 does not realize that network interface B1 and B2 belong to the same

 system. In this case, system B might choose system A as its time

 source, and a degree-one timing loop will occur. In this case,

 however, the two systems will spiral into degrading stratum positions

 with increasing root distances, and eventually the loop will break.

 If any other systems are available as time servers, one of them will

Stenn & Goldberg Expires September 26, 2019 [Page 3]

Internet-Draft Network Time Protocol REFID Updates March 2019

 become the new system peer. However, unless or until this happens

 the two spiraling systems will have degraded time quality.

1.3. IPv6 REFID

 In an environment where all time queries made to a server can be

 trusted, an operator might well choose to expose the real REFID. RFC

 5905 [RFC5905], section 7.3, "Packet Header Variables", explains how

 a remote system peer is converted to a REFID. It says:

 If using the IPv4 address family, the identifier is the four-octet

 IPv4 address. If using the IPv6 family, it is the first four

 octets of the MD5 hash of the IPv6 address. ...

 However, the MD5 hash of an IPv6 address often looks like a valid

 IPv4 address. When this happens, an operator cannot tell if the

 REFID refers to an IPv6 address or and IPv4. Specifically, the NTP

 Project has received a report where the generated IPv6 hash decoded

 to the IPv4 address of a different machine on the system peer’s

 network.

 This proposal offers a way for a system to generate a REFID for a

 IPv6 system peer that does not conflict with an IPv4-based REFID.

 This proposal is not backwards-compatible. It SHOULD be implemented

 by both peers in an NTP association. In the scenario where A and B

 are peering using IPv6, where A is the system peer and does not

 understand IPv6 REFID, and B is subordinate and is using IPv6 REFID,

 A will not be able to determine that B is using A as its system peer

 and a degree-one timing loop can form.

 If both peers implement the IPv6 REFID this situation cannot happen.

 If at least one of the peers implements the proposed I-DO

 [DRAFT-I-DO] protocol this situation cannot happen.

1.4. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [RFC2119].

2. The NOT-YOU REFID

Stenn & Goldberg Expires September 26, 2019 [Page 4]

Internet-Draft Network Time Protocol REFID Updates March 2019

2.1. Proposal

 When enabled, this proposal allows the one-degree loop detection to

 work and useful diagnostic information to be provided to trusted

 partners while keeping potentially abusable information from being

 disclosed to ostensibly uninterested parties. It does this by

 returning the normal REFID to queries that come from trusted

 addresses or from an address that the current system believes is its

 time source (aka its "system peer"), and otherwise returning one of

 two special IP addresses that is interpreted to mean "not you". The

 "not you" IP addresses are 127.127.127.127 and 127.127.127.128. If

 an IPv6 query is received from an address whose four-octet hash

 equals one of these two addresses and we believe the querying host is

 not our system peer, the other NOT-YOU address is returned as the

 REFID.

 This mechanism is correct and transparent when the system responding

 with a NOT-YOU can accurately detect when it’s getting a timing query

 from its system peer. A querying system that uses IPv4 continues to

 check that its IPv4 address does not appear in the REFID before

 deciding whether to take time from the current system. A querying

 system that uses IPv6 continues to check that the four-octet hash of

 its IPv6 address does not appear in the REFID before deciding whether

 to take time from the current system.

3. Augmenting the IPv6 REFID Hash

3.1. Background

 In a trusted network, the S2+ REFID is generated based on the network

 system peer. RFC 5905 [RFC5905] says:

 If using the IPv4 address family, the identifier is the four-octet

 IPv4 address. If using the IPv6 family, it is the first four

 octets of the MD5 hash of the IPv6 address.

 This means that the IPv4 representation of the IPv6 hash would be:

 b1.b2.b3.b4 . This proposal is that the system MAY also use

 255.b2.b3.b4 as its REFID. This reduces the risk of ambiguity, since

 addresses beginning with 255 are "reserved", and thus will not

 collide with valid IPv4 on the network.

 When using the REFID to check for a timing loop for an IPv6

 association, if the code that checks the first four-octets of the

 hash fails to match then the code must check again, using 0xFF as the

 first octet of the hash.

Stenn & Goldberg Expires September 26, 2019 [Page 5]

Internet-Draft Network Time Protocol REFID Updates March 2019

3.2. Potential Problems

 There is a 1 in 16,777,216 chance that the REFID hashes of two IPv6

 addresses will be identical, producing a false-positive loop

 detection. With a sufficient number of servers, the risk of this

 problem becomes a non-issue. The use of the NOT-YOU REFID and/or the

 proposed REFID-SUGGESTION [DRAFT-REFID-SUGGESTION] or I-DO

 [DRAFT-I-DO] extension fields are ways to mitigate this potential

 situation.

 Unrealistically, if only two instances of NTP are communicating via

 IPv6 and system A implements this new IPv6 REFID hash and system B

 does not, system B will not be able to detect this loop condition.

 In this case, the two machines will slowly increase their stratum

 until they become unsynchronized. This situation is considered to be

 unrealistic because, for this to happen, each system would have to

 have only the other system available as a time source, for example,

 in a misconfigured "orphan mode" setup. There is no risk of this

 happening in an NTP network with 3 or more time sources, or in a

 properly-configured "time island" setup.

4. Acknowledgements

 For the "not-you" REFID, we acknowledge useful discussions with

 Aanchal Malhotra and Matthew Van Gundy.

 For the IPv6 REFID, we acknowledge Dan Mahoney (and perhaps others)

 for suggesting the idea of using an "impossible" first-octet value to

 indicate an IPv6 refid hash.

5. IANA Considerations

 This memo requests IANA to allocate a pseudo Extension Field Type of

 0xFFFF so the proposed "I-Do" exchange can report whether or not the

 "IPv6 REFID Hash" is supported.

6. Security Considerations

 Many systems running NTP are configured to return responses to timing

 queries by default. These responses contain a REFID field, which

 generally reveals the address of the system’s time source if that

 source is an IPv4 address. This behavior can be exploited by remote

 attackers who wish to first learn the address of a target’s time

 source, and then attack the target and/or its time source. As such,

 the NOT-YOU REFID proposal is designed to harden NTP against these

 attacks by limiting the amount of information leaked in the REFID

 field.

Stenn & Goldberg Expires September 26, 2019 [Page 6]

Internet-Draft Network Time Protocol REFID Updates March 2019

 Systems running NTP should reveal the identity of their system in

 peer in their REFID only when they are on a trusted network. The

 IPv6 REFID proposal provides one way to do this, when the system peer

 uses addresses in the IPv6 family.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

 "Network Time Protocol Version 4: Protocol and Algorithms

 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,

 <https://www.rfc-editor.org/info/rfc5905>.

7.2. Informative References

 [CVE-2015-8138]

 Van Gundy, M. and J. Gardner, "Network Time Protocol

 Origin Timestamp Check Impersonation Vulnerability (CVE-

 2015-8138)", in TALOS VULNERABILITY REPORT (TALOS-

 2016-0077), 2016.

 [DRAFT-I-DO]

 Stenn, H., "draft-stenn-ntp-i-do", 2018.

 [DRAFT-REFID-SUGGESTION]

 Stenn, H., "draft-stenn-ntp-suggest-refid", 2018.

 [NDSS16] Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,

 "Attacking the Network Time Protocol", in ISOC Network and

 Distributed System Security Symposium 2016 (NDSS’16),

 2016.

 [NTP-EXTENSION-FIELD]

 Stenn, H., "draft-stenn-ntp-extension-fields", 2018.

Authors’ Addresses

Stenn & Goldberg Expires September 26, 2019 [Page 7]

Internet-Draft Network Time Protocol REFID Updates March 2019

 Harlan Stenn

 Network Time Foundation

 P.O. Box 918

 Talent, OR 97540

 US

 Email: stenn@nwtime.org

 Sharon Goldberg

 Boston University

 111 Cummington St

 Boston, MA 02215

 US

 Email: goldbe@cs.bu.edu

Stenn & Goldberg Expires September 26, 2019 [Page 8]

NTP Working Group D. Franke
Internet-Draft Akamai
Intended status: Standards Track D. Sibold
Expires: September 26, 2020 K. Teichel
 PTB
 M. Dansarie

 R. Sundblad
 Netnod
 March 25, 2020

 Network Time Security for the Network Time Protocol
 draft-ietf-ntp-using-nts-for-ntp-28

Abstract

 This memo specifies Network Time Security (NTS), a mechanism for
 using Transport Layer Security (TLS) and Authenticated Encryption
 with Associated Data (AEAD) to provide cryptographic security for the
 client-server mode of the Network Time Protocol (NTP).

 NTS is structured as a suite of two loosely coupled sub-protocols.
 The first (NTS-KE) handles initial authentication and key
 establishment over TLS. The second handles encryption and
 authentication during NTP time synchronization via extension fields
 in the NTP packets, and holds all required state only on the client
 via opaque cookies.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 26, 2020.

Franke, et al. Expires September 26, 2020 [Page 1]

Internet-Draft Network Time Security for NTP March 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Objectives . 4
 1.2. Protocol Overview . 5
 2. Requirements Language . 7
 3. TLS profile for Network Time Security 7
 4. The NTS Key Establishment Protocol 8
 4.1. NTS-KE Record Types 10
 4.1.1. End of Message 11
 4.1.2. NTS Next Protocol Negotiation 11
 4.1.3. Error . 11
 4.1.4. Warning . 12
 4.1.5. AEAD Algorithm Negotiation 12
 4.1.6. New Cookie for NTPv4 13
 4.1.7. NTPv4 Server Negotiation 13
 4.1.8. NTPv4 Port Negotiation 14
 4.2. Retry Intervals . 14
 4.3. Key Extraction (generally) 15
 5. NTS Extension Fields for NTPv4 15
 5.1. Key Extraction (for NTPv4) 15
 5.2. Packet Structure Overview 16
 5.3. The Unique Identifier Extension Field 16
 5.4. The NTS Cookie Extension Field 17
 5.5. The NTS Cookie Placeholder Extension Field 17
 5.6. The NTS Authenticator and Encrypted Extension Fields
 Extension Field . 17
 5.7. Protocol Details . 20
 6. Suggested Format for NTS Cookies 24
 7. IANA Considerations . 25
 7.1. Service Name and Transport Protocol Port Number Registry 25
 7.2. TLS Application-Layer Protocol Negotiation (ALPN)
 Protocol IDs Registry 26

Franke, et al. Expires September 26, 2020 [Page 2]

Internet-Draft Network Time Security for NTP March 2020

 7.3. TLS Exporter Labels Registry 26
 7.4. NTP Kiss-o’-Death Codes Registry 26
 7.5. NTP Extension Field Types Registry 26
 7.6. Network Time Security Key Establishment Record Types
 Registry . 27
 7.7. Network Time Security Next Protocols Registry 28
 7.8. Network Time Security Error and Warning Codes Registries 29
 8. Implementation Status - RFC EDITOR: REMOVE BEFORE PUBLICATION 30
 8.1. Implementation 1 . 30
 8.1.1. Coverage . 30
 8.1.2. Licensing . 31
 8.1.3. Contact Information 31
 8.1.4. Last Update . 31
 8.2. Implementation 2 . 31
 8.2.1. Coverage . 31
 8.2.2. Licensing . 31
 8.2.3. Contact Information 31
 8.2.4. Last Update . 31
 8.3. Implementation 3 . 32
 8.3.1. Coverage . 32
 8.3.2. Licensing . 32
 8.3.3. Contact Information 32
 8.3.4. Last Update . 32
 8.4. Implementation 4 . 32
 8.4.1. Coverage . 32
 8.4.2. Licensing . 33
 8.4.3. Contact Information 33
 8.4.4. Last Update . 33
 8.5. Implementation 5 . 33
 8.5.1. Coverage . 33
 8.5.2. Licensing . 33
 8.5.3. Contact Information 33
 8.5.4. Last Update . 33
 8.6. Implementation 6 . 33
 8.6.1. Coverage . 34
 8.6.2. Licensing . 34
 8.6.3. Contact Information 34
 8.6.4. Last Update . 34
 8.7. Interoperability . 34
 9. Security Considerations 34
 9.1. Protected Modes . 34
 9.2. Cookie Encryption Key Compromise 35
 9.3. Sensitivity to DDoS Attacks 35
 9.4. Avoiding DDoS Amplification 35
 9.5. Initial Verification of Server Certificates 36
 9.6. Delay Attacks . 37
 9.7. NTS Stripping . 38
 10. Privacy Considerations 38

Franke, et al. Expires September 26, 2020 [Page 3]

Internet-Draft Network Time Security for NTP March 2020

 10.1. Unlinkability . 38
 10.2. Confidentiality . 39
 11. Acknowledgements . 39
 12. References . 39
 12.1. Normative References 39
 12.2. Informative References 41
 Appendix A. Terms and Abbreviations 42
 Authors’ Addresses . 43

1. Introduction

 This memo specifies Network Time Security (NTS), a cryptographic
 security mechanism for network time synchronization. A complete
 specification is provided for application of NTS to the client-server
 mode of the Network Time Protocol (NTP) [RFC5905].

1.1. Objectives

 The objectives of NTS are as follows:

 o Identity: Through the use of a X.509 public key infrastructure,
 implementations can cryptographically establish the identity of
 the parties they are communicating with.

 o Authentication: Implementations can cryptographically verify that
 any time synchronization packets are authentic, i.e., that they
 were produced by an identified party and have not been modified in
 transit.

 o Confidentiality: Although basic time synchronization data is
 considered non-confidential and sent in the clear, NTS includes
 support for encrypting NTP extension fields.

 o Replay prevention: Client implementations can detect when a
 received time synchronization packet is a replay of a previous
 packet.

 o Request-response consistency: Client implementations can verify
 that a time synchronization packet received from a server was sent
 in response to a particular request from the client.

 o Unlinkability: For mobile clients, NTS will not leak any
 information additional to NTP which would permit a passive
 adversary to determine that two packets sent over different
 networks came from the same client.

 o Non-amplification: Implementations (especially server
 implementations) can avoid acting as distributed denial-of-service

Franke, et al. Expires September 26, 2020 [Page 4]

Internet-Draft Network Time Security for NTP March 2020

 (DDoS) amplifiers by never responding to a request with a packet
 larger than the request packet.

 o Scalability: Server implementations can serve large numbers of
 clients without having to retain any client-specific state.

 o Performance: NTS must not significantly degrade the quality of the
 time transfer. The encryption and authentication used when
 actually transferring time should be lightweight (see RFC 7384,
 Section 5.7 [RFC7384]).

1.2. Protocol Overview

 The Network Time Protocol includes many different operating modes to
 support various network topologies (see RFC 5905, Section 3
 [RFC5905]). In addition to its best-known and most-widely-used
 client-server mode, it also includes modes for synchronization
 between symmetric peers, a control mode for server monitoring and
 administration, and a broadcast mode. These various modes have
 differing and partly contradictory requirements for security and
 performance. Symmetric and control modes demand mutual
 authentication and mutual replay protection. Additionally, for
 certain message types control mode may require confidentiality as
 well as authentication. Client-server mode places more stringent
 requirements on resource utilization than other modes, because
 servers may have vast number of clients and be unable to afford to
 maintain per-client state. However, client-server mode also has more
 relaxed security needs, because only the client requires replay
 protection: it is harmless for stateless servers to process replayed
 packets. The security demands of symmetric and control modes, on the
 other hand, are in conflict with the resource-utilization demands of
 client-server mode: any scheme which provides replay protection
 inherently involves maintaining some state to keep track of what
 messages have already been seen.

 This memo specifies NTS exclusively for the client-server mode of
 NTP. To this end, NTS is structured as a suite of two protocols:

 The "NTS Extensions for NTPv4" define a collection of NTP
 extension fields for cryptographically securing NTPv4 using
 previously-established key material. They are suitable for
 securing client-server mode because the server can implement them
 without retaining per-client state. All state is kept by the
 client and provided to the server in the form of an encrypted
 cookie supplied with each request. On the other hand, the NTS
 Extension Fields are suitable *only* for client-server mode
 because only the client, and not the server, is protected from
 replay.

Franke, et al. Expires September 26, 2020 [Page 5]

Internet-Draft Network Time Security for NTP March 2020

 The "NTS Key Establishment" protocol (NTS-KE) is a mechanism for
 establishing key material for use with the NTS Extension Fields
 for NTPv4. It uses TLS to establish keys, provide the client with
 an initial supply of cookies, and negotiate some additional
 protocol options. After this, the TLS channel is closed with no
 per-client state remaining on the server side.

 The typical protocol flow is as follows: The client connects to an
 NTS-KE server on the NTS TCP port and the two parties perform a TLS
 handshake. Via the TLS channel, the parties negotiate some
 additional protocol parameters and the server sends the client a
 supply of cookies along with an address and port of an NTP server for
 which the cookies are valid. The parties use TLS key export
 [RFC5705] to extract key material which will be used in the next
 phase of the protocol. This negotiation takes only a single round
 trip, after which the server closes the connection and discards all
 associated state. At this point the NTS-KE phase of the protocol is
 complete. Ideally, the client never needs to connect to the NTS-KE
 server again.

 Time synchronization proceeds with the indicated NTP server. The
 client sends the server an NTP client packet which includes several
 extension fields. Included among these fields are a cookie
 (previously provided by the key establishment server) and an
 authentication tag, computed using key material extracted from the
 NTS-KE handshake. The NTP server uses the cookie to recover this key
 material and send back an authenticated response. The response
 includes a fresh, encrypted cookie which the client then sends back
 in the clear in a subsequent request. (This constant refreshing of
 cookies is necessary in order to achieve NTS’s unlinkability goal.)

 Figure 1 provides an overview of the high-level interaction between
 the client, the NTS-KE server, and the NTP server. Note that the
 cookies’ data format and the exchange of secrets between NTS-KE and
 NTP servers are not part of this specification and are implementation
 dependent. However, a suggested format for NTS cookies is provided
 in Section 6.

Franke, et al. Expires September 26, 2020 [Page 6]

Internet-Draft Network Time Security for NTP March 2020

 +--------------+
 | |
 +-> | NTP Server 1 |
 | | |
 Shared cookie | +--------------+
 +---------------+ encryption parameters | +--------------+
	(Implementation dependent)		
NTS-KE Server	<------------------------------+->	NTP Server 2	
 +---------------+ | +--------------+
 ^ | .
 | | .
 | 1. Negotiate parameters, | .
 | receive initial cookie | +--------------+
 | supply, generate AEAD keys, | | |
 | and receive NTP server IP +-> | NTP Server N |
 | addresses using "NTS Key | |
 | Establishment" protocol. +--------------+
 | ^
 | |
 | +----------+ |
 | | | |
 +-----------> | Client | <-------------------------+
 | | 2. Perform authenticated
 +----------+ time synchronization
 and generate new
 cookies using "NTS
 Extension Fields for
 NTPv4".

 Figure 1: Overview of High-Level Interactions in NTS

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. TLS profile for Network Time Security

 Network Time Security makes use of TLS for NTS key establishment.

 Since the NTS protocol is new as of this publication, no backward-
 compatibility concerns exist to justify using obsolete, insecure, or
 otherwise broken TLS features or versions. Implementations MUST
 conform with RFC 7525 [RFC7525] or with a later revision of BCP 195.

Franke, et al. Expires September 26, 2020 [Page 7]

Internet-Draft Network Time Security for NTP March 2020

 Implementations MUST NOT negotiate TLS versions earlier than 1.3
 [RFC8446] and MAY refuse to negotiate any TLS version which has been
 superseded by a later supported version.

 Use of the Application-Layer Protocol Negotiation Extension [RFC7301]
 is integral to NTS and support for it is REQUIRED for
 interoperability.

 Implementations MUST follow the rules in RFC 5280 [RFC5280] and RFC
 6125 [RFC6125] for the representation and verification of the
 application’s service identity. When NTS-KE service discovery (out
 of scope for this document) produces one or more host names, use of
 the DNS-ID identifier type [RFC6125] is RECOMMENDED; specifications
 for service discovery mechanisms can provide additional guidance for
 certificate validation based on the results of discovery.
 Section 9.5 of this memo discusses particular considerations for
 certificate verification in the context of NTS.

4. The NTS Key Establishment Protocol

 The NTS key establishment protocol is conducted via TCP port
 [[TBD1]]. The two endpoints carry out a TLS handshake in conformance
 with Section 3, with the client offering (via an ALPN [RFC7301]
 extension), and the server accepting, an application-layer protocol
 of "ntske/1". Immediately following a successful handshake, the
 client SHALL send a single request as Application Data encapsulated
 in the TLS-protected channel. Then, the server SHALL send a single
 response. After sending their respective request and response, the
 client and server SHALL send TLS "close_notify" alerts in accordance
 with RFC 8446, Section 6.1 [RFC8446].

 The client’s request and the server’s response each SHALL consist of
 a sequence of records formatted according to Figure 2. The request
 and a non-error response each SHALL include exactly one NTS Next
 Protocol Negotiation record. The sequence SHALL be terminated by a
 "End of Message" record. The requirement that all NTS-KE messages be
 terminated by an End of Message record makes them self-delimiting.

 Clients and servers MAY enforce length limits on requests and
 responses, however, servers MUST accept requests of at least 1024
 octets and clients SHOULD accept responses of at least 65536 octets.

Franke, et al. Expires September 26, 2020 [Page 8]

Internet-Draft Network Time Security for NTP March 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |C| Record Type | Body Length |
 +-+
 | |
 . .
 . Record Body .
 . .
 | |
 +-+

 Figure 2: NTS-KE Record Format

 The fields of an NTS-KE record are defined as follows:

 C (Critical Bit): Determines the disposition of unrecognized
 Record Types. Implementations which receive a record with an
 unrecognized Record Type MUST ignore the record if the Critical
 Bit is 0 and MUST treat it as an error if the Critical Bit is 1
 (see Section 4.1.3).

 Record Type Number: A 15-bit integer in network byte order. The
 semantics of record types 0-7 are specified in this memo.
 Additional type numbers SHALL be tracked through the IANA Network
 Time Security Key Establishment Record Types registry.

 Body Length: The length of the Record Body field, in octets, as a
 16-bit integer in network byte order. Record bodies MAY have any
 representable length and need not be aligned to a word boundary.

 Record Body: The syntax and semantics of this field SHALL be
 determined by the Record Type.

 For clarity regarding bit-endianness: the Critical Bit is the most-
 significant bit of the first octet. In the C programming language,
 given a network buffer ‘unsigned char b[]‘ containing an NTS-KE
 record, the critical bit is ‘b[0] >> 7‘ while the record type is
 ‘((b[0] & 0x7f) << 8) + b[1]‘.

 Note that, although the Type-Length-Body format of an NTS-KE record
 is similar to that of an NTP extension field, the semantics of the
 length field differ. While the length subfield of an NTP extension
 field gives the length of the entire extension field including the
 type and length subfields, the length field of an NTS-KE record gives
 just the length of the body.

Franke, et al. Expires September 26, 2020 [Page 9]

Internet-Draft Network Time Security for NTP March 2020

 Figure 3 provides a schematic overview of the key establishment. It
 displays the protocol steps to be performed by the NTS client and
 server and record types to be exchanged.

 +---------------------------------------+
 | - Verify client request message. |
 | - Extract TLS key material. |
 | - Generate KE response message. |
 | - Include Record Types: |
 | o NTS Next Protocol Negotiation |
 | o AEAD Algorithm Negotiation |
 | o <NTPv4 Server Negotiation> |
 | o <NTPv4 Port Negotiation> |
 | o New Cookie for NTPv4 |
 | o <New Cookie for NTPv4> |
 | o End of Message |
 +-----------------+---------------------+
 |
 |
 Server -----------+---------------+-----+----------------------->
 ^ \
 / \
 / TLS application \
 / data \
 / \
 / V
 Client -----+---------------------------------+----------------->
 | |
 | |
 | |
 +-----------+----------------------+ +------+-----------------+
- Generate KE request message.		- Verify server response
- Include Record Types:		message.
o NTS Next Protocol Negotiation		- Extract cookie(s).
o AEAD Algorithm Negotiation	+------------------------+	
o <NTPv4 Server Negotiation>		
o <NTPv4 Port Negotiation>		
o End of Message		
 +----------------------------------+

 Figure 3: NTS Key Establishment Messages

4.1. NTS-KE Record Types

 The following NTS-KE Record Types are defined:

Franke, et al. Expires September 26, 2020 [Page 10]

Internet-Draft Network Time Security for NTP March 2020

4.1.1. End of Message

 The End of Message record has a Record Type number of 0 and a zero-
 length body. It MUST occur exactly once as the final record of every
 NTS-KE request and response. The Critical Bit MUST be set.

4.1.2. NTS Next Protocol Negotiation

 The NTS Next Protocol Negotiation record has a Record Type number of
 1. It MUST occur exactly once in every NTS-KE request and response.
 Its body consists of a sequence of 16-bit unsigned integers in
 network byte order. Each integer represents a Protocol ID from the
 IANA Network Time Security Next Protocols registry. The Critical Bit
 MUST be set.

 The Protocol IDs listed in the client’s NTS Next Protocol Negotiation
 record denote those protocols which the client wishes to speak using
 the key material established through this NTS-KE session. Protocol
 IDs listed in the NTS-KE server’s response MUST comprise a subset of
 those listed in the request and denote those protocols which the NTP
 server is willing and able to speak using the key material
 established through this NTS-KE session. The client MAY proceed with
 one or more of them. The request MUST list at least one protocol,
 but the response MAY be empty.

4.1.3. Error

 The Error record has a Record Type number of 2. Its body is exactly
 two octets long, consisting of an unsigned 16-bit integer in network
 byte order, denoting an error code. The Critical Bit MUST be set.

 Clients MUST NOT include Error records in their request. If clients
 receive a server response which includes an Error record, they MUST
 discard any key material negotiated during the initial TLS exchange
 and MUST NOT proceed to the Next Protocol. Requirements for retry
 intervals are described in Section 4.2.

 The following error codes are defined:

 Error code 0 means "Unrecognized Critical Record". The server
 MUST respond with this error code if the request included a record
 which the server did not understand and which had its Critical Bit
 set. The client SHOULD NOT retry its request without
 modification.

 Error code 1 means "Bad Request". The server MUST respond with
 this error if the request is not complete and syntactically well-
 formed, or, upon the expiration of an implementation-defined

Franke, et al. Expires September 26, 2020 [Page 11]

Internet-Draft Network Time Security for NTP March 2020

 timeout, it has not yet received such a request. The client
 SHOULD NOT retry its request without modification.

 Error code 2 means "Internal Server Error". The server MUST
 respond with this error if it is unable to respond properly due to
 an internal condition. The client MAY retry its request.

4.1.4. Warning

 The Warning record has a Record Type number of 3. Its body is
 exactly two octets long, consisting of an unsigned 16-bit integer in
 network byte order, denoting a warning code. The Critical Bit MUST
 be set.

 Clients MUST NOT include Warning records in their request. If
 clients receive a server response which includes a Warning record,
 they MAY discard any negotiated key material and abort without
 proceeding to the Next Protocol. Unrecognized warning codes MUST be
 treated as errors.

 This memo defines no warning codes.

4.1.5. AEAD Algorithm Negotiation

 The AEAD Algorithm Negotiation record has a Record Type number of 4.
 Its body consists of a sequence of unsigned 16-bit integers in
 network byte order, denoting Numeric Identifiers from the IANA AEAD
 Algorithms registry [IANA-AEAD]. The Critical Bit MAY be set.

 If the NTS Next Protocol Negotiation record offers Protocol ID 0 (for
 NTPv4), then this record MUST be included exactly once. Other
 protocols MAY require it as well.

 When included in a request, this record denotes which AEAD algorithms
 the client is willing to use to secure the Next Protocol, in
 decreasing preference order. When included in a response, this
 record denotes which algorithm the server chooses to use. It is
 empty if the server supports none of the algorithms offered. In
 requests, the list MUST include at least one algorithm. In
 responses, it MUST include at most one. Honoring the client’s
 preference order is OPTIONAL: servers may select among any of the
 client’s offered choices, even if they are able to support some other
 algorithm which the client prefers more.

 Server implementations of NTS extension fields for NTPv4 (Section 5)
 MUST support AEAD_AES_SIV_CMAC_256 [RFC5297] (Numeric Identifier 15).
 That is, if the client includes AEAD_AES_SIV_CMAC_256 in its AEAD
 Algorithm Negotiation record and the server accepts Protocol ID 0

Franke, et al. Expires September 26, 2020 [Page 12]

Internet-Draft Network Time Security for NTP March 2020

 (NTPv4) in its NTS Next Protocol Negotiation record, then the
 server’s AEAD Algorithm Negotiation record MUST NOT be empty.

4.1.6. New Cookie for NTPv4

 The New Cookie for NTPv4 record has a Record Type number of 5. The
 contents of its body SHALL be implementation-defined and clients MUST
 NOT attempt to interpret them. See Section 6 for a suggested
 construction.

 Clients MUST NOT send records of this type. Servers MUST send at
 least one record of this type, and SHOULD send eight of them, if the
 Next Protocol Negotiation response record contains Protocol ID 0
 (NTPv4) and the AEAD Algorithm Negotiation response record is not
 empty. The Critical Bit SHOULD NOT be set.

4.1.7. NTPv4 Server Negotiation

 The NTPv4 Server Negotiation record has a Record Type number of 6.
 Its body consists of an ASCII-encoded [RFC0020] string. The contents
 of the string SHALL be either an IPv4 address, an IPv6 address, or a
 fully qualified domain name (FQDN). IPv4 addresses MUST be in dotted
 decimal notation. IPv6 addresses MUST conform to the "Text
 Representation of Addresses" as specified in RFC 4291 [RFC4291] and
 MUST NOT include zone identifiers [RFC6874]. If a label contains at
 least one non-ASCII character, it is an internationalized domain name
 and an A-LABEL MUST be used as defined in Section 2.3.2.1 of RFC 5890
 [RFC5890]. If the record contains a domain name, the recipient MUST
 treat it as a FQDN, e.g. by making sure it ends with a dot.

 When NTPv4 is negotiated as a Next Protocol and this record is sent
 by the server, the body specifies the hostname or IP address of the
 NTPv4 server with which the client should associate and which will
 accept the supplied cookies. If no record of this type is sent, the
 client SHALL interpret this as a directive to associate with an NTPv4
 server at the same IP address as the NTS-KE server. Servers MUST NOT
 send more than one record of this type.

 When this record is sent by the client, it indicates that the client
 wishes to associate with the specified NTP server. The NTS-KE server
 MAY incorporate this request when deciding what NTPv4 Server
 Negotiation records to respond with, but honoring the client’s
 preference is OPTIONAL. The client MUST NOT send more than one
 record of this type.

 If the client has sent a record of this type, the NTS-KE server
 SHOULD reply with the same record if it is valid and the server is
 able to supply cookies for it. If the client has not sent any record

Franke, et al. Expires September 26, 2020 [Page 13]

Internet-Draft Network Time Security for NTP March 2020

 of this type, the NTS-KE server SHOULD respond with either an NTP
 server address in the same family as the NTS-KE session or a FQDN
 that can be resolved to an address in that family, if such
 alternatives are available.

 Servers MAY set the Critical Bit on records of this type; clients
 SHOULD NOT.

4.1.8. NTPv4 Port Negotiation

 The NTPv4 Port Negotiation record has a Record Type number of 7. Its
 body consists of a 16-bit unsigned integer in network byte order,
 denoting a UDP port number.

 When NTPv4 is negotiated as a Next Protocol and this record is sent
 by the server, the body specifies the port number of the NTPv4 server
 with which the client should associate and which will accept the
 supplied cookies. If no record of this type is sent, the client
 SHALL assume a default of 123 (the registered port number for NTP).

 When this record is sent by the client in conjunction with a NTPv4
 Server Negotiation record, it indicates that the client wishes to
 associate with the NTP server at the specified port. The NTS-KE
 server MAY incorporate this request when deciding what NTPv4 Server
 Negotiation and NTPv4 Port Negotiation records to respond with, but
 honoring the client’s preference is OPTIONAL.

 Servers MAY set the Critical Bit on records of this type; clients
 SHOULD NOT.

4.2. Retry Intervals

 A mechanism for not unnecessarily overloading the NTS-KE server is
 REQUIRED when retrying the key establishment process due to protocol,
 communication, or other errors. The exact workings of this will be
 dependent on the application and operational experience gathered over
 time. Until such experience is available, this memo provides the
 following suggestion.

 Clients SHOULD use exponential backoff, with an initial and minimum
 retry interval of 10 seconds, a maximum retry interval of 5 days, and
 a base of 1.5. Thus, the minimum interval in seconds, ‘t‘, for the
 nth retry is calculated with

 t = min(10 * 1.5^(n-1), 432000).

 Clients MUST NOT reset the retry interval until they have performed a
 successful key establishment with the NTS-KE server, followed by a

Franke, et al. Expires September 26, 2020 [Page 14]

Internet-Draft Network Time Security for NTP March 2020

 successful use of the negotiated next protocol with the keys and data
 established during that transaction.

4.3. Key Extraction (generally)

 Following a successful run of the NTS-KE protocol, key material SHALL
 be extracted using the HMAC-based Extract-and-Expand Key Derivation
 Function (HKDF) [RFC5869] in accordance with RFC 8446, Section 7.5
 [RFC8446]. Inputs to the exporter function are to be constructed in
 a manner specific to the negotiated Next Protocol. However, all
 protocols which utilize NTS-KE MUST conform to the following two
 rules:

 The disambiguating label string [RFC5705] MUST be "EXPORTER-
 network-time-security".

 The per-association context value [RFC5705] MUST be provided and
 MUST begin with the two-octet Protocol ID which was negotiated as
 a Next Protocol.

5. NTS Extension Fields for NTPv4

5.1. Key Extraction (for NTPv4)

 Following a successful run of the NTS-KE protocol wherein Protocol ID
 0 (NTPv4) is selected as a Next Protocol, two AEAD keys SHALL be
 extracted: a client-to-server (C2S) key and a server-to-client (S2C)
 key. These keys SHALL be computed with the HKDF defined in RFC 8446,
 Section 7.5 [RFC8446] using the following inputs.

 The disambiguating label string [RFC5705] SHALL be "EXPORTER-
 network-time-security".

 The per-association context value [RFC5705] SHALL consist of the
 following five octets:

 The first two octets SHALL be zero (the Protocol ID for NTPv4).

 The next two octets SHALL be the Numeric Identifier of the
 negotiated AEAD Algorithm in network byte order.

 The final octet SHALL be 0x00 for the C2S key and 0x01 for the
 S2C key.

 Implementations wishing to derive additional keys for private or
 experimental use MUST NOT do so by extending the above-specified
 syntax for per-association context values. Instead, they SHOULD use
 their own disambiguating label string. Note that RFC 5705 [RFC5705]

Franke, et al. Expires September 26, 2020 [Page 15]

Internet-Draft Network Time Security for NTP March 2020

 provides that disambiguating label strings beginning with
 "EXPERIMENTAL" MAY be used without IANA registration.

5.2. Packet Structure Overview

 In general, an NTS-protected NTPv4 packet consists of:

 The usual 48-octet NTP header which is authenticated but not
 encrypted.

 Some extension fields which are authenticated but not encrypted.

 An extension field which contains AEAD output (i.e., an
 authentication tag and possible ciphertext). The corresponding
 plaintext, if non-empty, consists of some extension fields which
 benefit from both encryption and authentication.

 Possibly, some additional extension fields which are neither
 encrypted nor authenticated. In general, these are discarded by
 the receiver.

 Always included among the authenticated or authenticated-and-
 encrypted extension fields are a cookie extension field and a unique
 identifier extension field, as described in Section 5.7. The purpose
 of the cookie extension field is to enable the server to offload
 storage of session state onto the client. The purpose of the unique
 identifier extension field is to protect the client from replay
 attacks.

5.3. The Unique Identifier Extension Field

 The Unique Identifier extension field provides the client with a
 cryptographically strong means of detecting replayed packets. It has
 a Field Type of [[TBD2]]. When the extension field is included in a
 client packet (mode 3), its body SHALL consist of a string of octets
 generated by a cryptographically secure random number generator
 [RFC4086]. The string MUST be at least 32 octets long. When the
 extension field is included in a server packet (mode 4), its body
 SHALL contain the same octet string as was provided in the client
 packet to which the server is responding. All server packets
 generated by NTS-implementing servers in response to client packets
 containing this extension field MUST also contain this field with the
 same content as in the client’s request. The field’s use in modes
 other than client-server is not defined.

 This extension field MAY also be used standalone, without NTS, in
 which case it provides the client with a means of detecting spoofed
 packets from off-path attackers. Historically, NTP’s origin

Franke, et al. Expires September 26, 2020 [Page 16]

Internet-Draft Network Time Security for NTP March 2020

 timestamp field has played both these roles, but for cryptographic
 purposes this is suboptimal because it is only 64 bits long and,
 depending on implementation details, most of those bits may be
 predictable. In contrast, the Unique Identifier extension field
 enables a degree of unpredictability and collision resistance more
 consistent with cryptographic best practice.

5.4. The NTS Cookie Extension Field

 The NTS Cookie extension field has a Field Type of [[TBD3]]. Its
 purpose is to carry information which enables the server to recompute
 keys and other session state without having to store any per-client
 state. The contents of its body SHALL be implementation-defined and
 clients MUST NOT attempt to interpret them. See Section 6 for a
 suggested construction. The NTS Cookie extension field MUST NOT be
 included in NTP packets whose mode is other than 3 (client) or 4
 (server).

5.5. The NTS Cookie Placeholder Extension Field

 The NTS Cookie Placeholder extension field has a Field Type of
 [[TBD4]]. When this extension field is included in a client packet
 (mode 3), it communicates to the server that the client wishes it to
 send additional cookies in its response. This extension field MUST
 NOT be included in NTP packets whose mode is other than 3.

 Whenever an NTS Cookie Placeholder extension field is present, it
 MUST be accompanied by an NTS Cookie extension field. The body
 length of the NTS Cookie Placeholder extension field MUST be the same
 as the body length of the NTS Cookie extension field. This length
 requirement serves to ensure that the response will not be larger
 than the request, in order to improve timekeeping precision and
 prevent DDoS amplification. The contents of the NTS Cookie
 Placeholder extension field’s body SHOULD be all zeros and, aside
 from checking its length, MUST be ignored by the server.

5.6. The NTS Authenticator and Encrypted Extension Fields Extension
 Field

 The NTS Authenticator and Encrypted Extension Fields extension field
 is the central cryptographic element of an NTS-protected NTP packet.
 Its Field Type is [[TBD5]]. It SHALL be formatted according to
 Figure 4 and include the following fields:

 Nonce Length: Two octets in network byte order, giving the length
 of the Nonce field, excluding any padding, interpreted as an
 unsigned integer.

Franke, et al. Expires September 26, 2020 [Page 17]

Internet-Draft Network Time Security for NTP March 2020

 Ciphertext Length: Two octets in network byte order, giving the
 length of the Ciphertext field, excluding any padding, interpreted
 as an unsigned integer.

 Nonce: A nonce as required by the negotiated AEAD Algorithm. The
 end of the field is zero-padded to a word (four octets) boundary.

 Ciphertext: The output of the negotiated AEAD Algorithm. The
 structure of this field is determined by the negotiated algorithm,
 but it typically contains an authentication tag in addition to the
 actual ciphertext. The end of the field is zero-padded to a word
 (four octets) boundary.

 Additional Padding: Clients which use a nonce length shorter than
 the maximum allowed by the negotiated AEAD algorithm may be
 required to include additional zero-padding. The necessary length
 of this field is specified below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Nonce Length | Ciphertext Length |
 +-+
 | |
 . .
 . Nonce, including up to 3 octets padding .
 . .
 | |
 +-+
 | |
 . .
 . Ciphertext, including up to 3 octets padding .
 . .
 | |
 +-+
 | |
 . .
 . Additional Padding .
 . .
 | |
 +-+

 Figure 4: NTS Authenticator and Encrypted Extension Fields Extension
 Field Format

 The Ciphertext field SHALL be formed by providing the following
 inputs to the negotiated AEAD Algorithm:

Franke, et al. Expires September 26, 2020 [Page 18]

Internet-Draft Network Time Security for NTP March 2020

 K: For packets sent from the client to the server, the C2S key
 SHALL be used. For packets sent from the server to the client,
 the S2C key SHALL be used.

 A: The associated data SHALL consist of the portion of the NTP
 packet beginning from the start of the NTP header and ending at
 the end of the last extension field which precedes the NTS
 Authenticator and Encrypted Extension Fields extension field.

 P: The plaintext SHALL consist of all (if any) NTP extension
 fields to be encrypted; if multiple extension fields are present
 they SHALL be joined by concatenation. Each such field SHALL be
 formatted in accordance with RFC 7822 [RFC7822], except that,
 contrary to the RFC 7822 requirement that fields have a minimum
 length of 16 or 28 octets, encrypted extension fields MAY be
 arbitrarily short (but still MUST be a multiple of 4 octets in
 length).

 N: The nonce SHALL be formed however required by the negotiated
 AEAD algorithm.

 The purpose of the Additional Padding field is to ensure that servers
 can always choose a nonce whose length is adequate to ensure its
 uniqueness, even if the client chooses a shorter one, and still
 ensure that the overall length of the server’s response packet does
 not exceed the length of the request. For mode 4 (server) packets,
 no Additional Padding field is ever required. For mode 3 (client)
 packets, the length of the Additional Padding field SHALL be computed
 as follows. Let ‘N_LEN‘ be the padded length of the Nonce field.
 Let ‘N_MAX‘ be, as specified by RFC 5116 [RFC5116], the maximum
 permitted nonce length for the negotiated AEAD algorithm. Let
 ‘N_REQ‘ be the lesser of 16 and N_MAX, rounded up to the nearest
 multiple of 4. If N_LEN is greater than or equal to N_REQ, then no
 Additional Padding field is required. Otherwise, the Additional
 Padding field SHALL be at least N_REQ - N_LEN octets in length.
 Servers MUST enforce this requirement by discarding any packet which
 does not conform to it.

 Senders are always free to include more Additional Padding than
 mandated by the above paragraph. Theoretically, it could be
 necessary to do so in order to bring the extension field to the
 minimum length required by RFC 7822 [RFC7822]. This should never
 happen in practice because any reasonable AEAD algorithm will have a
 nonce and an authenticator long enough to bring the extension field
 to its required length already. Nonetheless, implementers are
 advised to explicitly handle this case and ensure that the extension
 field they emit is of legal length.

Franke, et al. Expires September 26, 2020 [Page 19]

Internet-Draft Network Time Security for NTP March 2020

 The NTS Authenticator and Encrypted Extension Fields extension field
 MUST NOT be included in NTP packets whose mode is other than 3
 (client) or 4 (server).

5.7. Protocol Details

 A client sending an NTS-protected request SHALL include the following
 extension fields as displayed in Figure 5:

 Exactly one Unique Identifier extension field which MUST be
 authenticated, MUST NOT be encrypted, and whose contents MUST be
 the output of a cryptographically secure random number generator.
 [RFC4086]

 Exactly one NTS Cookie extension field which MUST be authenticated
 and MUST NOT be encrypted. The cookie MUST be one which has been
 previously provided to the client, either from the key
 establishment server during the NTS-KE handshake or from the NTP
 server in response to a previous NTS-protected NTP request.

 Exactly one NTS Authenticator and Encrypted Extension Fields
 extension field, generated using an AEAD Algorithm and C2S key
 established through NTS-KE.

 To protect the client’s privacy, the client SHOULD avoid reusing a
 cookie. If the client does not have any cookies that it has not
 already sent, it SHOULD initiate a re-run of the NTS-KE protocol.
 The client MAY reuse cookies in order to prioritize resilience over
 unlinkability. Which of the two that should be prioritized in any
 particular case is dependent on the application and the user’s
 preference. Section 10.1 describes the privacy considerations of
 this in further detail.

 The client MAY include one or more NTS Cookie Placeholder extension
 fields which MUST be authenticated and MAY be encrypted. The number
 of NTS Cookie Placeholder extension fields that the client includes
 SHOULD be such that if the client includes N placeholders and the
 server sends back N+1 cookies, the number of unused cookies stored by
 the client will come to eight. The client SHOULD NOT include more
 than seven NTS Cookie Placeholder extension fields in a request.
 When both the client and server adhere to all cookie-management
 guidance provided in this memo, the number of placeholder extension
 fields will equal the number of dropped packets since the last
 successful volley.

 In rare circumstances, it may be necessary to include fewer NTS
 Cookie Placeholder extensions than recommended above in order to
 prevent datagram fragmentation. When cookies adhere the format

Franke, et al. Expires September 26, 2020 [Page 20]

Internet-Draft Network Time Security for NTP March 2020

 recommended in Section 6 and the AEAD in use is the mandatory-to-
 implement AEAD_AES_SIV_CMAC_256, senders can include a cookie and
 seven placeholders and still have packet size fall comfortably below
 1280 octets if no non-NTS-related extensions are used; 1280 octets is
 the minimum prescribed MTU for IPv6 and is generally safe for
 avoiding IPv4 fragmentation. Nonetheless, senders SHOULD include
 fewer cookies and placeholders than otherwise indicated if doing so
 is necessary to prevent fragmentation.

 +---------------------------------------+
 | - Verify time request message |
 | - Generate time response message |
 | - Included NTPv4 extension fields |
 | o Unique Identifier EF |
 | o NTS Authentication and |
 | Encrypted Extension Fields EF |
 | - NTS Cookie EF |
 | - <NTS Cookie EF> |
 | - Transmit time request packet |
 +-----------------+---------------------+
 |
 |
 Server -----------+---------------+-----+----------------------->
 ^ \
 / \
 Time request / \ Time response
 (mode 3) / \ (mode 4)
 / \
 / V
 Client -----+---------------------------------+----------------->
 | |
 | |
 | |
 +-----------+----------------------+ +------+-----------------+
- Generate time request message		- Verify time response
- Include NTPv4 Extension fields		message
o Unique Identifier EF		- Extract cookie(s)
o NTS Cookie EF		- Time synchronization
o <NTS Cookie Placeholder EF>		processing
	+------------------------+	
- Generate AEAD tag of NTP message		
- Add NTS Authentication and		
Encrypted Extension Fields EF		
- Transmit time request packet		
 +----------------------------------+

 Figure 5: NTS-protected NTP Time Synchronization Messages

Franke, et al. Expires September 26, 2020 [Page 21]

Internet-Draft Network Time Security for NTP March 2020

 The client MAY include additional (non-NTS-related) extension fields
 which MAY appear prior to the NTS Authenticator and Encrypted
 Extension Fields extension fields (therefore authenticated but not
 encrypted), within it (therefore encrypted and authenticated), or
 after it (therefore neither encrypted nor authenticated). The server
 MUST discard any unauthenticated extension fields. Future
 specifications of extension fields MAY provide exceptions to this
 rule.

 Upon receiving an NTS-protected request, the server SHALL (through
 some implementation-defined mechanism) use the cookie to recover the
 AEAD Algorithm, C2S key, and S2C key associated with the request, and
 then use the C2S key to authenticate the packet and decrypt the
 ciphertext. If the cookie is valid and authentication and decryption
 succeed, the server SHALL include the following extension fields in
 its response:

 Exactly one Unique Identifier extension field which MUST be
 authenticated, MUST NOT be encrypted, and whose contents SHALL
 echo those provided by the client.

 Exactly one NTS Authenticator and Encrypted Extension Fields
 extension field, generated using the AEAD algorithm and S2C key
 recovered from the cookie provided by the client.

 One or more NTS Cookie extension fields which MUST be
 authenticated and encrypted. The number of NTS Cookie extension
 fields included SHOULD be equal to, and MUST NOT exceed, one plus
 the number of valid NTS Cookie Placeholder extension fields
 included in the request. The cookies returned in those fields
 MUST be valid for use with the NTP server that sent them. They
 MAY be valid for other NTP servers as well, but there is no way
 for the server to indicate this.

 We emphasize the contrast that NTS Cookie extension fields MUST NOT
 be encrypted when sent from client to server, but MUST be encrypted
 when sent from server to client. The former is necessary in order
 for the server to be able to recover the C2S and S2C keys, while the
 latter is necessary to satisfy the unlinkability goals discussed in
 Section 10.1. We emphasize also that "encrypted" means encapsulated
 within the NTS Authenticator and Encrypted Extensions extension
 field. While the body of an NTS Cookie extension field will
 generally consist of some sort of AEAD output (regardless of whether
 the recommendations of Section 6 are precisely followed), this is not
 sufficient to make the extension field "encrypted".

 The server MAY include additional (non-NTS-related) extension fields
 which MAY appear prior to the NTS Authenticator and Encrypted

Franke, et al. Expires September 26, 2020 [Page 22]

Internet-Draft Network Time Security for NTP March 2020

 Extension Fields extension field (therefore authenticated but not
 encrypted), within it (therefore encrypted and authenticated), or
 after it (therefore neither encrypted nor authenticated). The client
 MUST discard any unauthenticated extension fields. Future
 specifications of extension fields MAY provide exceptions to this
 rule.

 Upon receiving an NTS-protected response, the client MUST verify that
 the Unique Identifier matches that of an outstanding request, and
 that the packet is authentic under the S2C key associated with that
 request. If either of these checks fails, the packet MUST be
 discarded without further processing. In particular, the client MUST
 discard unprotected responses to NTS-protected requests.

 If the server is unable to validate the cookie or authenticate the
 request, it SHOULD respond with a Kiss-o’-Death (KoD) packet (see RFC
 5905, Section 7.4 [RFC5905]) with kiss code "NTSN", meaning "NTS NAK"
 (NTS negative-acknowledgment). It MUST NOT include any NTS Cookie or
 NTS Authenticator and Encrypted Extension Fields extension fields.

 If the NTP server has previously responded with authentic NTS-
 protected NTP packets, the client MUST verify that any KoD packets
 received from the server contain the Unique Identifier extension
 field and that the Unique Identifier matches that of an outstanding
 request. If this check fails, the packet MUST be discarded without
 further processing. If this check passes, the client MUST comply
 with RFC 5905, Section 7.4 [RFC5905] where required.

 A client MAY automatically re-run the NTS-KE protocol upon forced
 disassociation from an NTP server. In that case, it MUST avoid
 quickly looping between the NTS-KE and NTP servers by rate limiting
 the retries. Requirements for retry intervals in NTS-KE are
 described in Section 4.2.

 Upon reception of the NTS NAK kiss code, the client SHOULD wait until
 the next poll for a valid NTS-protected response and if none is
 received, initiate a fresh NTS-KE handshake to try to renegotiate new
 cookies, AEAD keys, and parameters. If the NTS-KE handshake
 succeeds, the client MUST discard all old cookies and parameters and
 use the new ones instead. As long as the NTS-KE handshake has not
 succeeded, the client SHOULD continue polling the NTP server using
 the cookies and parameters it has.

 To allow for NTP session restart when the NTS-KE server is
 unavailable and to reduce NTS-KE server load, the client SHOULD keep
 at least one unused but recent cookie, AEAD keys, negotiated AEAD
 algorithm, and other necessary parameters on persistent storage.

Franke, et al. Expires September 26, 2020 [Page 23]

Internet-Draft Network Time Security for NTP March 2020

 This way, the client is able to resume the NTP session without
 performing renewed NTS-KE negotiation.

6. Suggested Format for NTS Cookies

 This section is non-normative. It gives a suggested way for servers
 to construct NTS cookies. All normative requirements are stated in
 Section 4.1.6 and Section 5.4.

 The role of cookies in NTS is closely analogous to that of session
 cookies in TLS. Accordingly, the thematic resemblance of this
 section to RFC 5077 [RFC5077] is deliberate and the reader should
 likewise take heed of its security considerations.

 Servers should select an AEAD algorithm which they will use to
 encrypt and authenticate cookies. The chosen algorithm should be one
 such as AEAD_AES_SIV_CMAC_256 [RFC5297] which resists accidental
 nonce reuse. It need not be the same as the one that was negotiated
 with the client. Servers should randomly generate and store a secret
 master AEAD key ‘K‘. Servers should additionally choose a non-secret,
 unique value ‘I‘ as key-identifier for ‘K‘.

 Servers should periodically (e.g., once daily) generate a new pair
 ‘(I,K)‘ and immediately switch to using these values for all newly-
 generated cookies. Following each such key rotation, servers should
 securely erase any previously generated keys that should now be
 expired. Servers should continue to accept any cookie generated
 using keys that they have not yet erased, even if those keys are no
 longer current. Erasing old keys provides for forward secrecy,
 limiting the scope of what old information can be stolen if a master
 key is somehow compromised. Holding on to a limited number of old
 keys allows clients to seamlessly transition from one generation to
 the next without having to perform a new NTS-KE handshake.

 The need to keep keys synchronized between NTS-KE and NTP servers as
 well as across load-balanced clusters can make automatic key rotation
 challenging. However, the task can be accomplished without the need
 for central key-management infrastructure by using a ratchet, i.e.,
 making each new key a deterministic, cryptographically pseudo-random
 function of its predecessor. A recommended concrete implementation
 of this approach is to use HKDF [RFC5869] to derive new keys, using
 the key’s predecessor as Input Keying Material and its key identifier
 as a salt.

 To form a cookie, servers should first form a plaintext ‘P‘
 consisting of the following fields:

 The AEAD algorithm negotiated during NTS-KE.

Franke, et al. Expires September 26, 2020 [Page 24]

Internet-Draft Network Time Security for NTP March 2020

 The S2C key.

 The C2S key.

 Servers should then generate a nonce ‘N‘ uniformly at random, and
 form AEAD output ‘C‘ by encrypting ‘P‘ under key ‘K‘ with nonce ‘N‘
 and no associated data.

 The cookie should consist of the tuple ‘(I,N,C)‘.

 To verify and decrypt a cookie provided by the client, first parse it
 into its components ‘I‘, ‘N‘, and ‘C‘. Use ‘I‘ to look up its
 decryption key ‘K‘. If the key whose identifier is ‘I‘ has been
 erased or never existed, decryption fails; reply with an NTS NAK.
 Otherwise, attempt to decrypt and verify ciphertext ‘C‘ using key ‘K‘
 and nonce ‘N‘ with no associated data. If decryption or verification
 fails, reply with an NTS NAK. Otherwise, parse out the contents of
 the resulting plaintext ‘P‘ to obtain the negotiated AEAD algorithm,
 S2C key, and C2S key.

7. IANA Considerations

7.1. Service Name and Transport Protocol Port Number Registry

 IANA is requested to allocate the following entry in the Service Name
 and Transport Protocol Port Number Registry [RFC6335]:

 Service Name: ntske

 Transport Protocol: tcp

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Network Time Security Key Establishment

 Reference: [[this memo]]

 Port Number: [[TBD1]], selected by IANA from the User Port range

 [[RFC EDITOR: Replace all instances of [[TBD1]] in this document with
 the IANA port assignment.]]

Franke, et al. Expires September 26, 2020 [Page 25]

Internet-Draft Network Time Security for NTP March 2020

7.2. TLS Application-Layer Protocol Negotiation (ALPN) Protocol IDs
 Registry

 IANA is requested to allocate the following entry in the TLS
 Application-Layer Protocol Negotiation (ALPN) Protocol IDs registry
 [RFC7301]:

 Protocol: Network Time Security Key Establishment, version 1

 Identification Sequence:
 0x6E 0x74 0x73 0x6B 0x65 0x2F 0x31 ("ntske/1")

 Reference: [[this memo]], Section 4

7.3. TLS Exporter Labels Registry

 IANA is requested to allocate the following entry in the TLS Exporter
 Labels Registry [RFC5705]:

 +-------------------+---------+-------------+----------------+------+
 | Value | DTLS-OK | Recommended | Reference | Note |
 +-------------------+---------+-------------+----------------+------+
 | EXPORTER-network- | Y | Y | [[this memo]], | |
 | time-security | | | Section 4.3 | |
 +-------------------+---------+-------------+----------------+------+

7.4. NTP Kiss-o’-Death Codes Registry

 IANA is requested to allocate the following entry in the registry of
 NTP Kiss-o’-Death Codes [RFC5905]:

 +------+---------------------------------------+--------------------+
 | Code | Meaning | Reference |
 +------+---------------------------------------+--------------------+
 | NTSN | Network Time Security (NTS) negative- | [[this memo]], |
 | | acknowledgment (NAK) | Section 5.7 |
 +------+---------------------------------------+--------------------+

7.5. NTP Extension Field Types Registry

 IANA is requested to allocate the following entries in the NTP
 Extension Field Types registry [RFC5905]:

Franke, et al. Expires September 26, 2020 [Page 26]

Internet-Draft Network Time Security for NTP March 2020

 +----------+-----------------------------+--------------------------+
 | Field | Meaning | Reference |
 | Type | | |
 +----------+-----------------------------+--------------------------+
[[TBD2]]	Unique Identifier	[[this memo]],
		Section 5.3
[[TBD3]]	NTS Cookie	[[this memo]],
		Section 5.4
[[TBD4]]	NTS Cookie Placeholder	[[this memo]],
		Section 5.5
[[TBD5]]	NTS Authenticator and	[[this memo]],
	Encrypted Extension Fields	Section 5.6
 +----------+-----------------------------+--------------------------+

 [[RFC EDITOR: REMOVE BEFORE PUBLICATION - The NTP WG suggests that
 the following values be used:

 Unique Identifier 0x0104
 NTS Cookie 0x0204
 Cookie Placeholder 0x0304
 NTS Authenticator 0x0404]]

 [[RFC EDITOR: Replace all instances of [[TBD2]], [[TBD3]], [[TBD4]],
 and [[TBD5]] in this document with the respective IANA assignments.]]

7.6. Network Time Security Key Establishment Record Types Registry

 IANA is requested to create a new registry entitled "Network Time
 Security Key Establishment Record Types". Entries SHALL have the
 following fields:

 Record Type Number (REQUIRED): An integer in the range 0-32767
 inclusive.

 Description (REQUIRED): A short text description of the purpose of
 the field.

 Reference (REQUIRED): A reference to a document specifying the
 semantics of the record.

 The policy for allocation of new entries in this registry SHALL vary
 by the Record Type Number, as follows:

 0-1023: IETF Review

 1024-16383: Specification Required

 16384-32767: Private and Experimental Use

Franke, et al. Expires September 26, 2020 [Page 27]

Internet-Draft Network Time Security for NTP March 2020

 The initial contents of this registry SHALL be as follows:

 +-------------+-------------------------+---------------------------+
 | Record Type | Description | Reference |
 | Number | | |
 +-------------+-------------------------+---------------------------+
0	End of Message	[[this memo]],
		Section 4.1.1
1	NTS Next Protocol	[[this memo]],
	Negotiation	Section 4.1.2
2	Error	[[this memo]],
		Section 4.1.3
3	Warning	[[this memo]],
		Section 4.1.4
4	AEAD Algorithm	[[this memo]],
	Negotiation	Section 4.1.5
5	New Cookie for NTPv4	[[this memo]],
		Section 4.1.6
6	NTPv4 Server	[[this memo]],
	Negotiation	Section 4.1.7
7	NTPv4 Port Negotiation	[[this memo]],
		Section 4.1.8
16384-32767	Reserved for Private &	[[this memo]]
	Experimental Use	
 +-------------+-------------------------+---------------------------+

7.7. Network Time Security Next Protocols Registry

 IANA is requested to create a new registry entitled "Network Time
 Security Next Protocols". Entries SHALL have the following fields:

 Protocol ID (REQUIRED): An integer in the range 0-65535 inclusive,
 functioning as an identifier.

 Protocol Name (REQUIRED): A short text string naming the protocol
 being identified.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries in these registries SHALL
 vary by their Protocol ID, as follows:

 0-1023: IETF Review

 1024-32767: Specification Required

 32768-65535: Private and Experimental Use

Franke, et al. Expires September 26, 2020 [Page 28]

Internet-Draft Network Time Security for NTP March 2020

 The initial contents of this registry SHALL be as follows:

 +-------------+-------------------------------+---------------------+
 | Protocol ID | Protocol Name | Reference |
 +-------------+-------------------------------+---------------------+
0	Network Time Protocol version	[[this memo]]
	4 (NTPv4)	
32768-65535	Reserved for Private or	Reserved by [[this
	Experimental Use	memo]]
 +-------------+-------------------------------+---------------------+

7.8. Network Time Security Error and Warning Codes Registries

 IANA is requested to create two new registries entitled "Network Time
 Security Error Codes" and "Network Time Security Warning Codes".
 Entries in each SHALL have the following fields:

 Number (REQUIRED): An integer in the range 0-65535 inclusive

 Description (REQUIRED): A short text description of the condition.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries in these registries SHALL
 vary by their Number, as follows:

 0-1023: IETF Review

 1024-32767: Specification Required

 32768-65535: Private and Experimental Use

 The initial contents of the Network Time Security Error Codes
 Registry SHALL be as follows:

 +-------------+------------------------------+----------------------+
 | Number | Description | Reference |
 +-------------+------------------------------+----------------------+
0	Unrecognized Critical	[[this memo]],
	Extension	Section 4.1.3
1	Bad Request	[[this memo]],
		Section 4.1.3
2	Internal Server Error	[[this memo]],
		Section 4.1.3
32768-65535	Reserved for Private or	Reserved by [[this
	Experimental Use	memo]]
 +-------------+------------------------------+----------------------+

Franke, et al. Expires September 26, 2020 [Page 29]

Internet-Draft Network Time Security for NTP March 2020

 The Network Time Security Warning Codes Registry SHALL initially be
 empty except for the reserved range, i.e.:

 +-------------+-------------------------------+---------------------+
 | Number | Description | Reference |
 +-------------+-------------------------------+---------------------+
 | 32768-65535 | Reserved for Private or | Reserved by [[this |
 | | Experimental Use | memo]] |
 +-------------+-------------------------------+---------------------+

8. Implementation Status - RFC EDITOR: REMOVE BEFORE PUBLICATION

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in RFC 7942.
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to RFC 7942, "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

8.1. Implementation 1

 Organization: Ostfalia University of Applied Science

 Implementor: Martin Langer

 Maturity: Proof-of-Concept Prototype

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

8.1.1. Coverage

 This implementation covers the complete specification.

Franke, et al. Expires September 26, 2020 [Page 30]

Internet-Draft Network Time Security for NTP March 2020

8.1.2. Licensing

 The code is released under a Apache License 2.0 license.

 The source code is available at: https://gitlab.com/MLanger/nts/

8.1.3. Contact Information

 Contact Martin Langer: mart.langer@ostfalia.de

8.1.4. Last Update

 The implementation was updated 25. February 2019.

8.2. Implementation 2

 Organization: Netnod

 Implementor: Christer Weinigel

 Maturity: Proof-of-Concept Prototype

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

8.2.1. Coverage

 This implementation covers the complete specification.

8.2.2. Licensing

 The source code is available at: https://github.com/Netnod/nts-poc-
 python.

 See LICENSE file for details on licensing (BSD 2).

8.2.3. Contact Information

 Contact Christer Weinigel: christer@weinigel.se

8.2.4. Last Update

 The implementation was updated 31. January 2019.

Franke, et al. Expires September 26, 2020 [Page 31]

Internet-Draft Network Time Security for NTP March 2020

8.3. Implementation 3

 Organization: Red Hat

 Implementor: Miroslav Lichvar

 Maturity: Prototype

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

8.3.1. Coverage

 This implementation covers the complete specification.

8.3.2. Licensing

 Licensing is GPLv2.

 The source code is available at: https://github.com/mlichvar/chrony-
 nts

8.3.3. Contact Information

 Contact Miroslav Lichvar: mlichvar@redhat.com

8.3.4. Last Update

 The implementation was updated 28. March 2019.

8.4. Implementation 4

 Organization: NTPsec

 Implementor: Hal Murray and NTPsec team

 Maturity:Looking for testers. Servers running at
 ntp1.glypnod.com:123 and ntp2.glypnod.com:123

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

8.4.1. Coverage

 This implementation covers the complete specification.

Franke, et al. Expires September 26, 2020 [Page 32]

Internet-Draft Network Time Security for NTP March 2020

8.4.2. Licensing

 The source code is available at: https://gitlab.com/NTPsec/ntpsec.
 Licensing details in LICENSE.

8.4.3. Contact Information

 Contact Hal Murray: hmurray@megapathdsl.net, devel@ntpsec.org

8.4.4. Last Update

 The implementation was updated 2019-Apr-10.

8.5. Implementation 5

 Organization: Cloudflare

 Implementor: Watson Ladd

 Maturity:

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

8.5.1. Coverage

 This implementation covers the server side of the NTS specification.

8.5.2. Licensing

 The source code is available at: https://github.com/wbl/nts-rust

 Licensing is ISC (details see LICENSE.txt file).

8.5.3. Contact Information

 Contact Watson Ladd: watson@cloudflare.com

8.5.4. Last Update

 The implementation was updated 21. March 2019.

8.6. Implementation 6

 Organization: Hacklunch, independent

 Implementor: Michael Cardell Widerkrantz, Daniel Lublin, Martin
 Samuelsson et. al.

Franke, et al. Expires September 26, 2020 [Page 33]

Internet-Draft Network Time Security for NTP March 2020

 Maturity: interoperable client, immature server

8.6.1. Coverage

 NTS-KE client and server.

8.6.2. Licensing

 Licensing is ISC (details in LICENSE file).

 Source code is available at: https://gitlab.com/hacklunch/ntsclient

8.6.3. Contact Information

 Contact Michael Cardell Widerkrantz: mc@netnod.se

8.6.4. Last Update

 The implementation was updated 6. February 2020.

8.7. Interoperability

 The Interoperability tests distinguished between NTS key
 establishment protocol and NTS time exchange messages. For the
 implementations 1, 2, 3, and 4 pairwise interoperability of the NTS
 key establishment protocol and exchange of NTS protected NTP messages
 have been verified successfully. The implementation 2 was able to
 successfully perform the key establishment protocol against the
 server side of the implementation 5.

 These tests successfully demonstrate that there are at least four
 running implementations of this draft which are able to interoperate.

9. Security Considerations

9.1. Protected Modes

 NTP provides many different operating modes in order to support
 different network topologies and to adapt to various requirements.
 This memo only specifies NTS for NTP modes 3 (client) and 4 (server)
 (see Section 1.2). The best current practice for authenticating the
 other NTP modes is using the symmetric message authentication code
 feature as described in RFC 5905 [RFC5905] and RFC 8573 [RFC8573].

Franke, et al. Expires September 26, 2020 [Page 34]

Internet-Draft Network Time Security for NTP March 2020

9.2. Cookie Encryption Key Compromise

 If the suggested format for NTS cookies in Section 6 of this draft is
 used, an attacker who has gained access to the secret cookie
 encryption key ‘K‘ can impersonate the NTP server, including
 generating new cookies. NTP and NTS-KE server operators SHOULD
 remove compromised keys as soon as the compromise is discovered.
 This will cause the NTP servers to respond with NTS NAK, thus forcing
 key renegotiation. Note that this measure does not protect against
 MITM attacks where the attacker has access to a compromised cookie
 encryption key. If another cookie scheme is used, there are likely
 similar considerations for that particular scheme.

9.3. Sensitivity to DDoS Attacks

 The introduction of NTS brings with it the introduction of asymmetric
 cryptography to NTP. Asymmetric cryptography is necessary for
 initial server authentication and AEAD key extraction. Asymmetric
 cryptosystems are generally orders of magnitude slower than their
 symmetric counterparts. This makes it much harder to build systems
 that can serve requests at a rate corresponding to the full line
 speed of the network connection. This, in turn, opens up a new
 possibility for DDoS attacks on NTP services.

 The main protection against these attacks in NTS lies in that the use
 of asymmetric cryptosystems is only necessary in the initial NTS-KE
 phase of the protocol. Since the protocol design enables separation
 of the NTS-KE and NTP servers, a successful DDoS attack on an NTS-KE
 server separated from the NTP service it supports will not affect NTP
 users that have already performed initial authentication, AEAD key
 extraction, and cookie exchange.

 NTS users should also consider that they are not fully protected
 against DoS attacks by on-path adversaries. In addition to dropping
 packets and attacks such as those described in Section 9.6, an on-
 path attacker can send spoofed kiss-o’-death replies, which are not
 authenticated, in response to NTP requests. This could result in
 significantly increased load on the NTS-KE server. Implementers have
 to weigh the user’s need for unlinkability against the added
 resilience that comes with cookie reuse in cases of NTS-KE server
 unavailability.

9.4. Avoiding DDoS Amplification

 Certain non-standard and/or deprecated features of the Network Time
 Protocol enable clients to send a request to a server which causes
 the server to send a response much larger than the request. Servers
 which enable these features can be abused in order to amplify traffic

Franke, et al. Expires September 26, 2020 [Page 35]

Internet-Draft Network Time Security for NTP March 2020

 volume in DDoS attacks by sending them a request with a spoofed
 source IP. In recent years, attacks of this nature have become an
 endemic nuisance.

 NTS is designed to avoid contributing any further to this problem by
 ensuring that NTS-related extension fields included in server
 responses will be the same size as the NTS-related extension fields
 sent by the client. In particular, this is why the client is
 required to send a separate and appropriately padded-out NTS Cookie
 Placeholder extension field for every cookie it wants to get back,
 rather than being permitted simply to specify a desired quantity.

 Due to the RFC 7822 [RFC7822] requirement that extensions be padded
 and aligned to four-octet boundaries, response size may still in some
 cases exceed request size by up to three octets. This is
 sufficiently inconsequential that we have declined to address it.

9.5. Initial Verification of Server Certificates

 NTS’s security goals are undermined if the client fails to verify
 that the X.509 certificate chain presented by the NTS-KE server is
 valid and rooted in a trusted certificate authority. RFC 5280
 [RFC5280] and RFC 6125 [RFC6125] specify how such verification is to
 be performed in general. However, the expectation that the client
 does not yet have a correctly-set system clock at the time of
 certificate verification presents difficulties with verifying that
 the certificate is within its validity period, i.e., that the current
 time lies between the times specified in the certificate’s notBefore
 and notAfter fields. It may be operationally necessary in some cases
 for a client to accept a certificate which appears to be expired or
 not yet valid. While there is no perfect solution to this problem,
 there are several mitigations the client can implement to make it
 more difficult for an adversary to successfully present an expired
 certificate:

 Check whether the system time is in fact unreliable. On systems
 with the ntp_adjtime() system call, a return code other than
 TIME_ERROR indicates that some trusted software has already set
 the time and certificates can be strictly validated.

 Allow the system administrator to specify that certificates should
 always be strictly validated. Such a configuration is
 appropriate on systems which have a battery-backed clock and which
 can reasonably prompt the user to manually set an approximately-
 correct time if it appears to be needed.

 Once the clock has been synchronized, periodically write the
 current system time to persistent storage. Do not accept any

Franke, et al. Expires September 26, 2020 [Page 36]

Internet-Draft Network Time Security for NTP March 2020

 certificate whose notAfter field is earlier than the last recorded
 time.

 NTP time replies are expected to be consistent with the NTS-KE TLS
 certificate validity period, i.e. time replies received
 immediately after an NTS-KE handshake are expected to lie within
 the certificate validity period. Implementations are recommended
 to check that this is the case. Performing a new NTS-KE handshake
 based solely on the fact that the certificate used by the NTS-KE
 server in a previous handshake has expired is normally not
 necessary. Clients that still wish to do this must take care not
 to cause an inadvertent denial-of-service attack on the NTS-KE
 server, for example by picking a random time in the week preceding
 certificate expiry to perform the new handshake.

 Use multiple time sources. The ability to pass off an expired
 certificate is only useful to an adversary who has compromised the
 corresponding private key. If the adversary has compromised only
 a minority of servers, NTP’s selection algorithm (RFC 5905 section
 11.2.1 [RFC5905]) will protect the client from accepting bad time
 from the adversary-controlled servers.

9.6. Delay Attacks

 In a packet delay attack, an adversary with the ability to act as a
 man-in-the-middle delays time synchronization packets between client
 and server asymmetrically [RFC7384]. Since NTP’s formula for
 computing time offset relies on the assumption that network latency
 is roughly symmetrical, this leads to the client to compute an
 inaccurate value [Mizrahi]. The delay attack does not reorder or
 modify the content of the exchanged synchronization packets.
 Therefore, cryptographic means do not provide a feasible way to
 mitigate this attack. However, the maximum error that an adversary
 can introduce is bounded by half of the round trip delay.

 RFC 5905 [RFC5905] specifies a parameter called MAXDIST which denotes
 the maximum round-trip latency (including not only the immediate
 round trip between client and server, but the whole distance back to
 the reference clock as reported in the Root Delay field) that a
 client will tolerate before concluding that the server is unsuitable
 for synchronization. The standard value for MAXDIST is one second,
 although some implementations use larger values. Whatever value a
 client chooses, the maximum error which can be introduced by a delay
 attack is MAXDIST/2.

 Usage of multiple time sources, or multiple network paths to a given
 time source [Shpiner], may also serve to mitigate delay attacks if
 the adversary is in control of only some of the paths.

Franke, et al. Expires September 26, 2020 [Page 37]

Internet-Draft Network Time Security for NTP March 2020

9.7. NTS Stripping

 Implementers must be aware of the possibility of "NTS stripping"
 attacks, where an attacker attempts to trick clients into reverting
 to plain NTP. Naive client implementations might, for example,
 revert automatically to plain NTP if the NTS-KE handshake fails. A
 man-in-the-middle attacker can easily cause this to happen. Even
 clients that already hold valid cookies can be vulnerable, since an
 attacker can force a client to repeat the NTS-KE handshake by sending
 faked NTP mode 4 replies with the NTS NAK kiss code. Forcing a
 client to repeat the NTS-KE handshake can also be the first step in
 more advanced attacks.

 For the reasons described here, implementations SHOULD NOT revert
 from NTS-protected to unprotected NTP with any server without
 explicit user action.

10. Privacy Considerations

10.1. Unlinkability

 Unlinkability prevents a device from being tracked when it changes
 network addresses (e.g. because said device moved between different
 networks). In other words, unlinkability thwarts an attacker that
 seeks to link a new network address used by a device with a network
 address that it was formerly using, because of recognizable data that
 the device persistently sends as part of an NTS-secured NTP
 association. This is the justification for continually supplying the
 client with fresh cookies, so that a cookie never represents
 recognizable data in the sense outlined above.

 NTS’s unlinkability objective is merely to not leak any additional
 data that could be used to link a device’s network address. NTS does
 not rectify legacy linkability issues that are already present in
 NTP. Thus, a client that requires unlinkability must also minimize
 information transmitted in a client query (mode 3) packet as
 described in the draft [I-D.ietf-ntp-data-minimization].

 The unlinkability objective only holds for time synchronization
 traffic, as opposed to key establishment traffic. This implies that
 it cannot be guaranteed for devices that function not only as time
 clients, but also as time servers (because the latter can be
 externally triggered to send linkable data, such as the TLS
 certificate).

 It should also be noted that it could be possible to link devices
 that operate as time servers from their time synchronization traffic,
 using information exposed in (mode 4) server response packets (e.g.

Franke, et al. Expires September 26, 2020 [Page 38]

Internet-Draft Network Time Security for NTP March 2020

 reference ID, reference time, stratum, poll). Also, devices that
 respond to NTP control queries could be linked using the information
 revealed by control queries.

 Note that the unlinkability objective does not prevent a client
 device to be tracked by its time servers.

10.2. Confidentiality

 NTS does not protect the confidentiality of information in NTP’s
 header fields. When clients implement
 [I-D.ietf-ntp-data-minimization], client packet headers do not
 contain any information which the client could conceivably wish to
 keep secret: one field is random, and all others are fixed.
 Information in server packet headers is likewise public: the origin
 timestamp is copied from the client’s (random) transmit timestamp,
 and all other fields are set the same regardless of the identity of
 the client making the request.

 Future extension fields could hypothetically contain sensitive
 information, in which case NTS provides a mechanism for encrypting
 them.

11. Acknowledgements

 The authors would like to thank Richard Barnes, Steven Bellovin,
 Scott Fluhrer, Patrik Faeltstroem (Faltstrom), Sharon Goldberg, Russ
 Housley, Benjamin Kaduk, Suresh Krishnan, Mirja Kuehlewind
 (Kuehlewind), Martin Langer, Barry Leiba, Miroslav Lichvar, Aanchal
 Malhotra, Danny Mayer, Dave Mills, Sandra Murphy, Hal Murray, Karen
 O’Donoghue, Eric K. Rescorla, Kurt Roeckx, Stephen Roettger, Dan
 Romascanu, Kyle Rose, Rich Salz, Brian Sniffen, Susan Sons, Douglas
 Stebila, Harlan Stenn, Joachim Stroembergsson (Strombergsson), Martin
 Thomson, Eric (Eric) Vyncke, Richard Welty, Christer Weinigel, and
 Magnus Westerlund for contributions to this document and comments on
 the design of NTS.

12. References

12.1. Normative References

 [IANA-AEAD]
 IANA, "Authenticated Encryption with Associated Data
 (AEAD) Parameters",
 <https://www.iana.org/assignments/aead-parameters/>.

Franke, et al. Expires September 26, 2020 [Page 39]

Internet-Draft Network Time Security for NTP March 2020

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <https://www.rfc-editor.org/info/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5297] Harkins, D., "Synthetic Initialization Vector (SIV)
 Authenticated Encryption Using the Advanced Encryption
 Standard (AES)", RFC 5297, DOI 10.17487/RFC5297, October
 2008, <https://www.rfc-editor.org/info/rfc5297>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <https://www.rfc-editor.org/info/rfc5890>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

Franke, et al. Expires September 26, 2020 [Page 40]

Internet-Draft Network Time Security for NTP March 2020

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6874] Carpenter, B., Cheshire, S., and R. Hinden, "Representing
 IPv6 Zone Identifiers in Address Literals and Uniform
 Resource Identifiers", RFC 6874, DOI 10.17487/RFC6874,
 February 2013, <https://www.rfc-editor.org/info/rfc6874>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7822] Mizrahi, T. and D. Mayer, "Network Time Protocol Version 4
 (NTPv4) Extension Fields", RFC 7822, DOI 10.17487/RFC7822,
 March 2016, <https://www.rfc-editor.org/info/rfc7822>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

12.2. Informative References

 [I-D.ietf-ntp-data-minimization]
 Franke, D. and A. Malhotra, "NTP Client Data
 Minimization", draft-ietf-ntp-data-minimization-04 (work
 in progress), March 2019.

Franke, et al. Expires September 26, 2020 [Page 41]

Internet-Draft Network Time Security for NTP March 2020

 [Mizrahi] Mizrahi, T., "A game theoretic analysis of delay attacks
 against time synchronization protocols", in Proceedings
 of Precision Clock Synchronization for Measurement Control
 and Communication, ISPCS 2012, pp. 1-6,
 DOI 10.1109/ISPCS.2012.6336612, September 2012.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/info/rfc5077>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC8573] Malhotra, A. and S. Goldberg, "Message Authentication Code
 for the Network Time Protocol", RFC 8573,
 DOI 10.17487/RFC8573, June 2019,
 <https://www.rfc-editor.org/info/rfc8573>.

 [Shpiner] Shpiner, A., Revah, Y., and T. Mizrahi, "Multi-path Time
 Protocols", in Proceedings of IEEE International Symposium
 on Precision Clock Synchronization for Measurement,
 Control and Communication (ISPCS),
 DOI 10.1109/ISPCS.2013.6644754, September 2013.

Appendix A. Terms and Abbreviations

 AEAD Authenticated Encryption with Associated Data [RFC5116]

 ALPN Application-Layer Protocol Negotiation [RFC7301]

 C2S Client-to-server

 DoS Denial-of-Service

 DDoS Distributed Denial-of-Service

 EF Extension Field [RFC5905]

 HKDF Hashed Message Authentication Code-based Key Derivation
 Function [RFC5869]

Franke, et al. Expires September 26, 2020 [Page 42]

Internet-Draft Network Time Security for NTP March 2020

 KoD Kiss-o’-Death [RFC5905]

 NTP Network Time Protocol [RFC5905]

 NTS Network Time Security

 NTS NAK NTS negative-acknowledgment

 NTS-KE Network Time Security Key Establishment

 S2C Server-to-client

 TLS Transport Layer Security [RFC8446]

Authors’ Addresses

 Daniel Fox Franke
 Akamai Technologies
 145 Broadway
 Cambridge, MA 02142
 United States

 Email: dafranke@akamai.com

 Dieter Sibold
 Physikalisch-Technische
 Bundesanstalt
 Bundesallee 100
 Braunschweig D-38116
 Germany

 Phone: +49-(0)531-592-8420
 Fax: +49-531-592-698420
 Email: dieter.sibold@ptb.de

 Kristof Teichel
 Physikalisch-Technische
 Bundesanstalt
 Bundesallee 100
 Braunschweig D-38116
 Germany

 Phone: +49-(0)531-592-4471
 Email: kristof.teichel@ptb.de

Franke, et al. Expires September 26, 2020 [Page 43]

Internet-Draft Network Time Security for NTP March 2020

 Marcus Dansarie
 Sweden

 Email: marcus@dansarie.se
 URI: https://orcid.org/0000-0001-9246-0263

 Ragnar Sundblad
 Netnod
 Sweden

 Email: ragge@netnod.se

Franke, et al. Expires September 26, 2020 [Page 44]

NTP Working Group N. Wu
Internet-Draft D. Dhody, Ed.
Intended status: Standards Track Huawei
Expires: 21 September 2022 A. Sinha, Ed.
 A. Kumar S N
 RtBrick Inc.
 Y. Zhao
 Ericsson
 20 March 2022

 A YANG Data Model for NTP
 draft-ietf-ntp-yang-data-model-17

Abstract

 This document defines a YANG data model for Network Time Protocol
 (NTP) version 4 implementations. It can also be used to configure
 version 3. The data model includes configuration data and state
 data.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 21 September 2022.

Wu, et al. Expires 21 September 2022 [Page 1]

Internet-Draft YANG for NTP March 2022

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Operational State . 3
 1.2. Terminology . 3
 1.3. Tree Diagrams . 3
 1.4. Prefixes in Data Node Names 3
 1.5. References in the Model 4
 2. NTP data model . 5
 3. Relationship with NTPv4-MIB 7
 4. Relationship with RFC 7317 9
 5. Access Rules . 9
 6. Key Management . 10
 7. NTP Version . 10
 8. NTP YANG Module . 11
 9. Usage Example . 41
 9.1. Unicast association 41
 9.2. Refclock master . 44
 9.3. Authentication configuration 44
 9.4. Access configuration 45
 9.5. Multicast configuration 46
 9.6. Manycast configuration 50
 9.7. Clock state . 53
 9.8. Get all association 53
 9.9. Global statistic . 55
 10. IANA Considerations . 55
 10.1. IETF XML Registry 55
 10.2. YANG Module Names 55
 11. Security Considerations 56
 12. Acknowledgments . 57
 13. References . 58
 13.1. Normative References 58
 13.2. Informative References 59
 Appendix A. Full YANG Tree 60

Wu, et al. Expires 21 September 2022 [Page 2]

Internet-Draft YANG for NTP March 2022

 Authors’ Addresses . 64

1. Introduction

 This document defines a YANG [RFC7950] data model for Network Time
 Protocol [RFC5905] implementations. Note that the model could also
 be used to configure NTPv3 [RFC1305] (see Section 7).

 The data model covers configuration of system parameters of NTP, such
 as access rules, authentication and VPN Routing and Forwarding (VRF)
 binding, and also various modes of NTP and per-interface parameters.
 It also provides access to information about running state of NTP
 implementations.

1.1. Operational State

 NTP Operational State is included in the same tree as NTP
 configuration, consistent with Network Management Datastore
 Architecture (NMDA) [RFC8342]. NTP current state and statistics are
 also maintained in the operational state. The operational state also
 includes the NTP association state.

1.2. Terminology

 The terminology used in this document is aligned to [RFC5905] and
 [RFC1305].

1.3. Tree Diagrams

 A simplified graphical representation of the data model is used in
 this document. This document uses the graphical representation of
 data models defined in [RFC8340].

1.4. Prefixes in Data Node Names

 In this document, names of data nodes and other data model objects
 are often used without a prefix, as long as it is clear from the
 context in which YANG module each name is defined. Otherwise, names
 are prefixed using the standard prefix associated with the
 corresponding YANG module, as shown in Table 1.

Wu, et al. Expires 21 September 2022 [Page 3]

Internet-Draft YANG for NTP March 2022

 +==========+==========================+===========+
 | Prefix | YANG module | Reference |
 +==========+==========================+===========+
 | yang | ietf-yang-types | [RFC6991] |
 +----------+--------------------------+-----------+
 | inet | ietf-inet-types | [RFC6991] |
 +----------+--------------------------+-----------+
 | if | ietf-interfaces | [RFC8343] |
 +----------+--------------------------+-----------+
 | sys | ietf-system | [RFC7317] |
 +----------+--------------------------+-----------+
 | acl | ietf-access-control-list | [RFC8519] |
 +----------+--------------------------+-----------+
 | rt-types | ietf-routing-types | [RFC8294] |
 +----------+--------------------------+-----------+
 | nacm | ietf-netconf-acm | [RFC8341] |
 +----------+--------------------------+-----------+

 Table 1: Prefixes and corresponding YANG modules

1.5. References in the Model

 Following documents are referenced in the model defined in this
 document -

Wu, et al. Expires 21 September 2022 [Page 4]

Internet-Draft YANG for NTP March 2022

 +=======================================+===========+
 | Title | Reference |
 +=======================================+===========+
 | Network Time Protocol Version 4: | [RFC5905] |
 | Protocol and Algorithms Specification | |
 +---------------------------------------+-----------+
 | Common YANG Data Types | [RFC6991] |
 +---------------------------------------+-----------+
 | A YANG Data Model for System | [RFC7317] |
 | Management | |
 +---------------------------------------+-----------+
 | Common YANG Data Types for the | [RFC8294] |
 | Routing Area | |
 +---------------------------------------+-----------+
 | Network Configuration Access Control | [RFC8341] |
 | Model | |
 +---------------------------------------+-----------+
 | A YANG Data Model for Interface | [RFC8343] |
 | Management | |
 +---------------------------------------+-----------+
 | YANG Data Model for Network Access | [RFC8519] |
 | Control Lists (ACLs) | |
 +---------------------------------------+-----------+
 | Message Authentication Code for the | [RFC8573] |
 | Network Time Protocol | |
 +---------------------------------------+-----------+
 | The AES-CMAC Algorithm | [RFC4493] |
 +---------------------------------------+-----------+
 | The MD5 Message-Digest Algorithm | [RFC1321] |
 +---------------------------------------+-----------+
 | US Secure Hash Algorithm 1 (SHA1) | [RFC3174] |
 +---------------------------------------+-----------+
 | FIPS 180-4: Secure Hash Standard | [SHS] |
 | (SHS) | |
 +---------------------------------------+-----------+

 Table 2: References in the YANG modules

2. NTP data model

 This document defines the YANG module "ietf-ntp", which has the
 following condensed structure:

Wu, et al. Expires 21 September 2022 [Page 5]

Internet-Draft YANG for NTP March 2022

 module: ietf-ntp
 +--rw ntp!
 +--rw port? inet:port-number {ntp-port}?
 +--rw refclock-master!
 | +--rw master-stratum? ntp-stratum
 +--rw authentication {authentication}?
 | +--rw auth-enabled? boolean
 | +--rw authentication-keys* [key-id]
 | +--rw key-id uint32
 | +--...
 +--rw access-rules {access-rules}?
 | +--rw access-rule* [access-mode]
 | +--rw access-mode identityref
 | +--rw acl? -> /acl:acls/acl/name
 +--ro clock-state
 | +--ro system-status
 | +--ro clock-state identityref
 | +--ro clock-stratum ntp-stratum
 | +--ro clock-refid refid
 | +--...
 +--rw unicast-configuration* [address type]
 | {unicast-configuration}?
 | +--rw address inet:ip-address
 | +--rw type identityref
 | +--...
 +--rw associations
 | +--ro association* [address local-mode isconfigured]
 | +--ro address inet:ip-address
 | +--ro local-mode identityref
 | +--ro isconfigured boolean
 | +--...
 | +--ro ntp-statistics
 | +--...
 +--rw interfaces
 | +--rw interface* [name]
 | +--rw name if:interface-ref
 | +--rw broadcast-server! {broadcast-server}?
 | | +--...
 | +--rw broadcast-client! {broadcast-client}?
 | +--rw multicast-server* [address] {multicast-server}?
 | | +--rw address
 | | | rt-types:ip-multicast-group-address
 | | +--...
 | +--rw multicast-client* [address] {multicast-client}?
 | | +--rw address rt-types:ip-multicast-group-address
 | +--rw manycast-server* [address] {manycast-server}?
 | | +--rw address rt-types:ip-multicast-group-address
 | +--rw manycast-client* [address] {manycast-client}?

Wu, et al. Expires 21 September 2022 [Page 6]

Internet-Draft YANG for NTP March 2022

 | +--rw address
 | | rt-types:ip-multicast-group-address
 | +--...
 +--ro ntp-statistics
 +--...

 rpcs:
 +---x statistics-reset
 +---w input
 +---w (association-or-all)?
 +--:(association)
 | +---w associations-address?
 | | -> /ntp/associations/association/address
 | +---w associations-local-mode?
 | | -> /ntp/associations/association/local-mode
 | +---w associations-isconfigured?
 | -> /ntp/associations/association/isconfigured
 +--:(all)

 The full data model tree for the YANG module "ietf-ntp" is in
 Appendix A.

 This data model defines one top-level container which includes both
 the NTP configuration and the NTP running state including access
 rules, authentication, associations, unicast configurations,
 interfaces, system status and associations.

3. Relationship with NTPv4-MIB

 If the device implements the NTPv4-MIB [RFC5907], data nodes from
 YANG module can be mapped to table entries in NTPv4-MIB.

 The following tables list the YANG data nodes with corresponding
 objects in the NTPv4-MIB.

 YANG NTP Configuration Data Nodes and Related NTPv4-MIB Objects

 +===========================+=================================+
 | YANG data nodes in /ntp/ | NTPv4-MIB objects |
 | clock-state/system-status | |
 +===========================+=================================+
 | clock-state | ntpEntStatusCurrentMode |
 +---------------------------+---------------------------------+
 | clock-stratum | ntpEntStatusStratum |
 +---------------------------+---------------------------------+
 | clock-refid | ntpEntStatusActiveRefSourceId |
 +---------------------------+---------------------------------+
 | | ntpEntStatusActiveRefSourceName |

Wu, et al. Expires 21 September 2022 [Page 7]

Internet-Draft YANG for NTP March 2022

 +---------------------------+---------------------------------+
 | clock-precision | ntpEntTimePrecision |
 +---------------------------+---------------------------------+
 | clock-offset | ntpEntStatusActiveOffset |
 +---------------------------+---------------------------------+
 | root-dispersion | ntpEntStatusDispersion |
 +---------------------------+---------------------------------+

 Table 3

 +=======================================+===========================+
 | YANG data nodes in | NTPv4-MIB objects |
 | /ntp/associations/ | |
 +=======================================+===========================+
 | address | ntpAssocAddressType |
 +---------------------------------------+---------------------------+
 | | ntpAssocAddress |
 +---------------------------------------+---------------------------+
 | stratum | ntpAssocStratum |
 +---------------------------------------+---------------------------+
 | refid | ntpAssocRefId |
 +---------------------------------------+---------------------------+
 | offset | ntpAssocOffset |
 +---------------------------------------+---------------------------+
 | delay | ntpAssocStatusDelay |
 +---------------------------------------+---------------------------+
 | dispersion | ntpAssocStatusDispersion |
 +---------------------------------------+---------------------------+
 | ntp-statistics/ | ntpAssocStatOutPkts |
 | packet-sent | |
 +---------------------------------------+---------------------------+
 | ntp-statistics/ | ntpAssocStatInPkts |
 | packet-received | |
 +---------------------------------------+---------------------------+
 | ntp-statistics/ | ntpAssocStatProtocolError |
 | packet-dropped | |
 +---------------------------------------+---------------------------+

 Table 4

 YANG NTP State Data Nodes and Related NTPv4-MIB Objects

Wu, et al. Expires 21 September 2022 [Page 8]

Internet-Draft YANG for NTP March 2022

4. Relationship with RFC 7317

 This section describes the relationship with NTP definition in
 Section 3.2 System Time Management of [RFC7317] . YANG data nodes in
 /ntp/ also support per-interface configuration which is not supported
 in /system/ntp. If the yang model defined in this document is
 implemented, then /system/ntp SHOULD NOT be used and MUST be ignored.

 +===============================+================================+
 | YANG data nodes in /ntp/ | YANG data nodes in /system/ntp |
 +===============================+================================+
 | ntp! | enabled |
 +-------------------------------+--------------------------------+
 | unicast-configuration | server |
 +-------------------------------+--------------------------------+
 | | server/name |
 +-------------------------------+--------------------------------+
 | unicast-configuration/address | server/transport/udp/address |
 +-------------------------------+--------------------------------+
 | unicast-configuration/port | server/transport/udp/port |
 +-------------------------------+--------------------------------+
 | unicast-configuration/type | server/association-type |
 +-------------------------------+--------------------------------+
 | unicast-configuration/iburst | server/iburst |
 +-------------------------------+--------------------------------+
 | unicast-configuration/prefer | server/prefer |
 +-------------------------------+--------------------------------+

 Table 5

 YANG NTP Configuration Data Nodes and counterparts in RFC 7317
 Objects

5. Access Rules

 The access rules in this section refers to the on-the-wire access
 control to the NTP service and completely independent of any
 management API access control, e.g., NETCONF Access Control Model
 (NACM) ([RFC8341]).

 An Access Control List (ACL) is one of the basic elements used to
 configure device-forwarding behavior. An ACL is a user-ordered set
 of rules that is used to filter traffic on a networking device.

 As per [RFC1305] (for NTPv3) and [RFC5905] (for NTPv4), NTP could
 include an access-control feature that prevents unauthorized access
 and controls which peers are allowed to update the local clock.
 Further it is useful to differentiate between the various kinds of

Wu, et al. Expires 21 September 2022 [Page 9]

Internet-Draft YANG for NTP March 2022

 access and attach a different acl-rule to each. For this, the YANG
 module allows such configuration via /ntp/access-rules. The access-
 rule itself is configured via [RFC8519].

 Following access modes are supported -

 * Peer: Permit others to synchronize their time with the NTP entity
 or it can synchronize its time with others. NTP control queries
 are also accepted.

 * Server: Permit others to synchronize their time with the NTP
 entity, but vice versa is not supported. NTP control queries are
 accepted.

 * Server-only: Permit others to synchronize their time with NTP
 entity, but vice versa is not supported. NTP control queries are
 not accepted.

 * Query-only: Only control queries are accepted.

 Query-only is the most restricted where as the peer is the full
 access authority. The ability to give different ACL rules for
 different access modes allows for a greater control by the operator.

6. Key Management

 As per [RFC1305] (for NTPv3) and [RFC5905] (for NTPv4), when
 authentication is enabled, NTP employs a crypto-checksum, computed by
 the sender and checked by the receiver, together with a set of
 predistributed algorithms, and cryptographic keys indexed by a key
 identifier included in the NTP message. This key-id is a 32-bit
 unsigned integer that MUST be configured on the NTP peers before the
 authentication could be used. For this reason, this YANG module
 allows such configuration via /ntp/authentication/authentication-
 keys/. Further at the time of configuration of NTP association (for
 example unicast-server), the key-id is specified.

 The ’nacm:default-deny-all’ is used to prevent retrieval of the
 actual key information after it is set.

7. NTP Version

 This YANG model allow a version to be configured for the NTP
 association i.e. an operator can control the use of NTPv3 [RFC1305]
 or NTPv4 [RFC5905] for each association it forms. This allows
 backward compatibility with a legacy system. Note that the version 3
 of NTP [RFC1305] is obsoleted by NTPv4 [RFC5905].

Wu, et al. Expires 21 September 2022 [Page 10]

Internet-Draft YANG for NTP March 2022

8. NTP YANG Module

 <CODE BEGINS> file "ietf-ntp@2022-03-21.yang"
 module ietf-ntp {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-ntp";
 prefix ntp;

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }
 import ietf-system {
 prefix sys;
 reference
 "RFC 7317: A YANG Data Model for System Management";
 }
 import ietf-access-control-list {
 prefix acl;
 reference
 "RFC 8519: YANG Data Model for Network Access Control
 Lists (ACLs)";
 }
 import ietf-routing-types {
 prefix rt-types;
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
 }
 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Protocol (NETCONF) Access
 Control Model";
 }

 organization
 "IETF NTP (Network Time Protocol) Working Group";

Wu, et al. Expires 21 September 2022 [Page 11]

Internet-Draft YANG for NTP March 2022

 contact
 "WG Web: <https://datatracker.ietf.org/wg/ntp/about/>
 WG List: <mailto: ntp@ietf.org
 Editor: Dhruv Dhody
 <mailto:dhruv.ietf@gmail.com>
 Editor: Ankit Kumar Sinha
 <mailto:ankit.ietf@gmail.com>";
 description
 "This document defines a YANG data model for Network Time Protocol
 (NTP) implementations. The data model includes configuration data
 and state data.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

 revision 2022-03-21 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A YANG Data Model for NTP.";
 }

 /* Note: The RFC Editor will replace XXXX with the number assigned
 to this document once it becomes an RFC.*/
 /* Typedef Definitions */

 typedef ntp-stratum {
 type uint8 {
 range "1..16";
 }
 description
 "The level of each server in the hierarchy is defined by

Wu, et al. Expires 21 September 2022 [Page 12]

Internet-Draft YANG for NTP March 2022

 a stratum. Primary servers are assigned with stratum
 one; secondary servers at each lower level are assigned with
 one stratum greater than the preceding level";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3";
 }

 typedef ntp-version {
 type uint8 {
 range "3..max";
 }
 default "4";
 description
 "The current NTP version supported by corresponding
 association.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 1";
 }

 typedef refid {
 type union {
 type inet:ipv4-address;
 type uint32;
 type string {
 length "4";
 }
 }
 description
 "A code identifying the particular server or reference
 clock. The interpretation depends upon stratum. It
 could be an IPv4 address or first 32 bits of the MD5 hash of
 the IPv6 address or a string for the Reference Identifier
 and KISS codes. Some examples:
 -- a refclock ID like ’127.127.1.0’ for local clock sync
 -- uni/multi/broadcast associations for IPv4 will look like
 ’203.0.113.1’ and ’0x4321FEDC’ for IPv6
 -- sync with primary source will look like ’DCN’, ’NIST’,
 ’ATOM’
 -- KISS codes will look like ’AUTH’, ’DROP’, ’RATE’
 Note that the use of MD5 hash for IPv6 address is not for
 cryptographic purposes ";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.3";
 }

Wu, et al. Expires 21 September 2022 [Page 13]

Internet-Draft YANG for NTP March 2022

 typedef ntp-date-and-time {
 type union {
 type yang:date-and-time;
 type uint8;
 }
 description
 "Follows the date-and-time format when valid value exist,
 otherwise allows for setting special value such as
 zero.";
 reference
 "RFC 6991: Common YANG Data Types";
 }

 typedef log2seconds {
 type int8;
 description
 "An 8-bit signed integer that represents signed log2
 seconds.";
 }

 /* features */

 feature ntp-port {
 description
 "Support for NTP port configuration";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.2";
 }

 feature authentication {
 description
 "Support for NTP symmetric key authentication";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.3";
 }

 feature deprecated {
 description
 "Support deprecated MD5-based authentication (RFC 8573) or
 SHA-1 or any other deprecated authentication mechanism.
 It is enabled to support legacy compatibility when secure
 cryptographic algorithms are not available to use.
 It is also used to configure keystrings in ASCII format.";
 reference
 "RFC 1321: The MD5 Message-Digest Algorithm
 RFC 3174: US Secure Hash Algorithm 1 (SHA1)

Wu, et al. Expires 21 September 2022 [Page 14]

Internet-Draft YANG for NTP March 2022

 FIPS 180-4: Secure Hash Standard (SHS)";
 }

 feature hex-key-string {
 description
 "Support hexadecimal key string.";
 }

 feature access-rules {
 description
 "Support for NTP access control";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 9.2";
 }

 feature unicast-configuration {
 description
 "Support for NTP client/server or active/passive
 in unicast";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3";
 }

 feature broadcast-server {
 description
 "Support for broadcast server";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3";
 }

 feature broadcast-client {
 description
 "Support for broadcast client";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3";
 }

 feature multicast-server {
 description
 "Support for multicast server";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }

Wu, et al. Expires 21 September 2022 [Page 15]

Internet-Draft YANG for NTP March 2022

 feature multicast-client {
 description
 "Support for multicast client";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }

 feature manycast-server {
 description
 "Support for manycast server";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }

 feature manycast-client {
 description
 "Support for manycast client";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }

 /* Identity */
 /* unicast-configurations types */

 identity unicast-configuration-type {
 if-feature "unicast-configuration";
 description
 "This defines NTP unicast mode of operation as used
 for unicast-configurations.";
 }

 identity uc-server {
 if-feature "unicast-configuration";
 base unicast-configuration-type;
 description
 "Use client association mode where the unicast server
 address is configured.";
 }

 identity uc-peer {
 if-feature "unicast-configuration";
 base unicast-configuration-type;
 description
 "Use symmetric active association mode where the peer
 address is configured.";

Wu, et al. Expires 21 September 2022 [Page 16]

Internet-Draft YANG for NTP March 2022

 }

 /* association-modes */

 identity association-mode {
 description
 "The NTP association modes.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3";
 }

 identity active {
 base association-mode;
 description
 "Use symmetric active association mode (mode 1).
 This device may synchronize with its NTP peer,
 or provide synchronization to configured NTP peer.";
 }

 identity passive {
 base association-mode;
 description
 "Use symmetric passive association mode (mode 2).
 This device has learned this association dynamically.
 This device may synchronize with its NTP peer.";
 }

 identity client {
 base association-mode;
 description
 "Use client association mode (mode 3).
 This device will not provide synchronization
 to the configured NTP server.";
 }

 identity server {
 base association-mode;
 description
 "Use server association mode (mode 4).
 This device will provide synchronization to
 NTP clients.";
 }

 identity broadcast-server {
 base association-mode;
 description
 "Use broadcast server mode (mode 5).

Wu, et al. Expires 21 September 2022 [Page 17]

Internet-Draft YANG for NTP March 2022

 This mode defines that its either working
 as broadcast-server or multicast-server.";
 }

 identity broadcast-client {
 base association-mode;
 description
 "This mode defines that its either working
 as broadcast-client (mode 6) or multicast-client.";
 }

 /* access-mode */

 identity access-mode {
 if-feature "access-rules";
 description
 "This defines NTP access modes. These identify
 how the ACL is applied with NTP.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 9.2";
 }

 identity peer-access-mode {
 if-feature "access-rules";
 base access-mode;
 description
 "Permit others to synchronize their time with this NTP
 entity or it can synchronize its time with others.
 NTP control queries are also accepted. This enables
 full access authority.";
 }

 identity server-access-mode {
 if-feature "access-rules";
 base access-mode;
 description
 "Permit others to synchronize their time with this NTP
 entity, but vice versa is not supported. NTP control
 queries are accepted.";
 }

 identity server-only-access-mode {
 if-feature "access-rules";
 base access-mode;
 description
 "Permit others to synchronize their time with this NTP
 entity, but vice versa is not supported. NTP control

Wu, et al. Expires 21 September 2022 [Page 18]

Internet-Draft YANG for NTP March 2022

 queries are not accepted.";
 }

 identity query-only-access-mode {
 if-feature "access-rules";
 base access-mode;
 description
 "Only control queries are accepted.";
 }

 /* clock-state */

 identity clock-state {
 description
 "This defines NTP clock status at a high level.";
 }

 identity synchronized {
 base clock-state;
 description
 "Indicates that the local clock has been synchronized with
 an NTP server or the reference clock.";
 }

 identity unsynchronized {
 base clock-state;
 description
 "Indicates that the local clock has not been synchronized
 with any NTP server.";
 }

 /* ntp-sync-state */

 identity ntp-sync-state {
 description
 "This defines NTP clock sync state at a more granular
 level. Referred as ’Clock state definitions’ in RFC 5905";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Appendix A.1.1";
 }

 identity clock-never-set {
 base ntp-sync-state;
 description
 "Indicates the clock was never set.";
 }

Wu, et al. Expires 21 September 2022 [Page 19]

Internet-Draft YANG for NTP March 2022

 identity freq-set-by-cfg {
 base ntp-sync-state;
 description
 "Indicates the clock frequency is set by
 NTP configuration or file.";
 }

 identity spike {
 base ntp-sync-state;
 description
 "Indicates a spike is detected.";
 }

 identity freq {
 base ntp-sync-state;
 description
 "Indicates the frequency mode.";
 }

 identity clock-synchronized {
 base ntp-sync-state;
 description
 "Indicates that the clock is synchronized";
 }

 /* crypto-algorithm */

 identity crypto-algorithm {
 description
 "Base identity of cryptographic algorithm options.";
 }

 identity md5 {
 if-feature "deprecated";
 base crypto-algorithm;
 description
 "The MD5 algorithm. Note that RFC 8573
 deprecates the use of MD5-based authentication.";
 reference
 "RFC 1321: The MD5 Message-Digest Algorithm";
 }

 identity sha-1 {
 if-feature "deprecated";
 base crypto-algorithm;
 description
 "The SHA-1 algorithm.";
 reference

Wu, et al. Expires 21 September 2022 [Page 20]

Internet-Draft YANG for NTP March 2022

 "RFC 3174: US Secure Hash Algorithm 1 (SHA1)";
 }

 identity hmac-sha-1 {
 if-feature "deprecated";
 base crypto-algorithm;
 description
 "HMAC-SHA-1 authentication algorithm.";
 reference
 "FIPS 180-4: Secure Hash Standard (SHS)";
 }

 identity hmac-sha1-12 {
 if-feature "deprecated";
 base crypto-algorithm;
 description
 "The HMAC-SHA1-12 algorithm.";
 }

 identity hmac-sha-256 {
 description
 "HMAC-SHA-256 authentication algorithm.";
 reference
 "FIPS 180-4: Secure Hash Standard (SHS)";
 }

 identity hmac-sha-384 {
 description
 "HMAC-SHA-384 authentication algorithm.";
 reference
 "FIPS 180-4: Secure Hash Standard (SHS)";
 }

 identity hmac-sha-512 {
 description
 "HMAC-SHA-512 authentication algorithm.";
 reference
 "FIPS 180-4: Secure Hash Standard (SHS)";
 }

 identity aes-cmac {
 base crypto-algorithm;
 description
 "The AES-CMAC algorithm - required by
 RFC 8573 for MAC for the NTP";
 reference
 "RFC 4493: The AES-CMAC Algorithm
 RFC 8573: Message Authentication Code for the Network

Wu, et al. Expires 21 September 2022 [Page 21]

Internet-Draft YANG for NTP March 2022

 Time Protocol";
 }

 /* Groupings */

 grouping key {
 description
 "The key.";
 nacm:default-deny-all;
 choice key-string-style {
 description
 "Key string styles";
 case keystring {
 leaf keystring {
 if-feature "deprecated";
 type string;
 description
 "Key string in ASCII format.";
 }
 }
 case hexadecimal {
 if-feature "hex-key-string";
 leaf hexadecimal-string {
 type yang:hex-string;
 description
 "Key in hexadecimal string format. When compared
 to ASCII, specification in hexadecimal affords
 greater key entropy with the same number of
 internal key-string octets. Additionally, it
 discourages usage of well-known words or
 numbers.";
 }
 }
 }
 }

 grouping authentication-key {
 description
 "To define an authentication key for a Network Time
 Protocol (NTP) time source.";
 leaf key-id {
 type uint32 {
 range "1..max";
 }
 description
 "Authentication key identifier.";
 }
 leaf algorithm {

Wu, et al. Expires 21 September 2022 [Page 22]

Internet-Draft YANG for NTP March 2022

 type identityref {
 base crypto-algorithm;
 }
 description
 "Authentication algorithm. Note that RFC 8573
 deprecates the use of MD5-based authentication
 and recommends AES-CMAC.";
 }
 container key {
 uses key;
 description
 "The key. Note that RFC 8573 deprecates the use
 of MD5-based authentication.";
 }
 leaf istrusted {
 type boolean;
 description
 "Key-id is trusted or not";
 }
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.3 and 7.4";
 }

 grouping authentication {
 description
 "Authentication.";
 choice authentication-type {
 description
 "Type of authentication.";
 case symmetric-key {
 leaf key-id {
 type leafref {
 path "/ntp:ntp/ntp:authentication/"
 + "ntp:authentication-keys/ntp:key-id";
 }
 description
 "Authentication key id referenced in this
 association.";
 }
 }
 }
 }

 grouping statistics {
 description
 "NTP packet statistic.";
 leaf discontinuity-time {

Wu, et al. Expires 21 September 2022 [Page 23]

Internet-Draft YANG for NTP March 2022

 type ntp-date-and-time;
 description
 "The time on the most recent occasion at which any one or
 more of this NTP counters suffered a discontinuity. If
 no such discontinuities have occurred, then this node
 contains the time the NTP association was
 (re-)initialized.";
 }
 leaf packet-sent {
 type yang:counter32;
 description
 "The total number of NTP packets delivered to the
 transport service by this NTP entity for this
 association.
 Discontinuities in the value of this counter can occur
 upon cold start or reinitialization of the NTP entity, the
 management system and at other times.";
 }
 leaf packet-sent-fail {
 type yang:counter32;
 description
 "The number of times NTP packets sending failed.";
 }
 leaf packet-received {
 type yang:counter32;
 description
 "The total number of NTP packets delivered to the
 NTP entity from this association.
 Discontinuities in the value of this counter can occur
 upon cold start or reinitialization of the NTP entity, the
 management system and at other times.";
 }
 leaf packet-dropped {
 type yang:counter32;
 description
 "The total number of NTP packets that were delivered
 to this NTP entity from this association and this entity
 was not able to process due to an NTP protocol error.
 Discontinuities in the value of this counter can occur
 upon cold start or reinitialization of the NTP entity, the
 management system and at other times.";
 }
 }

 grouping common-attributes {
 description
 "NTP common attributes for configuration.";
 leaf minpoll {

Wu, et al. Expires 21 September 2022 [Page 24]

Internet-Draft YANG for NTP March 2022

 type log2seconds;
 default "6";
 description
 "The minimum poll interval used in this association.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.2";
 }
 leaf maxpoll {
 type log2seconds;
 default "10";
 description
 "The maximum poll interval used in this association.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.2";
 }
 leaf port {
 if-feature "ntp-port";
 type inet:port-number {
 range "123 | 1024..max";
 }
 default "123";
 description
 "Specify the port used to send NTP packets.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.2";
 }
 leaf version {
 type ntp-version;
 description
 "NTP version.";
 }
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification";
 }

 grouping association-ref {
 description
 "Reference to NTP association mode";
 leaf associations-address {
 type leafref {
 path "/ntp:ntp/ntp:associations/ntp:association"
 + "/ntp:address";
 }
 description

Wu, et al. Expires 21 September 2022 [Page 25]

Internet-Draft YANG for NTP March 2022

 "Indicates the association’s address
 which result in clock synchronization.";
 }
 leaf associations-local-mode {
 type leafref {
 path "/ntp:ntp/ntp:associations/ntp:association"
 + "/ntp:local-mode";
 }
 description
 "Indicates the association’s local-mode
 which result in clock synchronization.";
 }
 leaf associations-isconfigured {
 type leafref {
 path "/ntp:ntp/ntp:associations/ntp:association/"
 + "ntp:isconfigured";
 }
 description
 "Indicates if the association (that resulted in the
 clock synchronization) is explicitly configured.";
 }
 }

 container ntp {
 when ’false() = boolean(/sys:system/sys:ntp)’ {
 description
 "Applicable when the system /sys/ntp/ is not used.";
 }
 presence "NTP is enabled and system should attempt to
 synchronize the system clock with an NTP server
 from the ’ntp/associations’ list.";
 description
 "Configuration parameters for NTP.";
 leaf port {
 if-feature "ntp-port";
 type inet:port-number {
 range "123 | 1024..max";
 }
 default "123";
 description
 "Specify the port used to send and receive NTP packets.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.2";
 }
 container refclock-master {
 presence "NTP master clock is enabled.";
 description

Wu, et al. Expires 21 September 2022 [Page 26]

Internet-Draft YANG for NTP March 2022

 "Configures the local clock of this device as NTP server.";
 leaf master-stratum {
 type ntp-stratum;
 default "16";
 description
 "Stratum level from which NTP clients get their time
 synchronized.";
 }
 }
 container authentication {
 if-feature "authentication";
 description
 "Configuration of authentication.";
 leaf auth-enabled {
 type boolean;
 default "false";
 description
 "Controls whether NTP authentication is enabled
 or disabled on this device.";
 }
 list authentication-keys {
 key "key-id";
 uses authentication-key;
 description
 "List of authentication keys.";
 }
 }
 container access-rules {
 if-feature "access-rules";
 description
 "Configuration to control access to NTP service
 by using NTP access-group feature.
 The access-mode identifies how the ACL is
 applied with NTP.";
 list access-rule {
 key "access-mode";
 description
 "List of access rules.";
 leaf access-mode {
 type identityref {
 base access-mode;
 }
 description
 "The NTP access mode. Some of the possible value
 includes peer, server, synchronization, query
 etc.";
 }
 leaf acl {

Wu, et al. Expires 21 September 2022 [Page 27]

Internet-Draft YANG for NTP March 2022

 type leafref {
 path "/acl:acls/acl:acl/acl:name";
 }
 description
 "Control access configuration to be used.";
 }
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 9.2";
 }
 }
 container clock-state {
 config false;
 description
 "Clock operational state of the NTP.";
 container system-status {
 description
 "System status of NTP.";
 leaf clock-state {
 type identityref {
 base clock-state;
 }
 mandatory true;
 description
 "The state of system clock. Some of the possible value
 includes synchronized and unsynchronized";
 }
 leaf clock-stratum {
 type ntp-stratum;
 mandatory true;
 description
 "The NTP entity’s own stratum value. Should be one greater
 than preceeding level. 16 if unsyncronized.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3";
 }
 leaf clock-refid {
 type refid;
 mandatory true;
 description
 "A code identifying the particular server or reference
 clock. The interpretation depends upon stratum. It
 could be an IPv4 address or first 32 bits of the MD5 hash
 of the IPv6 address or a string for the Reference
 Identifier and KISS codes. Some examples:
 -- a refclock ID like ’127.127.1.0’ for local clock sync
 -- uni/multi/broadcast associations for IPv4 will look like

Wu, et al. Expires 21 September 2022 [Page 28]

Internet-Draft YANG for NTP March 2022

 ’203.0.113.1’ and ’0x4321FEDC’ for IPv6
 -- sync with primary source will look like ’DCN’, ’NIST’,
 ’ATOM’
 -- KISS codes will look like ’AUTH’, ’DROP’, ’RATE’
 Note that the use of MD5 hash for IPv6 address is not for
 cryptographic purposes ";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.3";
 }
 uses association-ref {
 description
 "Reference to Association.";
 }
 leaf nominal-freq {
 type decimal64 {
 fraction-digits 4;
 }
 units "Hz";
 mandatory true;
 description
 "The nominal frequency of the local clock. An ideal
 frequency with zero uncertainty.";
 }
 leaf actual-freq {
 type decimal64 {
 fraction-digits 4;
 }
 units "Hz";
 mandatory true;
 description
 "The actual frequency of the local clock.";
 }
 leaf clock-precision {
 type log2seconds;
 mandatory true;
 description
 "Clock precision of this system in signed integer format,
 in log 2 seconds - (prec=2^(-n)). A value of 5 would
 mean 2^-5 = 0.03125 seconds = 31.25 ms.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.3";
 }
 leaf clock-offset {
 type decimal64 {
 fraction-digits 3;
 }

Wu, et al. Expires 21 September 2022 [Page 29]

Internet-Draft YANG for NTP March 2022

 units "milliseconds";
 description
 "The signed time offset to the current selected reference
 time source e.g., ’0.032ms’ or ’1.232ms’. The negative
 value Indicates that the local clock is behind the
 current selected reference time source.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 9.1";
 }
 leaf root-delay {
 type decimal64 {
 fraction-digits 3;
 }
 units "milliseconds";
 description
 "Total delay along the path to root clock.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 4 and 7.3";
 }
 leaf root-dispersion {
 type decimal64 {
 fraction-digits 3;
 }
 units "milliseconds";
 description
 "The dispersion between the local clock
 and the root clock, e.g., ’6.927ms’.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 4, 7.3 and 10.";
 }
 leaf reference-time {
 type ntp-date-and-time;
 description
 "The reference timestamp. Time when the system clock was
 last set or corrected";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.3";
 }
 leaf sync-state {
 type identityref {
 base ntp-sync-state;
 }
 mandatory true;
 description

Wu, et al. Expires 21 September 2022 [Page 30]

Internet-Draft YANG for NTP March 2022

 "The synchronization status of the local clock. Referred to
 as ’Clock state definitions’ in RFC 5905";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Appendix A.1.1";
 }
 }
 }
 list unicast-configuration {
 if-feature "unicast-configuration";
 key "address type";
 description
 "List of NTP unicast-configurations.";
 leaf address {
 type inet:ip-address;
 description
 "Address of this association.";
 }
 leaf type {
 type identityref {
 base unicast-configuration-type;
 }
 description
 "The unicast configuration type, for example
 unicast-server";
 }
 container authentication {
 if-feature "authentication";
 description
 "Authentication used for this association.";
 uses authentication;
 }
 leaf prefer {
 type boolean;
 default "false";
 description
 "Whether this association is preferred or not.";
 }
 leaf burst {
 type boolean;
 default "false";
 description
 "If set, a series of packets are sent instead of a single
 packet within each synchronization interval to achieve
 faster synchronization.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 13.1";

Wu, et al. Expires 21 September 2022 [Page 31]

Internet-Draft YANG for NTP March 2022

 }
 leaf iburst {
 type boolean;
 default "false";
 description
 "If set, a series of packets are sent instead of a single
 packet within the initial synchronization interval to
 achieve faster initial synchronization.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 13.1";
 }
 leaf source {
 type if:interface-ref;
 description
 "The interface whose IP address is used by this association
 as the source address.";
 }
 uses common-attributes {
 description
 "Common attributes like port, version, min and max
 poll.";
 }
 }
 container associations {
 description
 "Association parameters";
 list association {
 key "address local-mode isconfigured";
 config false;
 description
 "List of NTP associations. Here address, local-mode
 and isconfigured are required to uniquely identify
 a particular association. Lets take following examples -

 1) If RT1 acting as broadcast server,
 and RT2 acting as broadcast client, then RT2
 will form dynamic association with address as RT1,
 local-mode as client and isconfigured as false.

 2) When RT2 is configured
 with unicast-server RT1, then RT2 will form
 association with address as RT1, local-mode as client
 and isconfigured as true.

 Thus all 3 leaves are needed as key to unique identify
 the association.";
 leaf address {

Wu, et al. Expires 21 September 2022 [Page 32]

Internet-Draft YANG for NTP March 2022

 type inet:ip-address;
 description
 "The remote address of this association. Represents the
 IP address of a unicast/multicast/broadcast address.";
 }
 leaf local-mode {
 type identityref {
 base association-mode;
 }
 description
 "Local mode of this NTP association.";
 }
 leaf isconfigured {
 type boolean;
 description
 "Indicates if this association is configured (true) or
 dynamically learned (false).";
 }
 leaf stratum {
 type ntp-stratum;
 description
 "The association stratum value.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3";
 }
 leaf refid {
 type refid;
 description
 "A code identifying the particular server or reference
 clock. The interpretation depends upon stratum. It
 could be an IPv4 address or first 32 bits of the MD5 hash of
 the IPv6 address or a string for the Reference Identifier
 and KISS codes. Some examples:
 -- a refclock ID like ’127.127.1.0’ for local clock sync
 -- uni/multi/broadcast associations for IPv4 will look like
 ’203.0.113.1’ and ’0x4321FEDC’ for IPv6
 -- sync with primary source will look like ’DCN’, ’NIST’,
 ’ATOM’
 -- KISS codes will look like ’AUTH’, ’DROP’, ’RATE’
 Note that the use of MD5 hash for IPv6 address is not for
 cryptographic purposes";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.3";
 }
 leaf authentication {
 if-feature "authentication";

Wu, et al. Expires 21 September 2022 [Page 33]

Internet-Draft YANG for NTP March 2022

 type leafref {
 path "/ntp:ntp/ntp:authentication/"
 + "ntp:authentication-keys/ntp:key-id";
 }
 description
 "Authentication Key used for this association.";
 }
 leaf prefer {
 type boolean;
 default "false";
 description
 "Indicates if this association is preferred.";
 }
 leaf peer-interface {
 type if:interface-ref;
 description
 "The interface which is used for communication.";
 }
 uses common-attributes {
 description
 "Common attributes like port, version, min and
 max poll.";
 }
 leaf reach {
 type uint8;
 description
 "It is an 8-bit shift register that tracks packet
 generation and receipt. It is used to determine
 whether the server is reachable and the data are
 fresh.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 9.2 and 13";
 }
 leaf unreach {
 type uint8;
 units "seconds";
 description
 "It is a count of how long in second the server has been
 unreachable i.e. the reach value has been zero.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 9.2 and 13";
 }
 leaf poll {
 type log2seconds;
 description
 "The polling interval for current association in signed

Wu, et al. Expires 21 September 2022 [Page 34]

Internet-Draft YANG for NTP March 2022

 log2 seconds.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.3";
 }
 leaf now {
 type uint32;
 units "seconds";
 description
 "The time since the last NTP packet was
 received or last synchronized.";
 }
 leaf offset {
 type decimal64 {
 fraction-digits 3;
 }
 units "milliseconds";
 description
 "The signed offset between the local clock
 and the peer clock, e.g., ’0.032ms’ or ’1.232ms’. The
 negative value Indicates that the local clock is behind
 the peer.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 8";
 }
 leaf delay {
 type decimal64 {
 fraction-digits 3;
 }
 units "milliseconds";
 description
 "The network delay between the local clock
 and the peer clock.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 8";
 }
 leaf dispersion {
 type decimal64 {
 fraction-digits 3;
 }
 units "milliseconds";
 description
 "The root dispersion between the local clock
 and the peer clock.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and

Wu, et al. Expires 21 September 2022 [Page 35]

Internet-Draft YANG for NTP March 2022

 Algorithms Specification, Section 10";
 }
 leaf originate-time {
 type ntp-date-and-time;
 description
 "This is the local time, in timestamp format,
 when latest NTP packet was sent to peer (called T1).";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 8";
 }
 leaf receive-time {
 type ntp-date-and-time;
 description
 "This is the local time, in timestamp format,
 when latest NTP packet arrived at peer (called T2).
 If the peer becomes unreachable the value is set to zero.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 8";
 }
 leaf transmit-time {
 type ntp-date-and-time;
 description
 "This is the local time, in timestamp format,
 at which the NTP packet departed the peer (called T3).
 If the peer becomes unreachable the value is set to zero.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 8";
 }
 leaf input-time {
 type ntp-date-and-time;
 description
 "This is the local time, in timestamp format,
 when the latest NTP message from the peer arrived (called
 T4). If the peer becomes unreachable the value is set to
 zero.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 8";
 }
 container ntp-statistics {
 description
 "Per Peer packet send and receive statistics.";
 uses statistics {
 description
 "NTP send and receive packet statistics.";

Wu, et al. Expires 21 September 2022 [Page 36]

Internet-Draft YANG for NTP March 2022

 }
 }
 }
 }
 container interfaces {
 description
 "Configuration parameters for NTP interfaces.";
 list interface {
 key "name";
 description
 "List of interfaces.";
 leaf name {
 type if:interface-ref;
 description
 "The interface name.";
 }
 container broadcast-server {
 if-feature "broadcast-server";
 presence "NTP broadcast-server is configured on this
 interface";
 description
 "Configuration of broadcast server.";
 leaf ttl {
 type uint8;
 description
 "Specifies the time to live (TTL) for a
 broadcast packet.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }
 container authentication {
 if-feature "authentication";
 description
 "Authentication used on this interface.";
 uses authentication;
 }
 uses common-attributes {
 description
 "Common attributes such as port, version, min and
 max poll.";
 }
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }
 container broadcast-client {
 if-feature "broadcast-client";

Wu, et al. Expires 21 September 2022 [Page 37]

Internet-Draft YANG for NTP March 2022

 presence "NTP broadcast-client is configured on this
 interface.";
 description
 "Configuration of broadcast-client.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }
 list multicast-server {
 if-feature "multicast-server";
 key "address";
 description
 "Configuration of multicast server.";
 leaf address {
 type rt-types:ip-multicast-group-address;
 description
 "The IP address to send NTP multicast packets.";
 }
 leaf ttl {
 type uint8;
 description
 "Specifies the time to live (TTL) for a
 multicast packet.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }
 container authentication {
 if-feature "authentication";
 description
 "Authentication used on this interface.";
 uses authentication;
 }
 uses common-attributes {
 description
 "Common attributes such as port, version, min and
 max poll.";
 }
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }
 list multicast-client {
 if-feature "multicast-client";
 key "address";
 description
 "Configuration of multicast-client.";
 leaf address {

Wu, et al. Expires 21 September 2022 [Page 38]

Internet-Draft YANG for NTP March 2022

 type rt-types:ip-multicast-group-address;
 description
 "The IP address of the multicast group to
 join.";
 }
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }
 list manycast-server {
 if-feature "manycast-server";
 key "address";
 description
 "Configuration of manycast server.";
 leaf address {
 type rt-types:ip-multicast-group-address;
 description
 "The multicast group IP address to receive
 manycast client messages.";
 }
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }
 list manycast-client {
 if-feature "manycast-client";
 key "address";
 description
 "Configuration of manycast-client.";
 leaf address {
 type rt-types:ip-multicast-group-address;
 description
 "The group IP address that the manycast client
 broadcasts the request message to.";
 }
 container authentication {
 if-feature "authentication";
 description
 "Authentication used on this interface.";
 uses authentication;
 }
 leaf ttl {
 type uint8;
 description
 "Specifies the maximum time to live (TTL) for
 the expanding ring search.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and

Wu, et al. Expires 21 September 2022 [Page 39]

Internet-Draft YANG for NTP March 2022

 Algorithms Specification, Section 3.1";
 }
 leaf minclock {
 type uint8;
 description
 "The minimum manycast survivors in this
 association.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 13.2";
 }
 leaf maxclock {
 type uint8;
 description
 "The maximum manycast candidates in this
 association.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 13.2";
 }
 leaf beacon {
 type log2seconds;
 description
 "The beacon is the upper limit of poll interval. When the
 ttl reaches its limit without finding the minimum number
 of manycast servers, the poll interval increases until
 reaching the beacon value, when it starts over from the
 beginning.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 13.2";
 }
 uses common-attributes {
 description
 "Common attributes like port, version, min and
 max poll.";
 }
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1";
 }
 }
 }
 container ntp-statistics {
 config false;
 description
 "Total NTP packet statistics.";
 uses statistics {

Wu, et al. Expires 21 September 2022 [Page 40]

Internet-Draft YANG for NTP March 2022

 description
 "NTP send and receive packet statistics.";
 }
 }
 }

 rpc statistics-reset {
 description
 "Reset statistics collected.";
 input {
 choice association-or-all {
 description
 "Resets statistics for a particular association or
 all";
 case association {
 uses association-ref;
 description
 "This resets all the statistics collected for
 the association.";
 }
 case all {
 description
 "This resets all the statistics collected.";
 }
 }
 }
 }
 }
 <CODE ENDS>

9. Usage Example

 This section include examples for illustration purposes.

 Note: ’\’ line wrapping per [RFC8792].

9.1. Unicast association

 This example describes how to configure a preferred unicast server
 present at 192.0.2.1 running at port 1025 with authentication-key 10
 and version 4 (default).

Wu, et al. Expires 21 September 2022 [Page 41]

Internet-Draft YANG for NTP March 2022

 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <unicast-configuration>
 <address>192.0.2.1</address>
 <type>uc-server</type>
 <prefer>true</prefer>
 <port>1025</port>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 </unicast-configuration>
 </ntp>
 </config>
 </edit-config>

 An example with IPv6 would use an IPv6 address (say 2001:db8::1) in
 the "address" leaf with no change in any other data tree.

 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <unicast-configuration>
 <address>2001:db8::1</address>
 <type>uc-server</type>
 <prefer>true</prefer>
 <port>1025</port>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 </unicast-configuration>
 </ntp>
 </config>
 </edit-config>

 This example is for retrieving unicast configurations -

Wu, et al. Expires 21 September 2022 [Page 42]

Internet-Draft YANG for NTP March 2022

 <get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <unicast-configuration>
 </unicast-configuration>
 </ntp>
 </filter>
 </get>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <unicast-configuration>
 <address>192.0.2.1</address>
 <type>uc-server</type>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 <prefer>true</prefer>
 <burst>false</burst>
 <iburst>true</iburst>
 <source/>
 <minpoll>6</minpoll>
 <maxpoll>10</maxpoll>
 <port>1025</port>
 <stratum>9</stratum>
 <refid>203.0.113.1</refid>
 <reach>255</reach>
 <unreach>0</unreach>
 <poll>128</poll>
 <now>10</now>
 <offset>0.025</offset>
 <delay>0.5</delay>
 <dispersion>0.6</dispersion>
 <originate-time>10-10-2017 07:33:55.253 Z+05:30\
 </originate-time>
 <receive-time>10-10-2017 07:33:55.258 Z+05:30\
 </receive-time>
 <transmit-time>10-10-2017 07:33:55.300 Z+05:30\
 </transmit-time>
 <input-time>10-10-2017 07:33:55.305 Z+05:30\
 </input-time>
 <ntp-statistics>
 <packet-sent>20</packet-sent>
 <packet-sent-fail>0</packet-sent-fail>
 <packet-received>20</packet-received>
 <packet-dropped>0</packet-dropped>

Wu, et al. Expires 21 September 2022 [Page 43]

Internet-Draft YANG for NTP March 2022

 </ntp-statistics>
 </unicast-configuration>
 </ntp>
 </data>

9.2. Refclock master

 This example describes how to configure reference clock with stratum
 8 -

 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <refclock-master>
 <master-stratum>8</master-stratum>
 </refclock-master>
 </ntp>
 </config>
 </edit-config>

 This example describes how to get reference clock configuration -

 <get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <refclock-master>
 </refclock-master>
 </ntp>
 </filter>
 </get>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <refclock-master>
 <master-stratum>8</master-stratum>
 </refclock-master>
 </ntp>
 </data>

9.3. Authentication configuration

 This example describes how to enable authentication and configure
 trusted authentication key 10 with mode as AES-CMAC and an
 hexadecimal string key -

Wu, et al. Expires 21 September 2022 [Page 44]

Internet-Draft YANG for NTP March 2022

 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <authentication>
 <auth-enabled>true</auth-enabled>
 <authentication-keys>
 <key-id>10</key-id>
 <algorithm>aes-cmac</algorithm>
 <key>
 <hexadecimal-string>
 bb1d6929e95937287fa37d129b756746
 </hexadecimal-string>
 </key>
 <istrusted>true</istrusted>
 </authentication-keys>
 </authentication>
 </ntp>
 </config>
 </edit-config>

9.4. Access configuration

 This example describes how to configure access mode "peer" associated
 with ACL 2000 -

 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <access-rules>
 <access-rule>
 <access-mode>peer-access-mode</access-mode>
 <acl>2000</acl>
 </access-rule>
 </access-rules>
 </ntp>
 </config>
 </edit-config>

 This example describes how to get access related configuration -

Wu, et al. Expires 21 September 2022 [Page 45]

Internet-Draft YANG for NTP March 2022

 <get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <access-rules>
 </access-rules>
 </ntp>
 </filter>
 </get>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <access-rules>
 <access-rule>
 <access-mode>peer-access-mode</access-mode>
 <acl>2000</acl>
 </access-rule>
 </access-rules>
 </ntp>
 </data>

9.5. Multicast configuration

 This example describes how to configure multicast-server with address
 as "224.0.1.1", port as 1025, and version as 3 and authentication
 keyid as 10 -

Wu, et al. Expires 21 September 2022 [Page 46]

Internet-Draft YANG for NTP March 2022

 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-server>
 <address>224.0.1.1</address>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 <port>1025</port>
 <version>3</version>
 </multicast-server>
 </interface>
 </interfaces>
 </ntp>
 </config>
 </edit-config>

 This example describes how to get multicast-server related
 configuration -

Wu, et al. Expires 21 September 2022 [Page 47]

Internet-Draft YANG for NTP March 2022

 <get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <multicast-server>
 </multicast-server>
 </interface>
 </interfaces>
 </ntp>
 </filter>
 </get>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-server>
 <address>224.0.1.1</address>
 <ttl>8</ttl>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 <minpoll>6</minpoll>
 <maxpoll>10</maxpoll>
 <port>1025</port>
 <version>3</version>
 </multicast-server>
 </interface>
 </interfaces>
 </ntp>
 </data>

 This example describes how to configure multicast-client with address
 as "224.0.1.1" -

Wu, et al. Expires 21 September 2022 [Page 48]

Internet-Draft YANG for NTP March 2022

 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-client>
 <address>224.0.1.1</address>
 </multicast-client>
 </interface>
 </interfaces>
 </ntp>
 </config>
 </edit-config>

 This example describes how to get multicast-client related
 configuration -

 <get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <multicast-client>
 </multicast-client>
 </interface>
 </interfaces>
 </ntp>
 </filter>
 </get>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-client>
 <address>224.0.1.1</address>
 </multicast-client>
 </interface>
 </interfaces>
 </ntp>
 </data>

Wu, et al. Expires 21 September 2022 [Page 49]

Internet-Draft YANG for NTP March 2022

9.6. Manycast configuration

 This example describes how to configure manycast-client with address
 as "224.0.1.1", port as 1025 and authentication keyid as 10 -

 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <manycast-client>
 <address>224.0.1.1</address>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 <port>1025</port>
 </manycast-client>
 </interface>
 </interfaces>
 </ntp>
 </config>
 </edit-config>

 This example describes how to get manycast-client related
 configuration -

Wu, et al. Expires 21 September 2022 [Page 50]

Internet-Draft YANG for NTP March 2022

 <get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <manycast-client>
 </manycast-client>
 </interface>
 </interfaces>
 </ntp>
 </filter>
 </get>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <manycast-client>
 <address>224.0.1.1</address>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 <ttl>8</ttl>
 <minclock>3</minclock>
 <maxclock>10</maxclock>
 <beacon>6</beacon>
 <minpoll>6</minpoll>
 <maxpoll>10</maxpoll>
 <port>1025</port>
 </manycast-client>
 </interface>
 </interfaces>
 </ntp>
 </data>

 This example describes how to configure manycast-server with address
 as "224.0.1.1" -

Wu, et al. Expires 21 September 2022 [Page 51]

Internet-Draft YANG for NTP March 2022

 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <manycast-server>
 <address>224.0.1.1</address>
 </manycast-server>
 </interface>
 </interfaces>
 </ntp>
 </config>
 </edit-config>

 This example describes how to get manycast-server related
 configuration -

 <get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <manycast-server>
 </manycast-server>
 </interface>
 </interfaces>
 </ntp>
 </filter>
 </get>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <manycast-server>
 <address>224.0.1.1</address>
 </manycast-server>
 </interface>
 </interfaces>
 </ntp>
 </data>

Wu, et al. Expires 21 September 2022 [Page 52]

Internet-Draft YANG for NTP March 2022

9.7. Clock state

 This example describes how to get clock current state -

 <get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <clock-state>
 </clock-state>
 </ntp>
 </filter>
 </get>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <clock-state>
 <system-status>
 <clock-state>synchronized</clock-state>
 <clock-stratum>7</clock-stratum>
 <clock-refid>192.0.2.1</clock-refid>
 <associations-address>192.0.2.1\
 </associations-address>
 <associations-local-mode>client\
 </associations-local-mode>
 <associations-isconfigured>yes\
 </associations-isconfigured>
 <nominal-freq>100.0</nominal-freq>
 <actual-freq>100.0</actual-freq>
 <clock-precision>18</clock-precision>
 <clock-offset>0.025</clock-offset>
 <root-delay>0.5</root-delay>
 <root-dispersion>0.8</root-dispersion>
 <reference-time>10-10-2017 07:33:55.258 Z+05:30\
 </reference-time>
 <sync-state>clock-synchronized</sync-state>
 </system-status>
 </clock-state>
 </ntp>
 </data>

9.8. Get all association

 This example describes how to get all association present in the
 system -

Wu, et al. Expires 21 September 2022 [Page 53]

Internet-Draft YANG for NTP March 2022

 <get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <associations>
 </associations>
 </ntp>
 </filter>
 </get>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <associations>
 <association>
 <address>192.0.2.1</address>
 <stratum>9</stratum>
 <refid>203.0.113.1</refid>
 <local-mode>client</local-mode>
 <isconfigured>true</isconfigured>
 <authentication-key>10</authentication-key>
 <prefer>true</prefer>
 <peer-interface>Ethernet3/0/0</peer-interface>
 <minpoll>6</minpoll>
 <maxpoll>10</maxpoll>
 <port>1025</port>
 <version>4</version>
 <reach>255</reach>
 <unreach>0</unreach>
 <poll>128</poll>
 <now>10</now>
 <offset>0.025</offset>
 <delay>0.5</delay>
 <dispersion>0.6</dispersion>
 <originate-time>10-10-2017 07:33:55.253 Z+05:30\
 </originate-time>
 <receive-time>10-10-2017 07:33:55.258 Z+05:30\
 </receive-time>
 <transmit-time>10-10-2017 07:33:55.300 Z+05:30\
 </transmit-time>
 <input-time>10-10-2017 07:33:55.305 Z+05:30\
 </input-time>
 <ntp-statistics>
 <packet-sent>20</packet-sent>
 <packet-sent-fail>0</packet-sent-fail>
 <packet-received>20</packet-received>
 <packet-dropped>0</packet-dropped>
 </ntp-statistics>
 </association>
 </associations>

Wu, et al. Expires 21 September 2022 [Page 54]

Internet-Draft YANG for NTP March 2022

 </ntp>
 </data>

9.9. Global statistic

 This example describes how to get global statistics -

 <get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <ntp-statistics>
 </ntp-statistics>
 </ntp>
 </filter>
 </get>

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <ntp-statistics>
 <packet-sent>30</packet-sent>
 <packet-sent-fail>5</packet-sent-fail>
 <packet-received>20</packet-received>
 <packet-dropped>2</packet-dropped>
 </ntp-statistics>
 </ntp>
 </data>

10. IANA Considerations

10.1. IETF XML Registry

 This document registers a URI in the "IETF XML Registry" [RFC3688].
 Following the format in RFC 3688, the following registration has been
 made.

 URI: urn:ietf:params:xml:ns:yang:ietf-ntp

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

10.2. YANG Module Names

 This document registers a YANG module in the "YANG Module Names"
 registry [RFC6020].

 Name: ietf-ntp

Wu, et al. Expires 21 September 2022 [Page 55]

Internet-Draft YANG for NTP March 2022

 Namespace: urn:ietf:params:xml:ns:yang:ietf-ntp

 Prefix: ntp

 Reference: RFC XXXX

 Note: The RFC Editor will replace XXXX with the number assigned to
 this document once it becomes an RFC.

11. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF Access Control Model (NACM) [RFC8341] provides the means
 to restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content. The ’nacm:default-deny-all’ is used to
 prevent retrieval of the key information.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /ntp/port - This data node specify the port number to be used to
 send NTP packets. Unexpected changes could lead to disruption
 and/or network misbehavior.

 /ntp/authentication and /ntp/access-rules - The entries in the
 list include the authentication and access control configurations.
 Care should be taken while setting these parameters.

 /ntp/unicast-configuration - The entries in the list include all
 unicast configurations (server or peer mode), and indirectly
 creates or modify the NTP associations. Unexpected changes could
 lead to disruption and/or network misbehavior.

Wu, et al. Expires 21 September 2022 [Page 56]

Internet-Draft YANG for NTP March 2022

 /ntp/interfaces/interface - The entries in the list include all
 per-interface configurations related to broadcast, multicast and
 manycast mode, and indirectly creates or modify the NTP
 associations. Unexpected changes could lead to disruption and/or
 network misbehavior. It could also lead to syncronization over
 untrusted source over trusted ones.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 /ntp/authentication/authentication-keys - The entries in the list
 includes all the NTP authentication keys. Unauthorized access to
 the keys can be easily exploited to permit unauthorized access to
 the NTP service. This information is sensitive and thus
 unauthorized access to this needs to be curtailed.

 /ntp/associations/association/ - The entries in the list includes
 all active NTP associations of all modes. Exposure of these nodes
 could reveal network topology or trust relationship. Unauthorized
 access to this also needs to be curtailed.

 /ntp/authentication and /ntp/access-rules - The entries in the
 list include the authentication and access control configurations.
 Exposure of these nodes could reveal network topology or trust
 relationship.

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 statistics-reset - The RPC is used to reset statistics.
 Unauthorized reset could impact monitoring.

 The leaf /ntp/authentication/authentication-keys/algorithm can be set
 to cryptographic algorithms that are no longer considered to be
 secure. As per [RFC8573], AES-CMAC is the recommended algorithm.

12. Acknowledgments

 The authors would like to express their thanks to Sladjana Zoric,
 Danny Mayer, Harlan Stenn, Ulrich Windl, Miroslav Lichvar, Maurice
 Angermann, Watson Ladd, and Rich Salz for their review and
 suggestions.

Wu, et al. Expires 21 September 2022 [Page 57]

Internet-Draft YANG for NTP March 2022

 Thanks to Andy Bierman for the YANG doctor review.

 Thanks to Dieter Sibold for being the document shepherd and Erik
 Kline for being the responsible AD.

 Thanks to Takeshi Takahashi for SECDIR review. Thanks to Tim Evens
 for GENART review.

 A special thanks to Tom Petch for a very detailed YANG review and
 providing great suggestions for improvements.

 Thanks for the IESG review from Benjamin Kaduk, Francesca Palombini,
 Eric Vyncke, Murray Kucherawy, Robert Wilton, Roman Danyliw, and
 Zaheduzzaman Sarker.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <https://www.rfc-editor.org/info/rfc7317>.

Wu, et al. Expires 21 September 2022 [Page 58]

Internet-Draft YANG for NTP March 2022

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
 "Common YANG Data Types for the Routing Area", RFC 8294,
 DOI 10.17487/RFC8294, December 2017,
 <https://www.rfc-editor.org/info/rfc8294>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8519] Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
 "YANG Data Model for Network Access Control Lists (ACLs)",
 RFC 8519, DOI 10.17487/RFC8519, March 2019,
 <https://www.rfc-editor.org/info/rfc8519>.

 [RFC8573] Malhotra, A. and S. Goldberg, "Message Authentication Code
 for the Network Time Protocol", RFC 8573,
 DOI 10.17487/RFC8573, June 2019,
 <https://www.rfc-editor.org/info/rfc8573>.

13.2. Informative References

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation and Analysis", RFC 1305,
 DOI 10.17487/RFC1305, March 1992,
 <https://www.rfc-editor.org/info/rfc1305>.

Wu, et al. Expires 21 September 2022 [Page 59]

Internet-Draft YANG for NTP March 2022

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/info/rfc1321>.

 [RFC3174] Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001,
 <https://www.rfc-editor.org/info/rfc3174>.

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
 2006, <https://www.rfc-editor.org/info/rfc4493>.

 [RFC5907] Gerstung, H., Elliott, C., and B. Haberman, Ed.,
 "Definitions of Managed Objects for Network Time Protocol
 Version 4 (NTPv4)", RFC 5907, DOI 10.17487/RFC5907, June
 2010, <https://www.rfc-editor.org/info/rfc5907>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

 [SHS] NIST, "Secure Hash Standard (SHS)", FIPS PUB 180-4, March
 2012, <https://nvlpubs.nist.gov/nistpubs/fips/
 nist.fips.180-4.pdf>.

Appendix A. Full YANG Tree

 The full tree for ietf-ntp YANG model is -

Wu, et al. Expires 21 September 2022 [Page 60]

Internet-Draft YANG for NTP March 2022

 module: ietf-ntp
 +--rw ntp!
 +--rw port? inet:port-number {ntp-port}?
 +--rw refclock-master!
 | +--rw master-stratum? ntp-stratum
 +--rw authentication {authentication}?
 | +--rw auth-enabled? boolean
 | +--rw authentication-keys* [key-id]
 | +--rw key-id uint32
 | +--rw algorithm? identityref
 | +--rw key
 | | +--rw (key-string-style)?
 | | +--:(keystring)
 | | | +--rw keystring? string {deprecated}?
 | | +--:(hexadecimal) {hex-key-string}?
 | | +--rw hexadecimal-string? yang:hex-string
 | +--rw istrusted? boolean
 +--rw access-rules {access-rules}?
 | +--rw access-rule* [access-mode]
 | +--rw access-mode identityref
 | +--rw acl? -> /acl:acls/acl/name
 +--ro clock-state
 | +--ro system-status
 | +--ro clock-state identityref
 | +--ro clock-stratum ntp-stratum
 | +--ro clock-refid refid
 | +--ro associations-address?
 | | -> /ntp/associations/association/address
 | +--ro associations-local-mode?
 | | -> /ntp/associations/association/local-mode
 | +--ro associations-isconfigured?
 | | -> /ntp/associations/association/isconfigured
 | +--ro nominal-freq decimal64
 | +--ro actual-freq decimal64
 | +--ro clock-precision log2seconds
 | +--ro clock-offset? decimal64
 | +--ro root-delay? decimal64
 | +--ro root-dispersion? decimal64
 | +--ro reference-time? ntp-date-and-time
 | +--ro sync-state identityref
 +--rw unicast-configuration* [address type]
 | {unicast-configuration}?
 | +--rw address inet:ip-address
 | +--rw type identityref
 | +--rw authentication {authentication}?
 | | +--rw (authentication-type)?
 | | +--:(symmetric-key)
 | | +--rw key-id? leafref

Wu, et al. Expires 21 September 2022 [Page 61]

Internet-Draft YANG for NTP March 2022

 | +--rw prefer? boolean
 | +--rw burst? boolean
 | +--rw iburst? boolean
 | +--rw source? if:interface-ref
 | +--rw minpoll? log2seconds
 | +--rw maxpoll? log2seconds
 | +--rw port? inet:port-number {ntp-port}?
 | +--rw version? ntp-version
 +--rw associations
 | +--ro association* [address local-mode isconfigured]
 | +--ro address inet:ip-address
 | +--ro local-mode identityref
 | +--ro isconfigured boolean
 | +--ro stratum? ntp-stratum
 | +--ro refid? refid
 | +--ro authentication?
 | | -> /ntp/authentication/authentication-keys/key-id
 | | {authentication}?
 | +--ro prefer? boolean
 | +--ro peer-interface? if:interface-ref
 | +--ro minpoll? log2seconds
 | +--ro maxpoll? log2seconds
 | +--ro port? inet:port-number {ntp-port}?
 | +--ro version? ntp-version
 | +--ro reach? uint8
 | +--ro unreach? uint8
 | +--ro poll? log2seconds
 | +--ro now? uint32
 | +--ro offset? decimal64
 | +--ro delay? decimal64
 | +--ro dispersion? decimal64
 | +--ro originate-time? ntp-date-and-time
 | +--ro receive-time? ntp-date-and-time
 | +--ro transmit-time? ntp-date-and-time
 | +--ro input-time? ntp-date-and-time
 | +--ro ntp-statistics
 | +--ro discontinuity-time? ntp-date-and-time
 | +--ro packet-sent? yang:counter32
 | +--ro packet-sent-fail? yang:counter32
 | +--ro packet-received? yang:counter32
 | +--ro packet-dropped? yang:counter32
 +--rw interfaces
 | +--rw interface* [name]
 | +--rw name if:interface-ref
 | +--rw broadcast-server! {broadcast-server}?
 | | +--rw ttl? uint8
 | | +--rw authentication {authentication}?
 | | | +--rw (authentication-type)?

Wu, et al. Expires 21 September 2022 [Page 62]

Internet-Draft YANG for NTP March 2022

 | | | +--:(symmetric-key)
 | | | +--rw key-id? leafref
 | | +--rw minpoll? log2seconds
 | | +--rw maxpoll? log2seconds
 | | +--rw port? inet:port-number {ntp-port}?
 | | +--rw version? ntp-version
 | +--rw broadcast-client! {broadcast-client}?
 | +--rw multicast-server* [address] {multicast-server}?
 | | +--rw address
 | | | rt-types:ip-multicast-group-address
 | | +--rw ttl? uint8
 | | +--rw authentication {authentication}?
 | | | +--rw (authentication-type)?
 | | | +--:(symmetric-key)
 | | | +--rw key-id? leafref
 | | +--rw minpoll? log2seconds
 | | +--rw maxpoll? log2seconds
 | | +--rw port? inet:port-number {ntp-port}?
 | | +--rw version? ntp-version
 | +--rw multicast-client* [address] {multicast-client}?
 | | +--rw address rt-types:ip-multicast-group-address
 | +--rw manycast-server* [address] {manycast-server}?
 | | +--rw address rt-types:ip-multicast-group-address
 | +--rw manycast-client* [address] {manycast-client}?
 | +--rw address
 | | rt-types:ip-multicast-group-address
 | +--rw authentication {authentication}?
 | | +--rw (authentication-type)?
 | | +--:(symmetric-key)
 | | +--rw key-id? leafref
 | +--rw ttl? uint8
 | +--rw minclock? uint8
 | +--rw maxclock? uint8
 | +--rw beacon? log2seconds
 | +--rw minpoll? log2seconds
 | +--rw maxpoll? log2seconds
 | +--rw port? inet:port-number {ntp-port}?
 | +--rw version? ntp-version
 +--ro ntp-statistics
 +--ro discontinuity-time? ntp-date-and-time
 +--ro packet-sent? yang:counter32
 +--ro packet-sent-fail? yang:counter32
 +--ro packet-received? yang:counter32
 +--ro packet-dropped? yang:counter32

 rpcs:
 +---x statistics-reset
 +---w input

Wu, et al. Expires 21 September 2022 [Page 63]

Internet-Draft YANG for NTP March 2022

 +---w (association-or-all)?
 +--:(association)
 | +---w associations-address?
 | | -> /ntp/associations/association/address
 | +---w associations-local-mode?
 | | -> /ntp/associations/association/local-mode
 | +---w associations-isconfigured?
 | -> /ntp/associations/association/isconfigured
 +--:(all)

Authors’ Addresses

 Nan Wu
 Huawei
 Huawei Bld., No.156 Beiqing Rd.
 Beijing
 100095
 China
 Email: eric.wu@huawei.com

 Dhruv Dhody (editor)
 Huawei
 Divyashree Techno Park, Whitefield
 Bangalore 560066
 Kanataka
 India
 Email: dhruv.ietf@gmail.com

 Ankit kumar Sinha (editor)
 RtBrick Inc.
 Bangalore
 Kanataka
 India
 Email: ankit.ietf@gmail.com

 Anil Kumar S N
 RtBrick Inc.
 Bangalore
 Kanataka
 India
 Email: anil.ietf@gmail.com

Wu, et al. Expires 21 September 2022 [Page 64]

Internet-Draft YANG for NTP March 2022

 Yi Zhao
 Ericsson
 China Digital Kingdom Bld., No.1 WangJing North Rd.
 Beijing
 100102
 China
 Email: yi.z.zhao@ericsson.com

Wu, et al. Expires 21 September 2022 [Page 65]

TICTOC Working Group D.A. Arnold

Internet-Draft Meinberg-USA

Intended status: Standards Track H.G. Gerstung

Expires: 5 October 2024 Meinberg

 3 April 2024

Enterprise Profile for the Precision Time Protocol With Mixed Multicast

 and Unicast messages

 draft-ietf-tictoc-ptp-enterprise-profile-26

Abstract

 This document describes a PTP Profile for the use of the Precision

 Time Protocol in an IPv4 or IPv6 Enterprise information system

 environment. The PTP Profile uses the End-to-End delay measurement

 mechanism, allows both multicast and unicast Delay Request and Delay

 Response messages.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 October 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Arnold & Gerstung Expires 5 October 2024 [Page 1]

Internet-Draft Enterprise Profile for PTP April 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 2. Requirements Language . 4

 3. Technical Terms . 4

 4. Problem Statement . 6

 5. Network Technology . 7

 6. Time Transfer and Delay Measurement 8

 7. Default Message Rates . 9

 8. Requirements for TimeTransmitter Clocks 9

 9. Requirements for TimeReceiver Clocks 10

 10. Requirements for Transparent Clocks 10

 11. Requirements for Boundary Clocks 11

 12. Management and Signaling Messages 11

 13. Forbidden PTP Options . 11

 14. Interoperation with IEEE 1588 Default Profile 11

 15. Profile Identification 12

 16. Acknowledgements . 12

 17. IANA Considerations . 12

 18. Security Considerations 12

 19. References . 13

 19.1. Normative References 13

 19.2. Informative References 13

 Authors’ Addresses . 14

1. Introduction

 The Precision Time Protocol ("PTP"), standardized in IEEE 1588, has

 been designed in its first version (IEEE 1588-2002) with the goal to

 minimize configuration on the participating nodes. Network

 communication was based solely on multicast messages, which unlike

 NTP did not require that a receiving node in IEEE 1588-2019

 [IEEE1588] need to know the identity of the time sources in the

 network. This document describes clock roles and PTP Port states

 using the optional alternative terms timeTransmitter, in stead of

 master, and timeReceiver, in stead of slave, as defined in the IEEE

 1588g [IEEE1588g] amendment to IEEE 1588-2019 [IEEE1588] .

Arnold & Gerstung Expires 5 October 2024 [Page 2]

Internet-Draft Enterprise Profile for PTP April 2024

 The "Best TimeTransmitter Clock Algorithm" (IEEE 1588-2019 [IEEE1588]

 Subclause 9.3), a mechanism that all participating PTP nodes MUST

 follow, set up strict rules for all members of a PTP domain to

 determine which node MUST be the active reference time source

 (Grandmaster). Although the multicast communication model has

 advantages in smaller networks, it complicated the application of PTP

 in larger networks, for example in environments like IP based

 telecommunication networks or financial data centers. It is

 considered inefficient that, even if the content of a message applies

 only to one receiver, it is forwarded by the underlying network (IP)

 to all nodes, requiring them to spend network bandwidth and other

 resources, such as CPU cycles, to drop the message.

 The third edition of the standard (IEEE 1588-2019) defines PTPv2.1

 and includes the possibility to use unicast communication between the

 PTP nodes in order to overcome the limitation of using multicast

 messages for the bi-directional information exchange between PTP

 nodes. The unicast approach avoided that. In PTP domains with a lot

 of nodes, devices had to throw away more than 99% of the received

 multicast messages because they carried information for some other

 node.

 PTPv2.1 also includes PTP Profiles (IEEE 1588-2019 [IEEE1588]

 subclause 20.3). This construct allows organizations to specify

 selections of attribute values and optional features, simplifying the

 configuration of PTP nodes for a specific application. Instead of

 having to go through all possible parameters and configuration

 options and individually set them up, selecting a PTP Profile on a

 PTP node will set all the parameters that are specified in the PTP

 Profile to a defined value. If a PTP Profile definition allows

 multiple values for a parameter, selection of the PTP Profile will

 set the profile-specific default value for this parameter.

 Parameters not allowing multiple values are set to the value defined

 in the PTP Profile. Many PTP features and functions are optional,

 and a PTP Profile should also define which optional features of PTP

 are required, permitted, and prohibited. It is possible to extend

 the PTP standard with a PTP Profile by using the TLV mechanism of PTP

 (see IEEE 1588-2019 [IEEE1588] subclause 13.4), defining an optional

 Best TimeTransmitter Clock Algorithm and a few other ways. PTP has

 its own management protocol (defined in IEEE 1588-2019 [IEEE1588]

 subclause 15.2) but allows a PTP Profile to specify an alternative

 management mechanism, for example NETCONF.

 In this document the term PTP Port refers to a logical access point

 of a PTP instantiation for PTP communincation in a network.

Arnold & Gerstung Expires 5 October 2024 [Page 3]

Internet-Draft Enterprise Profile for PTP April 2024

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 RFC 2119 [RFC2119] RFC 8174 [RFC8174] when, and only when, they

 appear in all capitals, as shown here.

3. Technical Terms

 * Acceptable TimeTransmitter Table: A PTP timeReceiver Clock may

 maintain a list of timeTransmitters which it is willing to

 synchronize to.

 * Alternate timeTransmitter: A PTP timeTransmitter Clock, which is

 not the Best timeTransmitter, may act as a timeTransmitter with

 the Alternate timeTransmitter flag set on the messages it sends.

 * Announce message: Contains the timeTransmitter Clock properties of

 a timeTransmitter Clock. Used to determine the Best

 TimeTransmitter.

 * Best timeTransmitter: A clock with a PTP Port in the

 timeTransmitter state, operating as the Grandmaster of a PTP

 domain.

 * Best TimeTransmitter Clock Algorithm: A method for determining

 which state a PTP Port of a PTP clock should be in. The state

 decisions lead to the formation of a clock spanning tree for a PTP

 domain.

 * Boundary Clock: A device with more than one PTP Port. Generally

 Boundary Clocks will have one PTP Port in timeReceiver state to

 receive timing and other PTP Ports in timeTransmitter state to re-

 distribute the timing.

 * Clock Identity: In IEEE 1588-2019 this is a 64-bit number assigned

 to each PTP clock which MUST be globally unique. Often it is

 derived from the Ethernet MAC address.

 * Domain: Every PTP message contains a domain number. Domains are

 treated as separate PTP systems in the network. Clocks, however,

 can combine the timing information derived from multiple domains.

Arnold & Gerstung Expires 5 October 2024 [Page 4]

Internet-Draft Enterprise Profile for PTP April 2024

 * End-to-End delay measurement mechanism: A network delay

 measurement mechanism in PTP facilitated by an exchange of

 messages between a timeTransmitter Clock and a timeReceiver Clock.

 These messages might traverse Transparent Clocks and PTP unaware

 switches. This mechanism might not work properly if the Sync and

 Delay Request messages traverse different network paths.

 * Grandmaster: the primary timeTransmitter Clock within a domain of

 a PTP system

 * IEEE 1588: The timing and synchronization standard which defines

 PTP, and describes the node, system, and communication properties

 necessary to support PTP.

 * TimeTransmitter Clock: a clock with at least one PTP Port in the

 timeTransmitter state.

 * NTP: Network Time Protocol, defined by RFC 5905, see RFC 5905

 [RFC5905]

 * Ordinary Clock: A clock that has a single Precision Time Protocol

 PTP Port in a domain and maintains the timescale used in the

 domain. It may serve as a timeTransmitter Clock, or be a

 timeReceiver Clock.

 * Peer-to-Peer delay measurement mechanism: A network delay

 measurement mechanism in PTP facilitated by an exchange of

 messages over the link between adjacent devices in a network.

 This mechanism might not work properly unless all devices in the

 network support PTP and the Peer-to-peer measurement mechanism.

 * Preferred timeTransmitter: A device intended to act primarily as

 the Grandmaster of a PTP system, or as a back up to a Grandmaster.

 * PTP: The Precision Time Protocol: The timing and synchronization

 protocol defined by IEEE 1588.

 * PTP Port: An interface of a PTP clock with the network. Note that

 there may be multiple PTP Ports running on one physical interface,

 for example, mulitple unicast timeReceivers which talk to several

 Grandmaster Clocks in different PTP Domains.

 * PTP Profile: A set of constraints on the options and features of

 PTP, designed to optimize PTP for a specific use case or industry.

 The profile specifies what is required, allowed and forbidden

 among options and attribute values of PTP.

Arnold & Gerstung Expires 5 October 2024 [Page 5]

Internet-Draft Enterprise Profile for PTP April 2024

 * PTPv2.1: Refers specifically to the version of PTP defined by IEEE

 1588-2019.

 * Rogue timeTransmitter: A clock with a PTP Port in the

 timeTransmitter state, even though it should not be in the

 timeTransmitter state according to the Best TimeTransmitter Clock

 Algorithm, and does not set the Alternate timeTransmitter flag.

 * TimeReceiver Clock: a clock with at least one PTP Port in the

 timeReceiver state, and no PTP Ports in the timeTransmitter state.

 * TimeReceiver Only clock: An Ordinary Clock which cannot become a

 timeTransmitter Clock.

 * TLV: Type Length Value, a mechanism for extending messages in

 networked communications.

 * Transparent Clock. A device that measures the time taken for a

 PTP event message to transit the device and then updates the

 message with a correction for this transit time.

 * Unicast Discovery: A mechanism for PTP timeReceivers to establish

 a unicast communication with PTP timeTransmitters using a

 configured table of timeTransmitter IP addresses and Unicast

 Message Negotiation.

 * Unicast Negotiation: A mechanism in PTP for timeReceiver Clocks to

 negotiate unicast Sync, Announce and Delay Request message

 transmission rates from timeTransmitters.

4. Problem Statement

 This document describes a version of PTP intended to work in large

 enterprise networks. Such networks are deployed, for example, in

 financial corporations. It is becoming increasingly common in such

 networks to perform distributed time tagged measurements, such as

 one-way packet latencies and cumulative delays on software systems

 spread across multiple computers. Furthermore, there is often a

 desire to check the age of information time tagged by a different

 machine. To perform these measurements, it is necessary to deliver a

 common precise time to multiple devices on a network. Accuracy

 currently required in the Financial Industry range from 100

 microseconds to 1 nanoseconds to the Grandmaster. This PTP Profile

 does not specify timing performance requirements, but such

 requirements explain why the needs cannot always be met by NTP, as

 commonly implemented. Such accuracy cannot usually be achieved with

 a traditional time transfer such as NTP, without adding non-standard

 customizations such as on-path support, similar to what is done in

Arnold & Gerstung Expires 5 October 2024 [Page 6]

Internet-Draft Enterprise Profile for PTP April 2024

 PTP with Transparent Clocks and Boundary Clocks. Such PTP support is

 commonly available in switches and routers, and many such devices

 have already been deployed in networks. Because PTP has a complex

 range of features and options it is necessary to create a PTP Profile

 for enterprise networks to achieve interoperability between equipment

 manufactured by different vendors.

 Although enterprise networks can be large, it is becoming

 increasingly common to deploy multicast protocols, even across

 multiple subnets. For this reason, it is desired to make use of

 multicast whenever the information going to many destinations is the

 same. It is also advantageous to send information which is only

 relevant to one device as a unicast message. The latter can be

 essential as the number of PTP timeReceivers becomes hundreds or

 thousands.

 PTP devices operating in these networks need to be robust. This

 includes the ability to ignore PTP messages which can be identified

 as improper, and to have redundant sources of time.

 Interoperability among independent implementations of this PTP

 Profile has been demonstrated at the ISPCS Plugfest ISPCS [ISPCS].

5. Network Technology

 This PTP Profile MUST operate only in networks characterized by UDP

 RFC 768 [RFC0768] over either IPv4 RFC 791 [RFC0791] or IPv6 RFC 8200

 [RFC8200], as described by Annexes C and D in IEEE 1588 [IEEE1588]

 respectively. A network node MAY include multiple PTP instances

 running simultaneously. IPv4 and IPv6 instances in the same network

 node MUST operate in different PTP Domains. PTP Clocks which

 communicate using IPv4 can transfer time to PTP Clocks using IPv6, or

 the reverse, if and only if, there is a network node which

 simultaneously communicates with both PTP domains in the different IP

 versions.

 The PTP system MAY include switches and routers. These devices MAY

 be Transparent Clocks, Boundary Clocks, or neither, in any

 combination. PTP Clocks MAY be Preferred timeTransmitters, Ordinary

 Clocks, or Boundary Clocks. The Ordinary Clocks may be TimeReceiver

 Only Clocks, or be timeTransmitter capable.

 Note that clocks SHOULD always be identified by their Clock ID and

 not the IP or Layer 2 address. This is important since Transparent

 Clocks will treat PTP messages that are altered at the PTP

 application layer as new IP packets and new Layer 2 frames when the

 PTP messages are retranmitted. In IPv4 networks some clocks might be

 hidden behind a NAT, which hides their IP addresses from the rest of

Arnold & Gerstung Expires 5 October 2024 [Page 7]

Internet-Draft Enterprise Profile for PTP April 2024

 the network. Note also that the use of NATs may place limitations on

 the topology of PTP networks, depending on the port forwarding scheme

 employed. Details of implementing PTP with NATs are out of scope of

 this document.

 PTP, similar to NTP, assumes that the one-way network delay for Sync

 messages and Delay Response messages are the same. When this is not

 true it can cause errors in the transfer of time from the

 timeTransmitter to the timeReceiver. It is up to the system

 integrator to design the network so that such effects do not prevent

 the PTP system from meeting the timing requirements. The details of

 network asymmetry are outside the scope of this document. See for

 example, ITU-T G.8271 [G8271].

6. Time Transfer and Delay Measurement

 TimeTransmitter Clocks, Transparent Clocks and Boundary Clocks MAY be

 either one-step clocks or two-step clocks. TimeReceiver Clocks MUST

 support both behaviors. The End-to-End Delay measurement method MUST

 be used.

 Note that, in IP networks, Sync messages and Delay Request messages

 exchanged between a timeTransmitter and timeReceiver do not

 necessarily traverse the same physical path. Thus, wherever

 possible, the network SHOULD be engineered so that the forward and

 reverse routes traverse the same physical path. Traffic engineering

 techniques for path consistency are out of scope of this document.

 Sync messages MUST be sent as PTP event multicast messages (UDP port

 319) to the PTP primary IP address. Two step clocks MUST send

 Follow-up messages as PTP general multicast messages (UDP port 320).

 Announce messages MUST be sent as multicast messages (UDP port 320)

 to the PTP primary address. The PTP primary IP address is

 224.0.1.129 for IPv4 and FF0X:0:0:0:0:0:0:181 for IPv6, where X can

 be a value between 0x0 and 0xF, see IEEE 1588 [IEEE1588] Annex D,

 Section D.3. These addresses are aloted by IANA, see the Ipv6

 Multicast Address Space Registry [IPv6Registry]

 Delay Request messages MAY be sent as either multicast or unicast PTP

 event messages. TimeTransmitter Clocks MUST respond to multicast

 Delay Request messages with multicast Delay Response PTP general

 messages. TimeTransmitter Clocks MUST respond to unicast Delay

 Request PTP event messages with unicast Delay Response PTP general

 messages. This allows for the use of Ordinary Clocks which do not

 support the Enterprise Profile, if they are timeReceiver Only Clocks.

Arnold & Gerstung Expires 5 October 2024 [Page 8]

Internet-Draft Enterprise Profile for PTP April 2024

 Clocks SHOULD include support for multiple domains. The purpose is

 to support multiple simultaneous timeTransmitters for redundancy.

 Leaf devices (non-forwarding devices) can use timing information from

 multiple timeTransmitters by combining information from multiple

 instantiations of a PTP stack, each operating in a different PTP

 Domain. Redundant sources of timing can be ensembled, and/or

 compared to check for faulty timeTransmitter Clocks. The use of

 multiple simultaneous timeTransmitters will help mitigate faulty

 timeTransmitters reporting as healthy, network delay asymmetry, and

 security problems. Security problems include on-path attacks such as

 delay attacks, packet interception / manipulation attacks. Assuming

 the path to each timeTransmitter is different, failures malicious or

 otherwise would have to happen at more than one path simultaneously.

 Whenever feasible, the underlying network transport technology SHOULD

 be configured so that timing messages in different domains traverse

 different network paths.

7. Default Message Rates

 The Sync, Announce, and Delay Request default message rates MUST each

 be once per second. The Sync and Delay Request message rates MAY be

 set to other values, but not less than once every 128 seconds, and

 not more than 128 messages per second. The Announce message rate

 MUST NOT be changed from the default value. The Announce Receipt

 Timeout Interval MUST be three Announce Intervals for Preferred

 TimeTransmitters, and four Announce Intervals for all other

 timeTransmitters.

 The logMessageInterval carried in the unicast Delay Response message

 MAY be set to correspond to the timeTransmitter ports preferred

 message period, rather than 7F, which indicates message periods are

 to be negotiated. Note that negotiated message periods are not

 allowed, see forbidden PTP options (Section 13).

8. Requirements for TimeTransmitter Clocks

 TimeTransmitter Clocks MUST obey the standard Best TimeTransmitter

 Clock Algorithm from IEEE 1588 [IEEE1588]. PTP systems using this

 PTP Profile MAY support multiple simultaneous Grandmasters if each

 active Grandmaster is operating in a different PTP domain.

 A PTP Port of a clock MUST NOT be in the timeTransmitter state unless

 the clock has a current value for the number of UTC leap seconds.

 If a unicast negotiation signaling message is received it MUST be

 ignored.

Arnold & Gerstung Expires 5 October 2024 [Page 9]

Internet-Draft Enterprise Profile for PTP April 2024

 In PTP Networks that contain Transparent Clocks, timeTransmitters

 might receive Delay Request messages that no longer contains the IP

 Addresses of the timeReceivers. This is because Transparent Clocks

 might replace the IP address of Delay Requests with their own IP

 address after updating the Correction Fields. For this deployment

 scenario timeTransmitters will need to have configured tables of

 timeReceivers’ IP addresses and associated Clock Identities in order

 to send Delay Responses to the correct PTP Nodes.

9. Requirements for TimeReceiver Clocks

 TimeReceiver Clocks MUST be able to operate properly in a network

 which contains multiple timeTransmitters in multiple domains.

 TimeReceivers SHOULD make use of information from all the

 timeTransmitters in their clock control subsystems. TimeReceiver

 Clocks MUST be able to operate properly in the presence of a rogue

 timeTransmitter. TimeReceivers SHOULD NOT Synchronize to a

 timeTransmitter which is not the Best TimeTransmitter in its domain.

 TimeReceivers will continue to recognize a Best TimeTransmitter for

 the duration of the Announce Time Out Interval. TimeReceivers MAY

 use an Acceptable TimeTransmitter Table. If a timeTransmitter is not

 an Acceptable timeTransmitter, then the timeReceiver MUST NOT

 synchronize to it. Note that IEEE 1588-2019 requires timeReceiver

 Clocks to support both two-step or one-step timeTransmitter Clocks.

 See IEEE 1588 [IEEE1588], subClause 11.2.

 Since Announce messages are sent as multicast messages timeReceivers

 can obtain the IP addresses of a timeTransmitter from the Announce

 messages. Note that the IP source addresses of Sync and Follow-up

 messages might have been replaced by the source addresses of a

 Transparent Clock, so, timeReceivers MUST send Delay Request messages

 to the IP address in the Announce message. Sync and Follow-up

 messages can be correlated with the Announce message using the Clock

 ID, which is never altered by Transparent Clocks in this PTP Profile.

10. Requirements for Transparent Clocks

 Transparent Clocks MUST NOT change the transmission mode of an

 Enterprise Profile PTP message. For example, a Transparent Clock

 MUST NOT change a unicast message to a multicast message.

 Transparent Clocks SHOULD support multiple domains. Transparent

 Clocks which syntonize to the timeTransmitter Clock might need to

 maintain separate clock rate offsets for each of the supported

 domains.

Arnold & Gerstung Expires 5 October 2024 [Page 10]

Internet-Draft Enterprise Profile for PTP April 2024

11. Requirements for Boundary Clocks

 Boundary Clocks SHOULD support multiple simultaneous PTP domains.

 This will require them to maintain separate clocks for each of the

 domains supported, at least in software. Boundary Clocks MUST NOT

 combine timing information from different domains.

12. Management and Signaling Messages

 PTP Management messages MAY be used. Management messages intended

 for a specific clock, i.e. the IEEE 1588 [IEEE1588] defined attribute

 targetPortIdentity.clockIdentity is not set to All 1s, MUST be sent

 as a unicast message. Similarly, if any signaling messages are used

 they MUST also be sent as unicast messages whenever the message is

 intended soley for a specific PTP Node.

13. Forbidden PTP Options

 Clocks operating in the Enterprise Profile MUST NOT use Peer-to-Peer

 timing for delay measurement. Grandmaster Clusters are NOT ALLOWED.

 The Alternate TimeTransmitter option is also NOT ALLOWED. Clocks

 operating in the Enterprise Profile MUST NOT use Alternate

 Timescales. Unicast discovery and unicast negotiation MUST NOT be

 used. Clocks operating in the Enterprise Profile MUST NOT use any

 optional feature that requires Announce messages to be altered by

 Transparent Clocks, as this would require the Transparent Clock to

 change the source address and prevent the timeReceiver nodes from

 discovering the protocol address of the timeTransmitter.

14. Interoperation with IEEE 1588 Default Profile

 Clocks operating in the Enterprise Profile will interoperate with

 clocks operating in the Default Profile described in IEEE 1588

 [IEEE1588] Annex I.3. This variant of the Default Profile uses the

 End-to-End delay measurement mechanism. In addition, the Default

 Profile would have to operate over IPv4 or IPv6 networks, and use

 management messages in unicast when those messages are directed at a

 specific clock. If either of these requirements are not met than

 Enterprise Profile clocks will not interoperate with Annex I.3

 Default Profile Clocks. The Enterprise Profile will not interoperate

 with the Annex I.4 variant of the Default Profile which requires use

 of the Peer-to-Peer delay measurement mechanism.

 Enterprise Profile Clocks will interoperate with clocks operating in

 other PTP Profiles if the clocks in the other PTP Profiles obey the

 rules of the Enterprise Profile. These rules MUST NOT be changed to

 achieve interoperability with other PTP Profiles.

Arnold & Gerstung Expires 5 October 2024 [Page 11]

Internet-Draft Enterprise Profile for PTP April 2024

15. Profile Identification

 The IEEE 1588 standard requires that all PTP Profiles provide the

 following identifying information.

 PTP Profile:

 Enterprise Profile

 Version: 1.0

 Profile identifier: 00-00-5E-00-01-00

 This PTP Profile was specified by the IETF

 A copy may be obtained at

 https://datatracker.ietf.org/wg/tictoc/documents

16. Acknowledgements

 The authors would like to thank Richard Cochran, Kevin Gross, John

 Fletcher, Laurent Montini and many other members of IETF for

 reviewing and providing feedback on this draft.

 This document was initially prepared using 2-Word-v2.0.template.dot

 and has later been converted manually into xml format using an

 xml2rfc template.

17. IANA Considerations

 There are no IANA requirements in this specification.

18. Security Considerations

 Protocols used to transfer time, such as PTP and NTP can be important

 to security mechanisms which use time windows for keys and

 authorization. Passing time through the networks poses a security

 risk since time can potentially be manipulated. The use of multiple

 simultaneous timeTransmitters, using multiple PTP domains can

 mitigate problems from rogue timeTransmitters and on-path attacks.

 Note that Transparent Clocks alter PTP content on-path, but in a

 manner specified in IEEE 1588-2019 [IEEE1588] that helps with time

 transfer accuracy. See sections 9 and 10. Additional security

 mechanisms are outside the scope of this document.

 PTP native management messages SHOULD NOT be used, due to the lack of

 a security mechanism for this option. Secure management can be

 obtained using standard management mechanisms which include security,

 for example NETCONF NETCONF [RFC6241].

Arnold & Gerstung Expires 5 October 2024 [Page 12]

Internet-Draft Enterprise Profile for PTP April 2024

 General security considerations of time protocols are discussed in

 RFC 7384 [RFC7384].

19. References

19.1. Normative References

 [IEEE1588] Institute of Electrical and Electronics Engineers, "IEEE

 std. 1588-2019, "IEEE Standard for a Precision Clock

 Synchronization for Networked Measurement and Control

 Systems."", November 2019, <https://www.ieee.org>.

 [IEEE1588g]

 Institute of Electrical and Electronics Engineers, "IEEE

 std. 1588g-2022, "IEEE Standard for a Precision Clock

 Synchronization Protocol for Networked Measurement and

 Control Systems Amendment 2: Master-Slave Optional

 Alternative Terminology"", December 2022,

 <https://www.ieee.org>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,

 DOI 10.17487/RFC0768, August 1980,

 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,

 DOI 10.17487/RFC0791, September 1981,

 <https://www.rfc-editor.org/info/rfc791>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 2119, DOI 10.17487/RFC2119,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6

 (IPv6) Specification", STD 86, RFC 8200,

 DOI 10.17487/RFC8200, July 2017,

 <https://www.rfc-editor.org/info/rfc8200>.

19.2. Informative References

 [G8271] International Telecommunication Union, "ITU-T G.8271/

 Y.1366, "Time and Phase Synchronization Aspects of Packet

 Networks"", March 2020, <https://www.itu.int>.

Arnold & Gerstung Expires 5 October 2024 [Page 13]

Internet-Draft Enterprise Profile for PTP April 2024

 [IPv6Registry]

 Venaas, S., "IPv6 Multicast Address Space Registry",

 February 2024, <https://iana.org/assignments/ipv6-

 multicast-addresses/ipv6-multicast-addresses.xhtml>.

 [ISPCS] Arnold, D., "Plugfest Report", October 2017,

 <https://www.ispcs.org>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

 "Network Time Protocol Version 4: Protocol and Algorithms

 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,

 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in

 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,

 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

Authors’ Addresses

 Doug Arnold

 Meinberg-USA

 3 Concord Rd

 Shrewsbury, Massachusetts 01545

 United States of America

 Email: doug.arnold@meinberg-usa.com

 Heiko Gerstung

 Meinberg

 Lange Wand 9

 31812 Bad Pyrmont

 Germany

 Email: heiko.gerstung@meinberg.de

Arnold & Gerstung Expires 5 October 2024 [Page 14]

Internet Engineering Task Force M. Lichvar
Internet-Draft Red Hat
Intended status: Experimental April 25, 2019
Expires: October 27, 2019

 NTP Correction Field
 draft-mlichvar-ntp-correction-field-04

Abstract

 This document specifies an extension field for the Network Time
 Protocol (NTP) which improves resolution of specific fields in the
 NTP header and allows network devices such as switches and routers to
 modify NTP packets with corrections to improve accuracy of the
 synchronization in the network.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 27, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lichvar Expires October 27, 2019 [Page 1]

Internet-Draft NTP Correction Field April 2019

1. Introduction

 Processing and queueing delays in network switches and routers may be
 a significant source of jitter and asymmetry in network delay, which
 has a negative impact on accuracy and stability of clocks
 synchronized by NTP [RFC5905].

 If all network devices on the paths between NTP clients and servers
 implemented NTP and supported an operation as a server and client,
 the impact of the delays could be avoided by configuring NTP to make
 measurements only between devices and hosts that are directly
 connected to one another. In the Precision Time Protocol (PTP)
 [IEEE1588], which is a different protocol for synchronization of
 clocks in networks, such devices are called Boundary Clocks (BC).

 A different approach supported by PTP to improve the accuracy uses
 Transparent Clocks (TC). Instead of fully implementing PTP in order
 to support an operation as a BC, the devices only modify a correction
 field in forwarded PTP packets with the time that the packets had to
 wait for transmission. The final value of the correction is included
 in the calculation of the delay and offset, which may significantly
 improve the accuracy and stability of the synchronization.

 This document describes an NTP extension field which allows the
 devices to make a similar correction in forwarded NTP packets.

 To better support a highly accurate synchronization, the extension
 field also improves resolution of the receive and transmit timestamps
 from the NTP header.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Format of Correction Field

 The Correction Field is an NTP extension field following RFC 7822
 [RFC7822]. The format of the extension field is shown in Figure 1.

Lichvar Expires October 27, 2019 [Page 2]

Internet-Draft NTP Correction Field April 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Field Type | Length (28) |
 +-+
 | |
 + Origin Correction +
 | |
 +-+
 | Origin ID | Receive Corr. | Transmit Corr.|
 +-+
 | |
 + Delay Correction +
 | |
 +-+
 | Path ID | Checksum complement |
 +-+

 Figure 1: Format of Correction Field

 The extension field has the following fields:

 Field Type
 The type which identifies the Correction extension field.
 TBD

 Length
 The length of the extension field, which is 28 octets.

 Origin Correction
 A field which contains a copy of the final delay correction
 from the previous packet in the NTP exchange.

 Origin ID
 A field which contains a copy of the final path ID from the
 previous packet in the NTP exchange.

 Receive Correction
 An 8-bit extension of the receive timestamp in the NTP header
 increasing its resolution. The extended receive timestamp
 has 32 integer bits and 40 fractional bits.

 Transmit Correction
 An 8-bit extension of the transmit timestamp in the NTP
 header increasing its resolution. The extended transmit
 timestamp has 32 integer bits and 40 fractional bits.

 Delay Correction

Lichvar Expires October 27, 2019 [Page 3]

Internet-Draft NTP Correction Field April 2019

 A signed fixed-point number of nanoseconds with 48 integer
 bits and 16 fractional bits, which represents the current
 correction of the network delay that has accumulated for this
 packet on the path from the source to the destination. The
 format of this field is identical to the PTP correctionField.

 Path ID
 A 16-bit identification number of the path where the delay
 correction was updated.

 Checksum Complement
 A field which can be modified in order to keep the UDP
 checksum of the packet valid. This allows the UDP checksum
 to be transmitted before the Correction Field is received and
 modified. The same field is described in RFC 7821 [RFC7821].

3. Network devices

 A network device which is forwarding a packet and supports the
 Correction Field MUST NOT modify the packet unless all of the
 following applies:

 1. The packet is an IPv4 or IPv6 UDP packet.

 2. The source port or destination port is 123.

 3. The NTP version is 4.

 4. The NTP mode is 1, 2, 3, 4, or 5.

 5. The format of the packet is valid per RFC 7822.

 6. The packet contains an extension field which has a type of TBD
 and length of 28 octets.

 The device SHOULD add to the current value in the delay correction
 field the length of an interval between the reception and
 transmission of the packet. If the packet is transmitted at the same
 speed as it was received and the length of the packet does not change
 (e.g. due to adding or removing a VLAN tag), the beginning and end of
 the interval may correspond to any point of the reception and
 transmission as long as it is consistent for all forwarded packets of
 the same length. If the transmission speed or length of the packet
 is different, the beginning and end of the interval SHOULD correspond
 to the end of the reception and beginning of the transmission
 respectively.

Lichvar Expires October 27, 2019 [Page 4]

Internet-Draft NTP Correction Field April 2019

 If the transmission starts before the reception ends, a negative
 value may need to be added to the delay correction. The end of the
 reception SHOULD be determined using the length field of the UDP
 header and the speed at which the packet is received.

 If the device updates the delay correction, it SHOULD also add the
 identification numbers of the incoming and outgoing port to the path
 ID.

 If the device modified any field of the extension field, it MUST
 update the checksum complement field in order to keep the current UDP
 checksum valid, or update the UDP checksum itself.

4. NTP hosts

 When an NTP client sends a request to a server and the association is
 configured to use the Correction Field, it SHOULD add the extension
 field to the packet. All fields of the extension field except type
 and length SHOULD be set to zero.

 When the server receives a packet which includes the extension field,
 the response SHOULD also include the extension field.

 If the server’s clock has a better precision than resolution of the
 64-bit NTP timestamp format, the server SHOULD save the additional
 bits in the receive and transmit correction fields and set the
 precision field to the corresponding number, which is smaller than
 -32. Otherwise, the receive and transmit correction fields SHOULD be
 zero.

 The origin correction and origin ID fields SHOULD be set to the delay
 correction and path ID from the request. The other fields of the
 Correction Field SHOULD be zero.

 When the client receives a response which contains the extension
 field, it SHOULD check the value of both the origin and delay
 correction fields. If a correction is larger than a specified
 maximum (e.g. 1 second), the extension field SHOULD be ignored.

 The client MAY log a warning if the origin ID and path ID are not
 equal, which indicates the network path between the server and client
 is not symmetric.

 If the client’s clock has a better precision than resolution of the
 64-bit NTP format and the precision field in the response contains a
 number smaller than -32, the client SHOULD extend the receive and
 transmit timestamp from the NTP header with the additional bits from
 the receive and transmit correction fields respectively.

Lichvar Expires October 27, 2019 [Page 5]

Internet-Draft NTP Correction Field April 2019

 When the client calculates the offset and delay using the formulas
 from RFC 5905, the origin correction is subtracted from the receive
 timestamp and the delay correction is added to the transmit
 timestamp. A conversion is necessary as the corrections are in
 different units than the timestamps (nanoseconds vs seconds).

 An NTP peer follows the rules of both servers and clients. It
 processes Correction Fields in received packets as a client and sends
 Correction Fields as a server. A packet which has a zero origin
 timestamp (i.e. it is not a response to a request) SHOULD have a zero
 origin correction and zero origin ID in the Correction Field.

 A broadcast server using the Correction Field SHOULD always set the
 origin correction and origin ID fields to zero.

5. Acknowledgements

 The Correction Field extension is based on the PTP correction field
 specified in IEEE 1588-2008.

 The author would like to thank Tal Mizrahi and Harlan Stenn for their
 useful comments.

6. IANA Considerations

 IANA is requested to allocate an Extension Field Type for the
 Correction Field.

7. Security Considerations

 NTP packets including the Correction Field cannot be authenticated by
 a legacy MAC, because the MAC has to cover all extension fields in
 the packet and devices which are supposed to modify the field are not
 able to update the MAC.

 It is recommended to authenticate NTP packets using an authentication
 extension field, e.g. the NTS Authenticator and Encrypted Extensions
 [I-D.ietf-ntp-using-nts-for-ntp] extension field, and add the
 Correction Field to the packet after the authentication field.

 A man-in-the-middle attacker can delay packets in the network in
 order to increase the measured delay and shift the measured offset by
 up to half of the extra delay. If the packets contain the Correction
 Field, the attacker can reduce the delay calculated by the client or
 peer and shift the offset even more. The maximum correction should
 be limited (e.g. to 1 second) to prevent the attacker from injecting
 a larger offset to the measurements.

Lichvar Expires October 27, 2019 [Page 6]

Internet-Draft NTP Correction Field April 2019

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC7822] Mizrahi, T. and D. Mayer, "Network Time Protocol Version 4
 (NTPv4) Extension Fields", RFC 7822, DOI 10.17487/RFC7822,
 March 2016, <https://www.rfc-editor.org/info/rfc7822>.

8.2. Informative References

 [I-D.ietf-ntp-using-nts-for-ntp]
 Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", draft-ietf-ntp-using-nts-for-ntp-18 (work in
 progress), April 2019.

 [IEEE1588]
 IEEE std. 1588-2008, "IEEE Standard for a Precision Clock
 Synchronization Protocol for Networked Measurement and
 Control Systems", 2008.

 [RFC7821] Mizrahi, T., "UDP Checksum Complement in the Network Time
 Protocol (NTP)", RFC 7821, DOI 10.17487/RFC7821, March
 2016, <https://www.rfc-editor.org/info/rfc7821>.

Author’s Address

 Miroslav Lichvar
 Red Hat
 Purkynova 115
 Brno 612 00
 Czech Republic

 Email: mlichvar@redhat.com

Lichvar Expires October 27, 2019 [Page 7]

Internet Engineering Task Force M. Lichvar
Internet-Draft Red Hat
Intended status: Standards Track A. Malhotra
Expires: June 15, 2018 Boston University
 December 12, 2017

 NTP Interleaved Modes
 draft-mlichvar-ntp-interleaved-modes-01

Abstract

 This document extends the specification of Network Time Protocol
 (NTP) version 4 in RFC 5905 with special modes called the NTP
 interleaved modes, that enable NTP servers to provide their clients
 and peers with more accurate transmit timestamps that are available
 only after transmitting NTP packets. More specifically, this
 document describes three modes: interleaved client/server,
 interleaved symmetric, and interleaved broadcast.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 15, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Lichvar & Malhotra Expires June 15, 2018 [Page 1]

Internet-Draft NTP Interleaved Modes December 2017

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 RFC 5905 [RFC5905] describes the operations of NTPv4 in basic client/
 server, symmetric, and broadcast mode. The transmit timestamp is one
 of the four timestamps included in every NTP packet used for time
 synchronization. A packet that strictly follows RFC 5905, i.e. it
 contains a transmit timestamp corresponding to the packet itself, is
 said to be in basic mode.

 There are, at least, four options where a transmit timestamp can be
 captured i.e. by NTP daemon, by network drivers, or at the MAC or
 physical layer of the OSI model. A typical transmit timestamp in a
 software NTP implementation in the basic mode is the one captured by
 the NTP daemon using the system clock, before the computation of
 message digest and before the packet is passed to the operating
 system, and does not include any processing and queuing delays in the
 system, network drivers, and hardware. These delays may add a
 significant error to the offset and network delay measured by clients
 and peers of the server.

 For best accuracy, the transmit timestamp should be captured as close
 to the wire as possible, but that is difficult to implement in the
 current packet since this timestamp is available only after the
 packet transmission. The protocol described in RFC 5905 does not
 specify any mechanism for the server to provide its clients and peers
 with this more accurate timestamp.

 Different mechanisms could be used to exchange this more accurate
 timestamp. This document describes interleaved modes, in which an
 NTP packet contains a transmit timestamp corresponding to the
 previous packet that was sent to the client or peer. This transmit
 timestamp could be captured at one of the any four places mentioned
 above. More specifically, this document:

 1. Introduces and specifies a new interleaved client/server mode.

 2. Specifies the interleaved symmetric mode based on the NTP
 reference implementation with some modifications.

 3. Specifies the interleaved broadcast mode based purely on the NTP
 reference implementation.

 The protocol does not change the NTP packet header format. Only the
 semantics of some timestamp fields is different. NTPv4 that supports

Lichvar & Malhotra Expires June 15, 2018 [Page 2]

Internet-Draft NTP Interleaved Modes December 2017

 client/server and broadcast interleaved modes is compatible with
 NTPv4 without this capability as well as with all previous NTP
 versions.

 The protocol requires both servers and clients/peers to keep some
 state specific to the interleaved mode. It prevents traffic
 amplification that would be possible if the timestamp was sent in a
 separate message in order to keep the servers stateless.

 This document assumes familiarity with RFC 5905.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Interleaved Client/server mode

 The interleaved client/server mode is similar to the basic client/
 server mode. The only difference between the two modes is in the
 meaning of the transmit and origin timestamp fields.

 A client request in the basic mode has an origin timestamp equal to
 the transmit timestamp from the previous server response, or is zero.
 A server response in the basic mode has an origin timestamp equal to
 the transmit timestamp from the client’s request. The transmit
 timestamps correspond to the packets in which they are included.

 A client request in the interleaved mode has an origin timestamp
 equal to the receive timestamp from the previous server response. A
 server response in the interleaved mode has an origin timestamp equal
 to the receive timestamp from the client’s request. The transmit
 timestamps correspond to the previous packets that were sent to the
 server or client.

 A server which supports the interleaved mode needs to save pairs of
 local receive and transmit timestamps. The server SHOULD discard old
 timestamps to limit the amount of memory needed to support clients
 using the interleaved mode. The server MAY separate the timestamps
 by IP addresses, but it SHOULD NOT separate them by port numbers,
 i.e. clients are allowed to change their source port between
 requests.

 When the server receives a request, it SHOULD compare the origin
 timestamp with all receive timestamps it has saved (for the IP
 address). If a match is found, the server SHOULD respond with a
 packet in the interleaved mode, which contains the transmit timestamp

Lichvar & Malhotra Expires June 15, 2018 [Page 3]

Internet-Draft NTP Interleaved Modes December 2017

 corresponding to the packet which had the matching receive timestamp.
 If no match is found, the server MUST NOT respond in the interleaved
 mode. The server MAY always respond in the basic mode. In both
 cases, the server SHOULD save the new receive and transmit
 timestamps.

 Both servers and clients that support the interleaved mode MUST NOT
 send a packet that has a transmit timestamp equal to the receive
 timestamp in order to reliably detect whether received packets
 conform to the interleaved mode.

 The first request from a client is always in the basic mode and so is
 the server response. It has a zero origin timestamp and zero receive
 timestamp. Only when the client receives a valid response from the
 server, it will be able to send a request in the interleaved mode.
 The client SHOULD limit the number of requests in the interleaved
 mode per server response to prevent processing of very old timestamps
 in case a large number of packets is lost.

 An example of packets in a client/server exchange using the
 interleaved mode is shown in Figure 1. The packets in the basic and
 interleaved mode are indicated with B and I respectively. The
 timestamps t1’, t3’ and t11’ point to the same transmissions as t1,
 t3 and t11, but they may be less accurate. The first exchange is in
 the basic mode followed by a second exchange in the interleaved mode.
 For the third exchange, the client request is in the interleaved
 mode, but the server response is in the basic mode, because the
 server did not have the pair of timestamps t6 and t7 (e.g. they were
 dropped to save timestamps for other clients using the interleaved
 mode).

 Server t2 t3 t6 t7 t10 t11
 -----+----+----------------+----+----------------+----+-----
 / \ / \ / \
 Client / \ / \ / \
 --+----------+----------+----------+----------+----------+--
 t1 t4 t5 t8 t9 t12

 Mode: B B I I I B
 +----+ +----+ +----+ +----+ +----+ +----+
 Org | 0 | | t1’| | t2 | | t4 | | t6 | | t5 |
 Rx | 0 | | t2 | | t4 | | t6 | | t8 | |t10 |
 Tx | t1’| | t3’| | t1 | | t3 | | t5 | |t11’|
 +----+ +----+ +----+ +----+ +----+ +----+

 Figure 1: Packet timestamps in interleaved client/server mode

Lichvar & Malhotra Expires June 15, 2018 [Page 4]

Internet-Draft NTP Interleaved Modes December 2017

 When the client receives a response, it performs all tests described
 in RFC 5905, except now the sanity check for bogus packet needs to
 compare the origin timestamp with both transmit and receive
 timestamps from the request in order to be able to detect if the
 response is in the basic or interleaved mode. The client SHOULD NOT
 update its NTP state when an invalid response is received to not lose
 the timestamps which will be needed to complete a measurement when
 the following response in the interleaved mode is received.

 If the packet passed the tests and conforms to the interleaved mode,
 the client can compute the offset and delay using the formulas from
 RFC 5905 and one of two different sets of timestamps. The first set
 is RECOMMENDED for clients that filter measurements based on the
 delay. The corresponding timestamps from Figure 1 are written in
 parentheses.

 T1 - local transmit timestamp of the previous request (t1)

 T2 - remote receive timestamp from the previous response (t2)

 T3 - remote transmit timestamp from the latest response (t3)

 T4 - local receive timestamp of the previous response (t4)

 The second set gives a more accurate measurement of the current
 offset, but the delay is much more sensitive to a frequency error
 between the server and client due to a much longer interval between
 T1 and T4.

 T1 - local transmit timestamp of the latest request (t5)

 T2 - remote receive timestamp from the latest response (t6)

 T3 - remote transmit timestamp from the latest response (t3)

 T4 - local receive timestamp of the previous response (t4)

 Clients MAY filter measurements based on the mode. The maximum
 number of dropped measurements in the basic mode SHOULD be limited in
 case the server does not support or is not able to respond in the
 interleaved mode. Clients that filter measurements based on the
 delay will implicitly prefer measurements in the interleaved mode
 over the basic mode, because they have a shorter delay due to a more
 accurate transmit timestamp (T3).

 The server MAY limit saving of the receive and transmit timestamps to
 requests which have an origin timestamp specific to the interleaved
 mode in order to not waste resources on clients using the basic mode.

Lichvar & Malhotra Expires June 15, 2018 [Page 5]

Internet-Draft NTP Interleaved Modes December 2017

 Such an optimization will delay the first interleaved response of the
 server to a client by one exchange.

 A check for a non-zero origin timestamp works with clients that
 implement NTP data minimization [I-D.ietf-ntp-data-minimization]. To
 detect requests in the basic mode from clients that do not implement
 the data minimization, the server can encode in low-order bits of the
 receive and transmit timestamps below precision of the clock a bit
 indicating whether the timestamp is a receive timestamp. If the
 server receives a request with a non-zero origin timestamp which does
 not indicate it is receive timestamp of the server, the request is in
 the basic mode and it is not necessary to save the new receive and
 transmit timestamp.

3. Interleaved Symmetric mode

 The interleaved symmetric mode uses the same principles as the
 interleaved client/server mode. A packet in the interleaved
 symmetric mode has a transmit timestamp which corresponds to the
 previous packet sent to the peer and an origin timestamp equal to the
 receive timestamp from the last packet received from the peer.

 In order to prevent the peer from matching the transmit timestamp
 with an incorrect packet when the peers’ transmissions do not
 alternate (e.g. they use different polling intervals) and a previous
 packet was lost, the use of the interleaved mode in symmetric
 associations requires additional restrictions.

 Peers which have an association need to count valid packets received
 between their transmissions to determine in which mode a packet
 should be formed. A valid packet in this context is a packet which
 passed all NTP tests for duplicate, replayed, bogus, and
 unauthenticated packets. Other received packets may update the NTP
 state to allow the (re)initialization of the association, but they do
 not change the selection of the mode.

 A peer A SHOULD send a peer B a packet in the interleaved mode only
 when the following conditions are met:

 1. The peer A has an active association with the peer B which was
 specified with an option enabling the interleaved mode, OR the
 peer A received at least one valid packet in the interleaved mode
 from the peer B.

 2. The peer A did not send a packet to the peer B since it received
 the last valid packet from the peer B.

Lichvar & Malhotra Expires June 15, 2018 [Page 6]

Internet-Draft NTP Interleaved Modes December 2017

 3. The previous packet that the peer A sent to the peer B was the
 only response to a packet received from the peer B.

 An example of packets exchanged in a symmetric association is shown
 in Figure 2. The minimum polling interval of the peer A is twice as
 long as the maximum polling interval of the peer B. The first
 packets sent by the peers are in the basic mode. The second and
 third packet sent by the peer A is in the interleaved mode. The
 second packet sent by the peer B is in the interleaved mode, but the
 following packets sent by the peer are in the basic mode, because
 multiple responses are sent per request.

 Peer A t2 t3 t6 t8 t9 t12 t14 t15
 -----+--+--------+-----------+--+--------+-----------+--+-----
 / \ / / \ / / \
 Peer B / \ / / \ / / \
 --+--------+--+-----------+--------+--+-----------+--------+--
 t1 t4 t5 t7 t10 t11 t13 t16

 Mode: B B I B I B B I
 +----+ +----+ +----+ +----+ +----+ +----+ +----+ +----+
 Org | 0 | | t1’| | t2 | | t3’| | t4 | | t3 | | t3 | |t10 |
 Rx | 0 | | t2 | | t4 | | t4 | | t8 | |t10 | |t10 | |t14 |
 Tx | t1’| | t3’| | t1 | | t7’| | t3 | |t11’| |t13’| | t9 |
 +----+ +----+ +----+ +----+ +----+ +----+ +----+ +----+

 Figure 2: Packet timestamps in interleaved symmetric mode

 If the peer A has no association with the peer B and it responds with
 symmetric passive packets, it does not need to count the packets in
 order to meet the restrictions, because each request has at most one
 response. The peer SHOULD process the requests in the same way as a
 server which supports the interleaved client/server mode. It MUST
 NOT respond in the interleaved mode if the request was not in the
 interleaved mode.

 The peers SHOULD compute the offset and delay using one the two sets
 of timestamps specified in the client/server section. They MAY
 switch between them to minimize the interval between T1 and T4 in
 order to reduce the error in the measured delay.

4. Interleaved Broadcast mode

 A packet in the interleaved broadcast mode contains two transmit
 timestamps. One corresponds to the packet itself and is saved in the
 transmit timestamp field. The other corresponds to the previous
 packet and is saved in the origin timestamp field. The packet is
 compatible with the basic mode, which uses a zero origin timestamp.

Lichvar & Malhotra Expires June 15, 2018 [Page 7]

Internet-Draft NTP Interleaved Modes December 2017

 A client which does not support the interleaved mode ignores the
 origin timestamp and processes all packets as if they were in the
 basic mode.

 A client which supports the interleaved mode SHOULD check if the
 origin timestamp is not zero to detect packets in the interleaved
 mode. The client SHOULD also compare the origin timestamp with the
 transmit timestamp from the previous packet to detect lost packets.
 If the difference is larger than a specified maximum (e.g. 1 second),
 the packet SHOULD NOT be used for synchronization.

 The client SHOULD compute the offset using the origin timestamp from
 the received packet and the local receive timestamp of the previous
 packet. If the client needs to measure the network delay, it SHOULD
 use the interleaved client/server mode.

5. Acknowledgements

 The interleaved modes described in this document are based on the
 reference NTP implementation written by David Mills.

 The authors would like to thank Kristof Teichel for his useful
 comments.

6. IANA Considerations

 This memo includes no request to IANA.

7. Security Considerations

 Security issues that apply to the basic modes apply also to the
 interleaved modes. They are described in The Security of NTP’s
 Datagram Protocol [SECNTP].

 Clients and peers SHOULD NOT leak the receive timestamp in packets
 sent to other peers or clients (e.g. as a reference timestamp) to
 prevent off-path attackers from easily getting the origin timestamp
 needed to make a valid response in the interleaved mode.

 Clients SHOULD randomize all bits of both receive and transmit
 timestamps, as recommended for the transmit timestamp in the NTP
 client data minimization [I-D.ietf-ntp-data-minimization], to make it
 more difficult for off-path attackers to guess the origin timestamp.

 Protecting symmetric associations in the interleaved mode against
 replay attacks is even more difficult than in the basic mode, because
 the NTP state needs to be protected not only between the reception
 and transmission in order to send the peer a packet with a valid

Lichvar & Malhotra Expires June 15, 2018 [Page 8]

Internet-Draft NTP Interleaved Modes December 2017

 origin timestamp, but all the time to not lose the timestamps which
 will be needed to complete a measurement when the following packet in
 the interleaved mode is received.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

8.2. Informative References

 [I-D.ietf-ntp-data-minimization]
 Franke, D. and A. Malhotra, "NTP Client Data
 Minimization", draft-ietf-ntp-data-minimization-01 (work
 in progress), July 2017.

 [SECNTP] Malhotra, A., Gundy, M., Varia, M., Kennedy, H., Gardner,
 J., and S. Goldberg, "The Security of NTP’s Datagram
 Protocol", 2016, <http://eprint.iacr.org/2016/1006>.

Authors’ Addresses

 Miroslav Lichvar
 Red Hat
 Purkynova 115
 Brno 612 00
 Czech Republic

 Email: mlichvar@redhat.com

 Aanchal Malhotra
 Boston University
 111 Cummington St
 Boston 02215
 USA

 Email: aanchal4@bu.edu

Lichvar & Malhotra Expires June 15, 2018 [Page 9]

Internet Engineering Task Force M. Lichvar
Internet-Draft Red Hat
Updates: RFC7822 (if approved) September 26, 2018
Intended status: Standards Track
Expires: March 30, 2019

 NTPv4 Short Extension Fields
 draft-mlichvar-ntp-short-extension-fields-00

Abstract

 This document specifies a new packet format for the Network Time
 Protocol version 4 (NTPv4) which is compatible with RFC 7822, but
 allows NTPv4 packets to contain shorter extension fields.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 30, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lichvar Expires March 30, 2019 [Page 1]

Internet-Draft NTPv4 Short Extension Fields September 2018

1. Introduction

 RFC 7822 [RFC7822] specifies a minimum length of extension fields in
 NTPv4 packets in order to prevent ambiguities in their parsing.
 Without these rules, an extension field in a valid NTPv4 packet could
 be parsed as a Message Authentication Code (MAC), or a MAC could be
 parsed as an extension field.

 The minimum length of 28 octets forces extension fields that do not
 contain enough data to reach the minimum length to waste space. With
 multiple extension fields in a packet the wasted space accumulates.

 A different issue with extension fields in NTPv4 packets is that
 servers/clients cannot pad a response/request to a specific length,
 e.g. to make their length symmetric when they contain different
 extension fields, or the sums of their lengths are different, unless
 one of the extension fields included in the request/response supports
 padding.

 This document specifies a new NTPv4 format using three new extension
 fields:

 1. An extension field which contains other extension fields with no
 requirements on minimum length

 2. An extension field which does not contain any information and can
 always be used for padding

 3. An extension field which contains MAC

 Together, these extension fields allow NTPv4 packets to contain short
 extension fields, minimize the wasted space, and allow the packets to
 be padded to any length that meets the requirements of RFC 7822.

 Older NTP implementations which follow RFC 7822 will parse a packet
 in the new format as a valid packet which contains a single unknown
 extension field, skipping all extension fields and/or MAC, and can
 respond as appropriate.

 An implementation which supports the new format will parse all
 extension fields and/or MAC contained in the packet.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Lichvar Expires March 30, 2019 [Page 2]

Internet-Draft NTPv4 Short Extension Fields September 2018

2. New extension fields

2.1. Packing Field

 The Packing Field is an NTP extension field following RFC 7822
 [RFC7822], which contains one or more other extension fields. The
 format of the extension field is shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Field Type | Length |
 +-+
 | Subfield 1 Type | Subfield 1 Length |
 +-+
 . .
 . Subfield 1 Data .
 . .
 +-+
 . .
 . .
 +-+
 | Subfield N Type | Subfield N Length |
 +-+
 . .
 . Subfield N Data .
 . .
 +-+

 Figure 1: Format of Packing Field

 The extension field has the following fields:

 Field Type
 The type which identifies the Packing Field. TBD

 Length
 The length of the extension field, which is at least 28
 octets.

 Subfield 1..N Type
 The types of the contained extension fields.

 Subfield 1..N Length
 The lengths of the contained extension field, which are
 divisible by 4 and can be smaller than 28.

 Subfield 1..N Data

Lichvar Expires March 30, 2019 [Page 3]

Internet-Draft NTPv4 Short Extension Fields September 2018

 Data specific to the included extension fields.

2.2. Padding Field

 The Padding Field is an NTP extension field which does not contain
 any useful data. It does not follow the requirements from RFC 7822
 [RFC7822] and it MUST be contained in the Packing Field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Field Type | Length |
 +-+
 . .
 . Padding .
 . .
 +-+

 Figure 2: Format of Padding Field

 The extension field has the following fields:

 Field Type
 The type which identifies the Padding Field. TBD

 Length
 The length of the extension field.

 Padding
 Octets filling the space of the extension field with any
 value.

2.3. MAC Field

 The MAC Field is an NTP extension field which contains a MAC as
 specified in RFC 5905 [RFC5905]. It does not follow the requirements
 from RFC 7822 [RFC7822] and it MUST be contained in the Packing
 Field.

Lichvar Expires March 30, 2019 [Page 4]

Internet-Draft NTPv4 Short Extension Fields September 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Field Type | Length |
 +-+
 | Key Identifier |
 +-+
 . .
 . Message Digest .
 . .
 +-+

 Figure 3: Format of MAC Field

 The extension field has the following fields:

 Field Type
 The type which identifies the MAC Field. TBD

 Length
 The length of the extension field.

 Key Identifier
 The ID of the key which is used for calculating the digest.

 Message Digest
 Digest calculated over all UDP data before the Key
 Identifier, including the length of the MAC Field and Packing
 field.

3. New NTPv4 format

 An NTPv4 packet in the new format consists of:

 1. NTPv4 header per RFC 5905 [RFC5905](48 octets)

 2. Field Type of the Packing Field (2 octets)

 3. Length of all data following the NTP header (2 octets)

 4. Extension fields with no restrictions on their minimum length,
 optionally including the Padding and/or MAC Fields (at least 24
 octets)

 The packet MUST have exactly one Packing Field and it MUST contain
 all other extension fields. The packet MUST NOT have a MAC outside
 the Packing Field. If there is not enough data to reach the minimum

Lichvar Expires March 30, 2019 [Page 5]

Internet-Draft NTPv4 Short Extension Fields September 2018

 length of 28 octets, the Packing Field MUST include at least one
 Padding Field to increase the length of the Packing Field.

4. Parsing of NTPv4 packets

 An implementation SHOULD check if the following applies to the UDP
 data before parsing it as an NTPv4 packet in the new format:

 1. NTP version (in the first octet) is 4.

 2. NTP mode (in the first octet) is 1, 2, 3, 4, or 5.

 3. Length is at least 76 octets.

 4. 49th and 50th octets contain the type of the Packing Field.

 5. 51st and 52nd octets contain a value that is equal to the length
 of the UDP data minus 48.

5. IANA Considerations

 IANA is requested to allocate Extension Field Types for the Packing,
 Padding, and MAC Extension Fields.

6. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC7822] Mizrahi, T. and D. Mayer, "Network Time Protocol Version 4
 (NTPv4) Extension Fields", RFC 7822, DOI 10.17487/RFC7822,
 March 2016, <https://www.rfc-editor.org/info/rfc7822>.

Author’s Address

Lichvar Expires March 30, 2019 [Page 6]

Internet-Draft NTPv4 Short Extension Fields September 2018

 Miroslav Lichvar
 Red Hat
 Purkynova 115
 Brno 612 00
 Czech Republic

 Email: mlichvar@redhat.com

Lichvar Expires March 30, 2019 [Page 7]

Internet Engineering Task Force A. Malhotra
Internet-Draft Boston University
Intended status: Informational A. Langley
Expires: July 23, 2020 Google
 W. Ladd
 Cloudflare
 January 20, 2020

 Roughtime
 draft-roughtime-aanchal-04

Abstract

 This document specifies Roughtime - a protocol that aims to achieve
 rough time synchronization while detecting servers that provide
 inaccurate time and providing cryptographic proof of their
 malfeasance.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 23, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Malhotra, et al. Expires July 23, 2020 [Page 1]

Internet-Draft Roughtime January 2020

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Requirements Language . 4
 3. Protocol Overview . 4
 4. The guarantee . 5
 5. Message Format . 5
 5.1. Data Types . 6
 5.1.1. uint32 . 6
 5.1.2. uint64 . 6
 5.1.3. Tag . 6
 5.1.4. Timestamp . 7
 5.2. Header . 7
 6. Protocol . 7
 6.1. Requests . 7
 6.2. Responses . 8
 6.3. The Merkle Tree . 9
 6.3.1. Root value validity check algorithm 10
 6.4. Validity of response 10
 7. Integration into ntp . 10
 8. Cheater Detection . 11
 9. Grease . 11
 10. Roughtime Servers . 12
 11. Trust anchors and policies 12
 12. Acknowledgements . 12
 13. IANA Considerations . 13
 13.1. Service Name and Transport Protocol Port Number Registry 13
 13.2. Roughtime Tag Registry 13
 14. Security Considerations 14
 15. Privacy Considerations 15
 16. References . 15
 16.1. Normative References 15
 16.2. Informative References 16
 Appendix A. Terms and Abbreviations 17
 Authors’ Addresses . 17

1. Introduction

 Time synchronization is essential to Internet security as many
 security protocols and other applications require synchronization
 [RFC7384] [MCBG]. Unfortunately widely deployed protocols such as
 the Network Time Protocol (NTP) [RFC5905] lack essential security
 features, and even newer protocols like Network Time Security (NTS)
 [I-D.ietf-ntp-using-nts-for-ntp] fail to ensure that the servers
 behave correctly. Authenticating time servers prevents network

Malhotra, et al. Expires July 23, 2020 [Page 2]

Internet-Draft Roughtime January 2020

 adversaries from modifying time packets, but an authenticated time
 server still has full control over the contents of the time packet
 and may go rogue. The Roughtime protocol provides cryptographic
 proof of malfeasance, enabling clients to detect and prove to a third
 party a server’s attempts to influence the time a client computes.

 +--------------+----------------------+-----------------------------+
 | Protocol | Authenticated Server | Server Malfeasance Evidence |
 +--------------+----------------------+-----------------------------+
NTP, Chronos	N	N
NTP-MD5	Y*	N
NTP-Autokey	Y**	N
NTS	Y	N
Roughtime	Y	Y
 +--------------+----------------------+-----------------------------+

 Security Properties of current protocols

 Table 1

 Y* For security issues with symmetric-key based NTP-MD5
 authentication, please refer to RFC 8573 [RFC8573].

 Y** For security issues with Autokey Public Key Authentication, refer
 to [Autokey].

 More specifically,

 o If a server’s timestamps do not fit into the time context of other
 servers’ responses, then a Roughtime client can cryptographically
 prove this misbehavior to third parties. This helps detect "bad"
 servers.

 o A Roughtime client can roughly detect (with no absolute guarantee)
 a delay attack [DelayAttacks] but can not cryptographically prove
 this to a third party. However, the absence of proof of
 malfeasance should not be considered a proof of absence of
 malfeasance. So Roughtime should not be used as a witness that a
 server is overall "good".

 o Note that delay attacks cannot be detected/stopped by any
 protocol. Delay attacks can not, however, undermine the security
 guarantees provided by Roughtime.

 o Although delay attacks cannot be prevented, they can be limited to
 a predetermined upper bound. This can be done by defining a
 maximal tolerable Round Trip Time (RTT) value, MAX-RTT, that a
 Roughtime client is willing to accept. A Roughtime client can

Malhotra, et al. Expires July 23, 2020 [Page 3]

Internet-Draft Roughtime January 2020

 measure the RTT of every request-response handshake and compare it
 to MAX-RTT. If the RTT exceeds MAX-RTT, the corresponding server
 is assumed to be a falseticker. When this approach is used the
 maximal time error that can be caused by a delay attack is MAX-
 RTT/2. It should be noted that this approach assumes that the
 nature of the system is known to the client, including reasonable
 upper bounds on the RTT value.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Protocol Overview

 Roughtime is a protocol for rough time synchronization that enables
 clients to provide cryptographic proof of server malfeasance. It
 does so by having responses from servers include a signature with a
 certificate rooted in a long-term public/private key pair over a
 value derived from a nonce provided by the client in its request.
 This provides cryptographic proof that the timestamp was issued after
 the server received the client’s request. The derived value included
 in the server’s response is the root of a Merkle tree which includes
 the hash of the client’s nonce as the value of one of its leaf nodes.
 This enables the server to amortize the relatively costly signing
 operation over a number of client requests.

 Single server mode: At its most basic level, Roughtime is a one round
 protocol in which a completely fresh client requests the current time
 and the server sends a signed response. The response includes a
 timestamp and a radius used to indicate the server’s certainty about
 the reported time. For example, a radius of 1,000,000 microseconds
 means the server is absolutely confident that the true time is within
 one second of the reported time.

 The server proves freshness of its response as follows: The client’s
 request contains a nonce. The server incorporates the nonce into its
 signed response so that the client can verify the server’s signatures
 covering the nonce issued by the client. Provided that the nonce has
 sufficient entropy, this proves that the signed response could only
 have been generated after the nonce.

 Chaining multiple servers: For subsequent requests, the client
 generates a new nonce by hashing the reply from the previous server
 with a random value (a blind). This proves that the nonce was

Malhotra, et al. Expires July 23, 2020 [Page 4]

Internet-Draft Roughtime January 2020

 created after the reply from the previous server. It sends the new
 nonce in a request to the next server and receives a response that
 includes a signature covering the nonce.

 Cryptographic proof of misbehavior: If the time from the second
 server is before the first, then the client has proof that at least
 one of the servers is misbehaving; the reply from the second server
 implicitly shows that it was created later because of the way that
 the client constructed the nonce. If the time from the second server
 is too far in the future, the client can contact the first server
 again with a new nonce generated from the second server’s response
 and get a signature that was provably created afterwards, but with an
 earlier timestamp.

 With only two servers, the client can end up with proof that
 something is wrong, but no idea what the correct time is. But with
 half a dozen or more independent servers, the client will end up with
 chain of proof of any server’s misbehavior, signed by several others,
 and (presumably) enough accurate replies to establish what the
 correct time is. Furthermore, this proof may be validated by third
 parties ultimately leading to a revocation of trust in the
 misbehaving server.

4. The guarantee

 A Roughtime server guarantees that a response to a query sent at t_1,
 received at t_2, and with timestamp t_3 has been created between the
 transmission of the query and its reception. If t_3 is not within
 that interval, a server inconsistency may be detected and used to
 impeach the server. The propagation of such a guarantee and its use
 of type synchronization is discussed in Section 7. No delay attacker
 may affect this: they may only expand the interval between t_1 and
 t_2, or of course stop the measurement in the first place.

5. Message Format

 Roughtime messages are maps consisting of one or more (tag, value)
 pairs. They start with a header, which contains the number of pairs,
 the tags, and value offsets. The header is followed by a message
 values section which contains the values associated with the tags in
 the header. Messages MUST be formatted according to Figure 1 as
 described in the following sections.

 Messages may be recursive, i.e. the value of a tag can itself be a
 Roughtime message.

Malhotra, et al. Expires July 23, 2020 [Page 5]

Internet-Draft Roughtime January 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Number of pairs (uint32) |
 +-+
 | |
 . .
 . N-1 offsets (uint32) .
 . .
 | |
 +-+
 | |
 . .
 . N tags (uint32) .
 . .
 | |
 +-+
 | |
 . .
 . Values .
 . .
 | |
 +-+

 Figure 1: Roughtime Message Format

5.1. Data Types

5.1.1. uint32

 A uint32 is a 32 bit unsigned integer. It is serialized with the
 least significant byte first.

5.1.2. uint64

 A uint64 is a 64 bit unsigned integer. It is serialized with the
 least significant byte first.

5.1.3. Tag

 Tags are used to identify values in Roughtime packets. A tag is a
 uint32 but may also be listed as a sequence of up to four ASCII
 characters [RFC0020]. ASCII strings shorter than four characters can
 be unambiguously converted to tags by padding them with zero bytes.
 For example, the ASCII string "NONC" would correspond to the tag
 0x434e4f4e and "PAD" would correspond to 0x00444150.

Malhotra, et al. Expires July 23, 2020 [Page 6]

Internet-Draft Roughtime January 2020

5.1.4. Timestamp

 A timestamp is a uint64 interpreted in the following way. The most
 significant 3 bytes contain the integer part of a Modified Julian
 Date (MJD). The least significant 5 bytes is a count of the number
 of Coordinated Universal Time (UTC) microseconds [ITU-R_TF.460-6]
 since midnight on that day.

 The MJD is the number of UTC days since 17 November 1858
 [ITU-R_TF.457-2].

 Note that, unlike NTP, this representation does not use the full
 number of bits in the fractional part and that days with leap seconds
 will have more or fewer than the nominal 86,400,000,000 microseconds.

5.2. Header

 All Roughtime messages start with a header. The first four bytes of
 the header is the uint32 number of tags N, and hence of (tag, value)
 pairs. The following 4*(N-1) bytes are offsets, each a uint32. The
 last 4*N bytes in the header are tags.

 Offsets refer to the positions of the values in the message values
 section. All offsets MUST be multiples of four and placed in
 increasing order. The first post-header byte is at offset 0. The
 offset array is considered to have a not explicitly encoded value of
 0 as its zeroth entry. The value associated with the ith tag begins
 at offset[i] and ends at offset[i+1]-1, with the exception of the
 last value which ends at the end of the packet. Values may have zero
 length.

 Tags MUST be listed in the same order as the offsets of their values.
 A tag MUST NOT appear more than once in a header.

6. Protocol

 Roughtime messages are sent between clients and servers as UDP
 packets, or over TCP. When transporting over TCP, the packets are
 prefixed with their length as a uint32. Currently no servers exist
 for the TCP version. As described in Section 3, clients initiate
 time synchronization by sending request packets containing a nonce to
 servers who send signed time responses in return.

6.1. Requests

 A request is a Roughtime message with the tag NONC. The size of the
 request message SHOULD be at least 1024 bytes. To attain this size
 the PAD tag SHOULD be added to the message. Tags other than NONC

Malhotra, et al. Expires July 23, 2020 [Page 7]

Internet-Draft Roughtime January 2020

 SHOULD be ignored by the server. Responding to requests shorter than
 1024 bytes is OPTIONAL and servers MUST NOT send responses larger
 than the requests they are replying to.

 The value of the NONC tag is a 64 byte nonce. It SHOULD be generated
 by hashing a previous Roughtime response message together with a
 blind as described in Section 8. If no previous responses are
 avaiable to the client, the nonce SHOULD be generated at random.

 The PAD tag SHOULD be used by clients to ensure their request
 messages are at least 1024 bytes in size. Its value SHOULD be all
 zeros.

6.2. Responses

 A response contains the tags SREP, SIG, CERT, INDX, and PATH. The
 SIG tag is a signature over the SREP value using the public key
 contained in CERT, as explained below.

 The SREP tag contains a time response. Its value is a Roughtime
 message with the tags ROOT, MIDP, and RADI.

 The ROOT tag contains a 32 byte value of a Merkle tree root as
 described in Section 6.3.

 The MIDP tag value is a timestamp of the moment of processing.

 The RADI tag value is a uint32 representing the server’s estimate of
 the accuracy of MIDP in microseconds. Servers MUST ensure that the
 true time is within (MIDP-RADI, MIDP+RADI) at the time they compose
 the response packet.

 The SIG tag value is a 64 byte Ed25519 signature [RFC8032] over a
 signature context concatenated with the entire value of a DELE or
 SREP tag. Signatures of DELE tags use the ASCII string "RoughTime v1
 delegation signature--" and signatures of SREP tags use the ASCII
 string "RoughTime v1 response signature" as signature context. Both
 strings include a terminating zero byte.

 The CERT tag contains a public-key certificate signed with the
 server’s long-term key. Its value is a Roughtime message with the
 tags DELE and SIG, where SIG is a signature over the DELE value.

 The DELE tag contains a delegated public-key certificate used by the
 server to sign the SREP tag. Its value is a Roughtime message with
 the tags MINT, MAXT, and PUBK. The purpose of the DELE tag is to
 enable separation of a long-term public key from keys on devices
 exposed to the public Internet.

Malhotra, et al. Expires July 23, 2020 [Page 8]

Internet-Draft Roughtime January 2020

 The MINT tag is the minimum timestamp for which the key in PUBK is
 trusted to sign responses. MIDP MUST be more than or equal to MINT
 for a response to be considered valid.

 The MAXT tag is the maximum timestamp for which the key in PUBK is
 trusted to sign responses. MIDP MUST be less than or equal to MAXT
 for a response to be considered valid.

 The PUBK tag contains a temporary 32 byte Ed25519 public key which is
 used to sign the SREP tag.

 The INDX tag value is a uint32 determining the position of NONC in
 the Merkle tree used to generate the ROOT value as described in
 Section 6.3.

 The PATH tag value is a multiple of 32 bytes long and represents a
 path of 32 byte hash values in the Merkle tree used to generate the
 ROOT value as described in Section 6.3. In the case where a response
 is prepared for a single request and the Merkle tree contains only
 the root node, the size of PATH is zero.

6.3. The Merkle Tree

 A Merkle tree is a binary tree where the value of each non-leaf node
 is a hash value derived from its two children. The root of the tree
 is thus dependent on all leaf nodes.

 In Roughtime, each leaf node in the Merkle tree represents the nonce
 of one request that a response message is sent in reply to. Leaf
 nodes are indexed left to right, beginning with zero.

 The values of all nodes are calculated from the leaf nodes and up
 towards the root node using the first 32 bytes of the output of the
 SHA-512 hash algorithm [RFC6234]. For leaf nodes, the byte 0x00 is
 prepended to the nonce before applying the hash function. For all
 other nodes, the byte 0x01 is concatenated with first the left and
 then the right child node value before applying the hash function.

 The value of the Merkle tree’s root node is included in the ROOT tag
 of the response.

 The index of a request’s nonce node is included in the INDX tag of
 the response.

 The values of all sibling nodes in the path between a request’s nonce
 node and the root node is stored in the PATH tag so that the client
 can reconstruct and validate the value in the ROOT tag using its
 nonce.

Malhotra, et al. Expires July 23, 2020 [Page 9]

Internet-Draft Roughtime January 2020

6.3.1. Root value validity check algorithm

 One starts by computing the hash of the NONC value from the request,
 with 0x00 prepended. Then one walks from the least significant bit
 of INDX to the most significant bit, and also walks towards the end
 of PATH.

 If PATH ends then the remaining bits of the INDX MUST be all zero.
 This indicates the termination of the walk, and the current value
 MUST equal ROOT if the response is valid.

 If the current bit is 0, one hashes 0x01, the current hash, and the
 value from PATH to derive the next current value.

 If the current bit is 1 one hashes 0x01, the value from PATH, and the
 current hash to derive the next current value.

6.4. Validity of response

 A client MUST check the following properties when it receives a
 response. We assume the long-term server public key is known to the
 client through other means.

 o The signature in CERT was made with the long-term key of the
 server.

 o The DELE timestamps and the MIDP value are consistent.

 o The INDX and PATH values prove NONC was included in the Merkle
 tree with value ROOT using the algorithm in Section 6.3.1.

 o The signature of SREP in SIG validates with the public key in
 DELE.

 A response that passes these checks is said to be valid. Validity of
 a response does not prove the time is correct, but merely that the
 server signed it, and thus guarantees that it began to compute the
 signature at a time in the interval (MIDP-RADI, MIDP+RADI).

7. Integration into ntp

 We assume that there is a bound PHI on the frequency error in the
 clock on the machine. Given a measurement taken at a local time t1,
 we know the true time is in [t1-delta-sigma, t1-delta+sigma].
 After d seconds have elapsed we know the true time is within [t1-
 delta-sigma-d*PHI, t1-delta+sigma+d*PHI]. A simple and effective way
 to mix with NTP or PTP discipline of the clock is to trim the
 observed intervals in NTP to fit entirely within this window or

Malhotra, et al. Expires July 23, 2020 [Page 10]

Internet-Draft Roughtime January 2020

 reject measurements that fall to far outside. This assumes time has
 not been stepped. If the NTP process decides to step the time, it
 MUST use roughtime to ensure the new truetime estimate that will be
 stepped to is consistent with the true time.

 Should this window become too large, another roughtime measurement is
 called for. The definition of "too large" is implementation defined.

 Implementations MAY use other, more sophisticated means of adjusting
 the clock respecting roughtime information.

8. Cheater Detection

 A chain of responses is a series of responses where the SHA-512 hash
 of the preceding response H, is concatenated with a 64 byte blind X,
 and then SHA-512(H, X) is the nonce used in the subsequent response.
 These may be represented as an array of objects in JavaScript Object
 Notation (JSON) format [RFC8259] where each object may have keys
 "blind" and "response_packet". Packet has the Base64 [RFC4648]
 encoded bytes of the packet and blind is the Base64 encoded blind
 used for the next nonce. The last packet needs no blind.

 A pair of responses (r_1, r_2) is invalid if MIDP_1-RADI_1 >
 MIDP_2+RADI_2. A chain of longer length is invalid if for any i, j
 such that i < j, (r_i, r_j) is an invalid pair.

 Invalidity of a chain is proof that causality has been violated if
 all servers were reporting correct time. An invalid chain where all
 individual responses are valid is cryptographic proof of malfeasance
 of at least one server: if all servers had the correct time in the
 chain, causality would imply that MIDP_1-RADI_1 < MIDP_2+RADI_2.

 In conducting the comparison of timestamps one must know the length
 of a day and hence have historical leap second data for the days in
 question. However if violations are greater then a second the loss
 of leap second data doesn’t impede their detection.

9. Grease

 Servers MAY send back a fraction of responses that are syntactically
 invalid or contain invalid signatures as well as incorrect times.
 Clients MUST properly reject such responses. Servers MUST NOT send
 back responses with incorrect times and valid signatures. Either
 signature MAY be invalid for this application.

Malhotra, et al. Expires July 23, 2020 [Page 11]

Internet-Draft Roughtime January 2020

10. Roughtime Servers

 The below list contains a list of servers with their public keys in
 Base64 format. These servers may implement older versions of this
 specification.

 address: roughtime.cloudflare.com
 port: 2002
 long-term key: gD63hSj3ScS+wuOeGrubXlq35N1c5Lby/S+T7MNTjxo=

 address: roughtime.int08h.com
 port: 2002
 long-term key: AW5uAoTSTDfG5NfY1bTh08GUnOqlRb+HVhbJ3ODJvsE=

 address: roughtime.sandbox.google.com
 port: 2002
 long-term key: etPaaIxcBMY1oUeGpwvPMCJMwlRVNxv51KK/tktoJTQ=

 address: roughtime.se
 port: 2002
 long-term key: S3AzfZJ5CjSdkJ21ZJGbxqdYP/SoE8fXKY0+aicsehI=

11. Trust anchors and policies

 A trust anchor is any distributor of a list of trusted servers. It
 is RECOMMENDED that trust anchors subscribe to a common public forum
 where evidence of malfeasance may be shared and discussed. Trust
 anchors SHOULD subscribe to a zero-tolerance policy: any generation
 of incorrect timestamps will result in removal. To enable this trust
 anchors SHOULD list a wide variety of servers so the removal of a
 server does not result in operational issues for clients. Clients
 SHOULD attempt to detect malfeasance and have a way to report it to
 trust anchors.

 Because only a single roughtime server is required for successful
 synchronization, Roughtime does not have the incentive problems that
 have prevented effective enforcement of discipline on the web PKI.
 We expect that some clients will aggressively monitor server
 behavior.

12. Acknowledgements

 Thomas Peterson corrected multiple nits. Marcus Dansarie, Peter
 Loethberg (Lothberg), Tal Mizrahi, Ragnar Sundblad, Kristof Teichel,
 and the other members of the NTP working group contributed comments
 and suggestions.

Malhotra, et al. Expires July 23, 2020 [Page 12]

Internet-Draft Roughtime January 2020

13. IANA Considerations

13.1. Service Name and Transport Protocol Port Number Registry

 IANA is requested to allocate the following entry in the Service Name
 and Transport Protocol Port Number Registry [RFC6335]:

 Service Name: Roughtime

 Transport Protocol: udp

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Roughtime time synchronization

 Reference: [[this memo]]

 Port Number: [[TBD1]], selected by IANA from the User Port range

13.2. Roughtime Tag Registry

 IANA is requested to create a new registry entitled "Roughtime Tag
 Registry". Entries SHALL have the following fields:

 Tag (REQUIRED): A 32-bit unsigned integer in hexadecimal format.

 ASCII Representation (OPTIONAL): The ASCII representation of the
 tag in accordance with Section 5.1.3 of this memo, if applicable.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries in this registry SHOULD be:
 Specification Required.

 The initial contents of this registry SHALL be as follows:

Malhotra, et al. Expires July 23, 2020 [Page 13]

Internet-Draft Roughtime January 2020

 +------------+----------------------+---------------+
 | Tag | ASCII Representation | Reference |
 +------------+----------------------+---------------+
 | 0x00444150 | PAD | [[this memo]] |
 | 0x00474953 | SIG | [[this memo]] |
 | 0x434e4f48 | NONC | [[this memo]] |
 | 0x454c4544 | DELE | [[this memo]] |
 | 0x48544150 | PATH | [[this memo]] |
 | 0x49444152 | RADI | [[this memo]] |
 | 0x4b425550 | PUBK | [[this memo]] |
 | 0x5044494d | MIDP | [[this memo]] |
 | 0x50455253 | SREP | [[this memo]] |
 | 0x544e494d | MINT | [[this memo]] |
 | 0x544f4f52 | ROOT | [[this memo]] |
 | 0x54524543 | CERT | [[this memo]] |
 | 0x5458414d | MAXT | [[this memo]] |
 | 0x58444e49 | INDX | [[this memo]] |
 +------------+----------------------+---------------+

14. Security Considerations

 Since the only supported signature scheme, Ed25519, is not quantum
 resistant, this protocol will not survive the advent of quantum
 computers.

 Maintaining a list of trusted servers and adjudicating violations of
 the rules by servers is not discussed in this document and is
 essential for security. Roughtime clients MUST update their view of
 which servers are trustworthy in order to benefit from the detection
 of misbehavior.

 Validating timestamps made on different dates requires knowledge of
 leap seconds in order to calculate time intervals correctly.

 Servers carry out a significant amount of computation in response to
 clients, and thus may experience vulnerability to denial of service
 attacks.

 This protocol does not provide any confidentiality, and given the
 nature of timestamps such impact is minor.

 The compromise of a PUBK’s private key, even past MAXT, is a problem
 as the private key can be used to sign invalid times that are in the
 range MINT to MAXT, and thus violate the good behavior guarantee of
 the server.

 Servers MUST NOT send response packets larger than the request
 packets sent by clients, in order to prevent amplification attacks.

Malhotra, et al. Expires July 23, 2020 [Page 14]

Internet-Draft Roughtime January 2020

15. Privacy Considerations

 This protocol is designed to obscure all client identifiers. Servers
 necessarily have persistent long-term identities essential to
 enforcing correct behavior. Generating nonces from previous
 responses without using a blind can enable tracking of clients as
 they move between networks.

16. References

16.1. Normative References

 [ITU-R_TF.457-2]
 ITU-R, "Use of the Modified Julian Date by the Standard-
 Frequency and Time-Signal Services", ITU-R
 Recommendation TF.457-2, October 1997.

 [ITU-R_TF.460-6]
 ITU-R, "Standard-Frequency and Time-Signal Emissions",
 ITU-R Recommendation TF.460-6, February 2002.

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <https://www.rfc-editor.org/info/rfc20>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

Malhotra, et al. Expires July 23, 2020 [Page 15]

Internet-Draft Roughtime January 2020

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

16.2. Informative References

 [Autokey] Rottger, S., "Analysis of the NTP Autokey Procedures",
 2012, <https://zero-entropy.de/autokey_analysis.pdf>.

 [DelayAttacks]
 Mizrahi, T., "A Game Theoretic Analysis of Delay Attacks
 Against Time Synchronization Protocols",
 DOI 10.1109/ISPCS.2012.6336612, 2012,
 <https://ieeexplore.ieee.org/document/6336612>.

 [I-D.ietf-ntp-using-nts-for-ntp]
 Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", draft-ietf-ntp-using-nts-for-ntp-20 (work in
 progress), July 2019.

 [MCBG] Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,
 "Attacking the Network Time Protocol", 2015,
 <https://eprint.iacr.org/2015/1020>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Malhotra, et al. Expires July 23, 2020 [Page 16]

Internet-Draft Roughtime January 2020

 [RFC8573] Malhotra, A. and S. Goldberg, "Message Authentication Code
 for the Network Time Protocol", RFC 8573,
 DOI 10.17487/RFC8573, June 2019,
 <https://www.rfc-editor.org/info/rfc8573>.

Appendix A. Terms and Abbreviations

 ASCII American Standard Code for Information Interchange

 IANA Internet Assigned Numbers Authority

 JSON JavaScript Object Notation [RFC8259]

 MJD Modified Julian Date

 NTP Network Time Protocol [RFC5905]

 NTS Network Time Security [I-D.ietf-ntp-using-nts-for-ntp]

 UDP User Datagram Protocol [RFC0768]

 UTC Coordinated Universal Time [ITU-R_TF.460-6]

Authors’ Addresses

 Aanchal Malhotra
 Boston University
 111 Cummington Mall
 Boston 02215
 USA

 Email: aanchal4@bu.edu

 Adam Langley
 Google

 Email:
 agl@google.com

 Watson Ladd
 Cloudflare
 101 Townsend St
 San Francisco
 USA

 Email: watsonbladd@gmail.com

Malhotra, et al. Expires July 23, 2020 [Page 17]

Network Working Group N. R.Schiff
Internet-Draft D. Dolev
Intended status: Informational Hebrew University of Jerusalem
Expires: March 5, 2020 T. Mizrahi
 Huawei Network.IO Innovation Lab
 M. Schapira
 Hebrew University of Jerusalem
 September 2, 2019

A Secure Selection and Filtering Mechanism for the Network Time Protocol
 Version 4
 draft-schiff-ntp-chronos-03

Abstract

 The Network Time Protocol version 4 (NTPv4) defines the peer process,
 the clock filter algorithm, the system process and the clock
 description algorithm. The clock filter algorithm and the system
 process, as defined in RFC 5905, are the mechanism according to which
 an NTP client chooses the NTP servers it synchronized with. This
 document specifies an alternative set of client mechanisms, named
 Chronos, that is backward compatible with NTPv4, and offers an
 improved level of security against time shifting attacks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 5, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

R.Schiff, et al. Expires March 5, 2020 [Page 1]

Internet-Draft NTP Extention with Chronos September 2019

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Conventions Used in This Document 3
 2.1. Terminology . 3
 2.2. Terms and Abbreviations 3
 2.3. Notations . 3
 3. Extension for NTP Selection Process 4
 3.1. Peer calibration Process 4
 3.2. Chronos Selection Process 4
 4. Chronos Pseudocode . 5
 5. Precision Vs. Security 5
 6. Acknowledgements . 6
 7. IANA Considerations . 6
 8. Security Considerations 6
 9. References . 7
 9.1. Normative References 7
 9.2. Informative References 7
 Authors’ Addresses . 8

1. Introduction

 According to RFC 5905 [RFC5905], the NTP servers used for updating
 the client’s time are chosen by the clock filter algorithm and the
 system process. However, this method may be vulnerable to time
 shifting attacks, in which the attacker’s goal is to shift the local
 time of an NTP client. Time shifting attacks on NTP are possible
 even if all NTP communications are encrypted and authenticated. This
 document introduces an improved system process with a secure
 algorithm called Chronos. Chronos is backwards compatible with
 NTPv4, as an NTP client that runs Chronos is interoperable with
 [RFC5905]-compatible NTPv4 servers.

 Chronos achieves accurate synchronization even in the presence of
 powerful attackers who are in direct control of a large number of NTP
 servers. Chronos leverages ideas from distributed computing
 literature on clock synchronization in the presence of adversarial
 (Byzantine) behaviour.

R.Schiff, et al. Expires March 5, 2020 [Page 2]

Internet-Draft NTP Extention with Chronos September 2019

 A Chronos client iteratively "crowdsources" time queries across
 multiple NTP servers and applies a provably secure algorithm for
 eliminating "suspicious" responses and averaging over the remaining
 responses. Chronos is carefully engineered to minimize communication
 overhead so as to avoid overloading NTP servers. Chronos’ security
 was evaluated both theoretically and experimentally with a prototype
 implementation. The experimental results indicate that in order to
 implement a successful time-shifting attack on a Chronos client by
 over 100ms from the UTC, even a powerful man-in-the-middle attacker
 requires over 20 years of effort in expectation. The full paper is
 in [Chronos_paper].

 Chronos differs from the current NTPv4 in two aspects. First, the
 Chronos client relies on a large number of NTP servers, from which
 only few are chosen at random in order to avoid overloading the
 servers. Second, the selection algorithm uses an approximate
 agreement technique to remove outliers, thus limiting the attacker’s
 ability to contaminate the chosen time samples. These Chronos client
 mechanisms have provable security guarantees against man-in-the-
 middle attackers and attackers who are capable of compromising a
 large number of NTP servers.

2. Conventions Used in This Document

2.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2.2. Terms and Abbreviations

 NTPv4 Network Time Protocol version 4 [RFC5905].

 Selection process Clock filter algorithm and system process
 [RFC5905].

2.3. Notations

R.Schiff, et al. Expires March 5, 2020 [Page 3]

Internet-Draft NTP Extention with Chronos September 2019

 Describing Chronos algorithm, the following notation are used.

 +---------+---+
 | Notaion | Meaning |
 +---------+---+
w	An upper bound on the distance from the local time at
	any NTP server with an accurate clock ("truechimer" as
	in [RFC5905])
Cest	the client’s estimate for the time that passed since
	its last synchronization to the server pool (sec)
ERR	(2W*Cest)/1000
K	panic trigger
tc	the current time, as indicated by the client’s local
	clock [sec]
 +---------+---+

 Table 1: Chronos Notations

3. Extension for NTP Selection Process

 A client that runs Chronos does not implement the functionality
 described in Sections 10 and 11 in [RFC5905]. Instead, the client
 implements the behavior described in this section and the next one.

3.1. Peer calibration Process

 The peer calibration process gathers a server pool of hundreds of
 servers. Each NTP client conducts the peer process as in Section 9
 in [RFC5905], on an hourly basis for 24 consecutive hours and
 generates the union of all received IP addresses. Importantly, this
 is executed in the background once in a long time (e.g., every few
 weeks/months).

3.2. Chronos Selection Process

 The Chronos selection process samples the server pool and removes
 outliers (replaces the clock filter algorithm and the system process
 as in [RFC5905]). First, a subset on the order of tens of the
 servers in the server pool is selected at random. Then, out of the
 tens of collected samples, the third lowest-value samples and third
 highest value samples are discarded.

 Given the remaining samples, Chronos checks two conditions:

 o The maximal distance between every two time samples does not
 exceed 2w.

R.Schiff, et al. Expires March 5, 2020 [Page 4]

Internet-Draft NTP Extention with Chronos September 2019

 o The average value of the remaining samples is at a distance of at
 most ERR+2w from the client’s local clock.

 (where w,ERR are described in Table 1).

 In the event that both of these conditions are satisfied, the average
 of the remaining samples is the "final offset". Otherwise, a few
 tens of the servers from the pool are sampled again, in the exact
 same manner. This re-sampling process continues until the two
 conditions are finally satisfied or the number of times the servers
 are re-sampled exceeds a "Panic Trigger" (K in Table 1), in which
 case, Chronos enters a "Panic Mode".

 In panic mode a Chronos client queries all the servers in the server
 pool, orders the collected time samples from lowest to highest and
 eliminates the bottom third and the top third of the samples. The
 client then averages over the remaining samples, which become the new
 "final offset".

 As in [RFC5905], the final offset is passed to the clock discipline
 algorithm to steer the system clock to the correct time.

4. Chronos Pseudocode

 The Chronos pseudocode Time Sampling Scheme is the following:

 counter := 0
 While counter < K do
 S := sample(m) //gather sample from tens randomly chosen servers
 T := bi-side-trim(S,1/3) //trim third lowest and highest values
 if (max(T) -min(T) <= 2w) and (|avg(T)-tc| < ERR + 2w) Then
 return avg(t)
 end
 counter ++;
 end
 // panic mode;
 S := sample(n);
 T := bi-sided-trim(S,n/3) //trim bottom and top thrids;
 return avg(T)

5. Precision Vs. Security

 Chronos client changes the list of the sampled servers more
 frequently than NTPv4 [Chronos_paper], without using NTPv4 filters.
 This enables Chronos to be provably more secure than NTPv4 [RFC5905]
 but might adversely affect its precision and accuracy. Therefore we

R.Schiff, et al. Expires March 5, 2020 [Page 5]

Internet-Draft NTP Extention with Chronos September 2019

 add the following smoothing mechanism: Chronos returns the offset
 with minimal absolute value unless its distance from the average
 offset is larger than a predefined value. Another approach we
 considered was to use the same set of servers as in the previous
 sample, unless the difference between the current offset and the new
 offset is larger than a predefined value.

 In our experiments we observed that with the smoothing mechanism,
 Chornos and NTP are similar in terms of precision and accuracy when
 there is no attack.

6. Acknowledgements

 The authors would like to thank Miroslav Lichvar, Yaakov.J.Stein and
 Karen O’Donoghue for contributions to this document and helpful
 discussions and comments.

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 As explained above, a Chronos client repeatedly gathers time samples
 from small subsets of a large pool of NTP servers. The following
 form of a man-in-the-middle (MitM) Byzantine attacker is considered:
 a MitM attacker is assumed to control a subset of the servers in the
 pool of available servers and is capable of determining precisely the
 values of the time samples gathered by the Chronos client from these
 NTP servers. The threat model thus encompasses a broad spectrum of
 MitM attackers ranging from fairly weak (yet dangerous) MitM
 attackers only capable of delaying and dropping packets to extremely
 powerful MitM attackers who are in control of authenticated NTP
 servers. MitM attackers captured by this framework might be, for
 example, (1) in direct control of a fraction of the NTP servers
 (e.g., by exploiting a software vulnerability), (2) an ISP (or other
 Autonomous-System-level attacker) on the default BGP paths from the
 NTP client to a fraction of the available servers, (3) a nation state
 with authority over the owners of NTP servers in its jurisdiction, or
 (4) an attacker capable of hijacking (e.g., through DNS cache
 poisoning or BGP prefix hijacking) traffic to some of the available
 NTP servers. The details of the specific attack scenario are
 abstracted by reasoning about MitM attackers in terms of the fraction
 of servers with respect to which the attacker has MitM capabilities.

 Analytical results (in [Chronos_paper]) indicate that in order to
 succeed in shifting time at a Chronos client by even a small time

R.Schiff, et al. Expires March 5, 2020 [Page 6]

Internet-Draft NTP Extention with Chronos September 2019

 shift (e.g., 100ms), even a powerful man-in-the-middle attacker
 requires many years of effort (e.g., over 20 years in expectation).

 It should be noted that Chronos provides resilience to MitM attacks
 that cannot be achieved by cryptographic authentication protocols.
 However, adding an authentication and crypto-based security layer to
 the Chronos layer is important for achieving high security guarantees
 and detection of various spoofing and modification attacks.

 Further details about the Chronos security considerations and
 guarantees are discussed in [Chronos_paper].

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

9.2. Informative References

 [Chronos_paper]
 Deutsch, O., Schiff, N., Dolev, D., and M. Schapira,
 "Preventing (Network) Time Travel with Chronos", 2018,
 <http://wp.internetsociety.org/ndss/wp-
 content/uploads/sites/25/2018/02/
 ndss2018_02A-2_Deutsch_paper.pdf>.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 DOI 10.17487/RFC2629, June 1999,
 <https://www.rfc-editor.org/info/rfc2629>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <https://www.rfc-editor.org/info/rfc5226>.

R.Schiff, et al. Expires March 5, 2020 [Page 7]

Internet-Draft NTP Extention with Chronos September 2019

 [roughtime]
 Patton, C., "Roughtime: Securing Time with Digital
 Signatures", 2018,
 <https://blog.cloudflare.com/roughtime/>.

Authors’ Addresses

 Neta Rozen Schiff
 Hebrew University of Jerusalem
 Jerusalem
 Israel

 Phone: +972 2 549 4599
 Email: neta.r.schiff@gmail.com

 Danny Dolev
 Hebrew University of Jerusalem
 Jerusalem
 Israel

 Phone: +972 2 549 4588
 Email: danny.dolev@mail.huji.ac.il

 Tal Mizrahi
 Huawei Network.IO Innovation Lab
 Israel

 Email: tal.mizrahi.phd@gmail.com

 Michael Schapira
 Hebrew University of Jerusalem
 Jerusalem
 Israel

 Phone: +972 2 549 4570
 Email: schapiram@huji.ac.il

R.Schiff, et al. Expires March 5, 2020 [Page 8]

Internet Engineering Task Force H. Stenn
Internet-Draft Network Time Foundation
Intended status: Standards Track March 25, 2019
Expires: September 26, 2019

 Network Time Protocol Extended Information Extension Field
 draft-stenn-ntp-extended-information-04

Abstract

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH BEFORE PUBLISHING:

 The source code and issues list for this draft can be found in
 https://github.com/hstenn/ietf-ntp-extended-information-ef

 The core network packet used by NTP has no spare bits available for
 reporting additional state information and no larger data areas
 available for larger amounts of information. This proposal offers a
 new extension field that would contain this additional information.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 26, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Stenn Expires September 26, 2019 [Page 1]

Internet-Draft Network Time Protocol Extended Information March 2019

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 2
 2. The Extended Information Extension Field 2
 2.1. Version 0 Content Descriptor and Content Data fields . . 3
 3. Acknowledgements . 4
 4. IANA Considerations . 4
 5. Security Considerations 4
 6. Normative References . 5
 Author’s Address . 5

1. Introduction

 The core NTP packet format has changed little since RFC 958 [RFC0958]
 was published in 1985. Since then, there has been demonstrated need
 to convey additional information about NTP’s state in an NTP packet
 but no backward-compatible way to usurp the few otherwise potentially
 available bits has been found, and no larger data areas are available
 in the core packet structure. This proposal offers a new extension
 field that would contain this additional information.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. The Extended Information Extension Field

 The Field Type of the Extended Information EF includes a version
 number field in the low-order bits of the first octet, to make it
 easier to evolve this specification. The initial specification for
 this proposal uses Version 0, which equates to 0x0009 [ADJUST AS
 NEEDED BASED ON IANA, IF AN IANA REGISTRY IS USED]. A future
 revision for Version 1 would use 0x0109 [IBID].

 The payload for Version 0 is comprised of a two octet Content
 Descriptor followed by a two octet Content Data field, as described
 below.

Stenn Expires September 26, 2019 [Page 2]

Internet-Draft Network Time Protocol Extended Information March 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type | Field Length |
 +-------------------------------+-------------------------------+
 | Content Descriptor 1 | Content Data 1 |
 +---+

 NTP Extension Field: Extended Information

 Field Type: TBD (Recommendation for IANA: 0x0009 (Extended-
 Information, Version 0))

 Field Length: as needed

2.1. Version 0 Content Descriptor and Content Data fields

 There are 16 bits available for state information in the Version 0
 Extended Information Content Descriptor. These bits are allocated as
 follows:

 0x0001: TAI Offset is stored in the low-order 8 bits (the second
 octet) of the Content Data.

 0x0002: Interleave Mode indicator in the low order bit of the first
 octet of the Content Data. [NOTE: this may not be useful, and it
 can be removed if desired. It can serve as a belt-and-suspenders
 way to identify when a packet contains interleaved timestamps.]

 0xFFFD: Reserved for future versions. SHOULD be zeroes for Version
 0, and the meaning of any nonzero values is unspecified.

 The Content Data field of the Version 0 Extended Information
 extension field is comprised of two octets, with the contents
 allocated as follows:

 0xXXNN: The low-order 8 bits (NNNN) are the TAI Offset. Any data in
 the high-order 8 bits (XXXX) are not part of the TAI Offset.

 0xX0XX: A value of 0 in the low-order bit of the first octet
 indicates that the timestamps in the base packet are not
 interleave-mode timestamps.

 0xX1XX: A value of 1 in the low-order bit of the first octet
 indicates that the timestamps in the base packet are interleave-
 mode timestamps.

 0xN2XX: thru

Stenn Expires September 26, 2019 [Page 3]

Internet-Draft Network Time Protocol Extended Information March 2019

 0xNDXX: Any of the seven high-order bits in the first octet are
 reserved for future versions and SHOULD be zero for Version 0.
 The meaning of any nonzero values is unspecified.

 Content Descriptor 1 Content Data 1
 0x0001 TAI offset in the low-order 8 bits, 24-31
 0x0002 Interleave Mode indicator in Bit 23
 0xFFFD Reserved (Zeroes)

 Interleave Mode: 1 if the sender is in interleave mode, 0 otherwise

 NTP Extension Field: Extended Information, Version 0 Content Fields

 Example: A system that wants to convey an offset to TAI of 36
 seconds, and show it is in interleave mode.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type (0x0009) | Field Length (0x0008) |
 +-------------------------------+-------------------------------+
 | 0x0003 | 0x0124 |
 +-------------------------------+-------------------------------+

 NTP Extension Field: Extended Information V0, Example

3. Acknowledgements

 The author wishes to acknowledge the contributions of Martin Burnicki
 and Sam Weiler.

4. IANA Considerations

 This memo requests IANA to allocate NTP Extension Field Type

 0x0009 (Extended-Information, Version 0)

 for this proposal.

5. Security Considerations

 No unusual or special security considerations are known to be
 associated with this proposal.

Stenn Expires September 26, 2019 [Page 4]

Internet-Draft Network Time Protocol Extended Information March 2019

6. Normative References

 [RFC0958] Mills, D., "Network Time Protocol (NTP)", RFC 958,
 DOI 10.17487/RFC0958, September 1985,
 <https://www.rfc-editor.org/info/rfc958>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

Author’s Address

 Harlan Stenn
 Network Time Foundation
 P.O. Box 918
 Talent, OR 97540
 US

 Email: stenn@nwtime.org

Stenn Expires September 26, 2019 [Page 5]

Internet Engineering Task Force H. Stenn
Internet-Draft Network Time Foundation
Intended status: Standards Track March 25, 2019
Expires: September 26, 2019

 Network Time Protocol I-Do Extension Field
 draft-stenn-ntp-i-do-06

Abstract

 This proposal defines and describes a mechanism by which cooperating
 NTP instances may communicate any optional features they are willing
 to admit they support.

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH BEFORE PUBLISHING:

 The source code and issues list for this draft can be found in
 https://github.com/hstenn/ietf-ntp-i-do

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 26, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Stenn Expires September 26, 2019 [Page 1]

Internet-Draft Network Time Protocol I-Do March 2019

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 2
 2. The I-Do Extension Field 2
 2.1. Overview . 2
 2.2. I-DO Packet Format 4
 2.3. Behavior . 5
 3. Acknowledgements . 6
 4. IANA Considerations . 6
 5. Security Considerations 6
 6. References . 6
 6.1. Normative References 6
 6.2. Informative References 7
 Author’s Address . 7

1. Introduction

 The first implementation of NTPv4 was released in 2003, and was
 defined by RFC 5905 [RFC5905]. It contains an optional and now
 obsolete public-key security protocol, Autokey, which is defined by
 RFC 5906 [RFC5906]. Until very recently, Autokey has been the only
 implemented use of NTP packet Extension Fields. New proposals for
 extension fields are being written and there is currently no
 convenient way to learn if a remote instance of NTP supports any
 extension fields or not. This proposal contains a method to tell a
 remote instance of NTP what we (are willing to admit we) support, and
 ask what they (are willing to admit they) support.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. The I-Do Extension Field

2.1. Overview

 The purpose of the I-DO EF is to provide information to the remote
 side about our capabilities.

 If an incoming packet contains an unrecognized extension field, one
 of several things will happen. While that unrecognized extension

Stenn Expires September 26, 2019 [Page 2]

Internet-Draft Network Time Protocol I-Do March 2019

 field SHOULD be ignored, an implementation MAY choose to drop the
 entire packet.

 If any extension field is present there ordinarily SHOULD be a MAC
 following the extension field. However, an older conforming NTP
 implementation will require that any EF MUST be followed by a MAC.

 Some extension fields are unable to be "signed" by a MAC, regardless
 of whether or not that MAC is a traditional MAC or an extension field
 MAC.

 In the previous two cases, a conforming legacy system that receives
 these types of packets will interpret the unrecognized EF as a
 missing or legacy MAC, and return a crypto-NAK.

 If the remote system replies with a crypto-NAK, that is a good
 indication that it is running older software that does not recognize
 EFs and thinks we have sent an invalid MAC. In this case, we SHOULD
 NOT send that system newer EFs.

 If the remote system replies without including an I-DO-RESPONSE EF,
 we at least know they can handle EFs, but they either don’t
 understand I-DO or are not willing to tell us anything. In this
 case, we SHOULD NOT send any newer EFs.

 If the remote system replies with a packet that includes an I-DO-
 RESPONSE EF, then we SHOULD remember what they told us, and use that
 information appropriately. In other words, we can exchange packets
 containing any new EFs that we agree on, and we should not exchange
 packets containing any new EFs that we have not agreed on.

 In client/server mode, it makes sense for the client to send an I-DO
 to the server, and notice how the server responds. While the server
 SHOULD respond with an I-DO-RESPONSE EF, it likely does not make
 sense for the server to send an I-DO EF in response to a client
 request.

 In symmetric mode, either side may initiate sending an I-DO EF, and
 the receiving side SHOULD reply with an I-DO-RESPONSE EF.

 In broadcast mode, the broadcast server MAY send broadcast packets
 that include an I-DO EF, but note that if, counter to recommended
 practice, these packets are unauthenticated they MAY cause client
 machines to misinterpret the packet as having invalid authentication.
 In this situation, the broadcast server SHOULD alternate sending
 broadcast server packets with and without an I-DO EF, to insure that
 all clients receive time packets they will accept. Note that if, as
 recommended, broadcast packets are authenticated, a conforming client

Stenn Expires September 26, 2019 [Page 3]

Internet-Draft Network Time Protocol I-Do March 2019

 SHOULD have no difficulty in receiving a broadcast (mode 5) packet
 from a server that includes an I-DO EF.

2.2. I-DO Packet Format

 The content of the I-DO extension field is an ordinary four octet
 Extension Field header followed by a payload consisting of an
 appropriate number of two octet I-DO values that use nonzero values
 to indicate a supported feature. An I-DO value of zero is ignored.
 The payload section must end on a four-octet boundary.

 There are two types of nonzero I-DO values that may be used. They
 are both defined in the IANA NTP Extension Field Table (Section 4).
 These values are either Extension Field Types, where only the low-
 order values (0x01 thru 0xFE) are used, or I-DO Types, where all 16
 bits are used and the bottom octet is currently always 0xFF.

 The examples below are built using information from the following
 Standards and proposals:

 RFC 5906 [RFC5906]

 NTP-EXTENSION-FIELDS [NTP-EXTENSION-FIELD]

 MAC-LAST-EF [DRAFT-MAC-LAST-EF]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type | Field Length |
 +-------------------------------+-------------------------------+
 | I-Do 1 | ... |
 +-------------------------------+-------------------------------+
 | I-Do N | Padding |
 +---+

 NTP Extension Field: I-DO - Overview

 Field Type: TBD (Recommendation for IANA: 0x0007 (I-Do), 0x8007 (I-Do
 Response))

 Field Length: as needed

 Payload: An enumeration of the supported base Field Types, followed
 by any zero padding (0x0000) needed to fill the payload to the
 desired 32-bit boundary.

Stenn Expires September 26, 2019 [Page 4]

Internet-Draft Network Time Protocol I-Do March 2019

 Example: A system that wants to advertise support for Autokey and
 I-DO, sending to a system that responds with support for I-DO, NTS,
 MAC-EF, and LAST-EF.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type (0x0007) | Field Length (0x0008) |
 +-------------------------------+-------------------------------+
 | 0x0007 | 0x0002 |
 +-------------------------------+-------------------------------+

 NTP Extension Field: I-Do - Example

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type (0x8007) | Field Length (0x000a) |
 +-------------------------------+-------------------------------+
 | 0x0003 | 0x0004 |
 +-------------------------------+-------------------------------+
 | 0x0007 | 0x0008 |
 +-------------------------------+-------------------------------+

 NTP Extension Field: I-Do Response - Example

2.3. Behavior

 The sender of any I-Do extension field MUST send an extension field
 with a Field Type of 0x0007 (I-Do) and SHOULD include a payload with
 any 0x0000 padding values after enumerating the supported base
 Extension Field Types. If the responding system recognizes the I-Do
 extension field, its response MUST include an extension field with a
 Field Type of 0x8007 (I-Do Response), and SHOULD include a payload
 with any 0x0000 padding values after enumerating the supported base
 Extension Field Types.

 Any system that receives an I-Do extension field as either an "offer"
 or a "response" SHOULD scan the entire payload looking for nonzero
 values that specify the capabilities of the remote association.

 Any system that receives an I-Do "offer", 0x0007, SHOULD reply with
 an I-Do "response", 0x8007.

 Any system that sends an I-Do "offer" or "response" may send as few
 or as many of its supported Field Types as it chooses. At any
 subsequent time, either side may re-negotiate the list of supported

Stenn Expires September 26, 2019 [Page 5]

Internet-Draft Network Time Protocol I-Do March 2019

 field types it is prepared to accept from the other system by sending
 a new I-Do extension field.

 The most-recently received I-Do list replaces any previous I-Do list.

3. Acknowledgements

 The author wishes to acknowledge the contributions of Sam Weiler.

4. IANA Considerations

 This memo requests IANA to allocate NTP Extension Field Types:

 0x0007 (I-DO)

 0x8007 (I-DO Response)

 and NTP Extension Field I-DO types:

 0x00FF through

 0xFDFF Reserved for future I-DO types

 0xFEFF (I-DO Leap Smear REFIDs)

 0xFFFF (I-DO IPv6 REFID hash)

 for this proposal.

5. Security Considerations

 No addtional or unusual security considerations are expected if this
 proposal is adopted.

 No feedback has been received suggesting this proposal creates any
 new security considerations.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Stenn Expires September 26, 2019 [Page 6]

Internet-Draft Network Time Protocol I-Do March 2019

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

6.2. Informative References

 [DRAFT-MAC-LAST-EF]
 Stenn, H., "draft-stenn-ntp-mac-last-ef", 2018.

 [NTP-EXTENSION-FIELD]
 Stenn, H., "draft-stenn-ntp-extension-fields", 2018.

 [RFC5906] Haberman, B., Ed. and D. Mills, "Network Time Protocol
 Version 4: Autokey Specification", RFC 5906,
 DOI 10.17487/RFC5906, June 2010,
 <https://www.rfc-editor.org/info/rfc5906>.

Author’s Address

 Harlan Stenn
 Network Time Foundation
 P.O. Box 918
 Talent, OR 97540
 US

 Email: stenn@nwtime.org

Stenn Expires September 26, 2019 [Page 7]

Internet Engineering Task Force H. Stenn
Internet-Draft D. Mayer
Intended status: Standards Track Network Time Foundation
Expires: September 26, 2019 March 25, 2019

 Network Time Protocol MAC/Last Extension Fields
 draft-stenn-ntp-mac-last-ef-04

Abstract

 NTP packets can be authenticated by a Message Authentication Code
 (MAC) if a MAC is present at the end of an NTP packet. The legacy
 format for this MAC is not formatted as an NTP Extension Field, and
 its presence may cause some implementations a parsing ambiguity.

 This proposal introduces two ways to resolve this problem. One is to
 provide a MAC Extension Field. The other is an extension field that
 unambiguously declares itself to be the last extension field in an
 NTP packet (so any additional data MUST be a legacy MAC).

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH BEFORE PUBLISHING:

 The source code and issues list for this draft can be found in
 https://github.com/hstenn/ietf-ntp-mac-last-ef

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 26, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Stenn & Mayer Expires September 26, 2019 [Page 1]

Internet-Draft NTP MAC/Last Extension Fields March 2019

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 2
 2. The Last Extension Field Extension Field - LAST-EF 3
 3. MAC Extension Field . 4
 4. Acknowledgements . 6
 5. IANA Considerations . 6
 6. Security Considerations 7
 7. Normative References . 7
 Authors’ Addresses . 8

1. Introduction

 NTPv4 is defined by RFC 5905 [RFC5905], and it and earlier versions
 of the NTP Protocol have supported symmetric private key Message
 Authentication Code (MAC) authentication. MACs were first described
 in Appendix C of RFC 1305 [RFC1305] and are further described in RFC
 5905 [RFC5905]. As the number of Extension Fields grows there is an
 increasing chance some implementations will find a parsing ambiguity
 when deciding if the "next" set of data is an Extension Field or a
 legacy MAC. This proposal defines two new Extension Fields to avoid
 this potential ambiguity. One, LAST-EF, is used to signify that it
 is the last Extension Field in the packet. If the LAST-EF is
 present, any subsequent data MUST be considered to be a legacy MAC,
 or if you prefer, any subsequent data MUST NOT be considered to be an
 EF. The other, MAC-EF, allows one or more MACs to be encapsulated in
 an Extension Field. If all parties in an association support MAC-EF,
 the use of a legacy MAC may be avoided.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Stenn & Mayer Expires September 26, 2019 [Page 2]

Internet-Draft NTP MAC/Last Extension Fields March 2019

2. The Last Extension Field Extension Field - LAST-EF

 Now that multiple extension fields are a possibility, additional
 packet data could be either an Extension Field or a legacy MAC.
 Having a means to indicate that there are no more Extension Fields in
 an NTP packet and any subsequent data MUST be something else, almost
 certainly a legacy MAC, is a valuable facility.

 The format of a LAST-EF is an Extension Field comprised of an
 identified Field Type and an appropriate Field Length.

 In the example below the Field Length in the LAST-EF is 4, because
 there is clearly no need in this case for the 28 octets required by
 RFC 7822 [RFC7822]. But the LAST-EF could have any supported length,
 as any payload is ignored.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type | Field Length |
 +-------------------------------+-------------------------------+

 NTP Extension Field: Last Extension Field - LAST-EF

 Field Type: TBD (Recommendation for IANA: 0x0008 (Last Extension
 Field))

 Field Length: 4 (minimum)

 Payload: Ignored if present - none needed. SHOULD be zeroes.

 Example:

Stenn & Mayer Expires September 26, 2019 [Page 3]

Internet-Draft NTP MAC/Last Extension Fields March 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type (0x0008) | Field Length (0x0004) |
 +-------------------------------+-------------------------------+
 | MAC Key ID |
 +-------------------------------+-------------------------------+
 | Sixteen |
 +-------------------------------+-------------------------------+
 | Octets |
 +-------------------------------+-------------------------------+
 | of |
 +-------------------------------+-------------------------------+
 | MAC |
 +-------------------------------+-------------------------------+

 Example: NTP Extension Field: Last Extension Field, followed by a
 Legacy MAC

3. MAC Extension Field

 Now that multiple extension fields are a possibility, there is a
 chance that additional packet data could be either an Extension Field
 or a legacy MAC. There is benefit to encapsulating the MAC in an
 extension field. By encapsulating the MAC in an EF, we also have the
 option to include multiple MACs in a packet, which may be of use in
 broadcast scenarios, for example.

 There are two forms of this extension field. The first supports a
 single MAC, requiring 4 octets’ overhead for the EF header. The
 second form supports one or more MACs in the EF payload, and requires
 at least 8 octets.

 The format of a MAC-EF is an Extension Field comprised of an
 identified Field Type and an appropriate Field Length.

 A Field Type value of TBD (0x0003 is suggested) identifies this
 extension field as a MAC Extension field for a single MAC. In this
 case, the payload consists of the four octet MAC Key ID followed by
 the MAC digest, and any desired (possibly random data) padding.

 A Field Type value of TBD (0x0103 is suggested) identifies this
 extension field as a MAC extension field for one or more MACs. In
 this case, the payload consists of an unsigned 16-bit MAC Count (N)
 followed by N unsigned 16-bit MAC length fields. If there are an
 even number of MACs specified there is an unused 16-bit field which
 SHOULD be 0x0000 at the end of the set of MAC length values so that
 the subsequent MAC data is longword (4-octet) aligned. Each MAC

Stenn & Mayer Expires September 26, 2019 [Page 4]

Internet-Draft NTP MAC/Last Extension Fields March 2019

 SHALL be padded so that any subsequent MAC starts on a 4-octet
 boundary. Optional (possibly random data) padding is allowed.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type (0x0003) | Field Length |
 +-------------------------------+-------------------------------+
 . MAC 1 Key ID .
 . +-+-+-+-+-+-+-+-+-+-+-+-.
 . MAC 1 Key Data | Random Data Padding .
 +-+

 NTP Extension Field: MAC EF Format (Single MAC)

 Field Type: TBD (Recommendation for IANA: 0x0003 (MAC-EF: Single
 MAC))

 Field Length: As needed.

 Payload: As described.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type (0x0103) | Field Length |
 +-------------------------------+-------------------------------+
 | MAC Count | MAC 1 Length |
 +-+
 | MAC 2 Length | MAC 3 Length |
 +-+
 . MAC 1 Key ID .
 . +-+-+-+-+-+-+-+-+-+-+-+-.
 . MAC 1 Key Data | Random Data Padding .
 +-+
 . MAC 2 Key ID .
 . +-+-+-+-+-+-+-+-+-+-+-+-+-.
 . MAC 2 Key Data | Random Data Padding .
 +-+
 . MAC 3 Key ID .
 . +-+-+-+-+-+-+-+-+-+-.
 . MAC 3 Key Data |Random Data Padding.
 +-+
 | Padding (as needed) |
 +-+

 NTP Extension Field: MAC EF Format (1 or more MACs)

Stenn & Mayer Expires September 26, 2019 [Page 5]

Internet-Draft NTP MAC/Last Extension Fields March 2019

 Field Type: TBD (Recommendation for IANA: 0x0103 (MAC-EF: 1 or more
 MACs))

 Field Length: As needed.

 Payload: As described.

 A MAC consisting of 4 octets of zeros means the MAC is a crypto-NAK,
 as defined by RFC5905 [RFC5905].

 Additional MACs SHOULD NOT be present if there is a crypto-NAK
 present in the packet.

 Each MAC within the extension field consists of a 32-bit key
 identifier which SHOULD be unique to the set of key identifiers in
 this MAC extension field followed by ((MAC Length) - 4) octets of
 data, optionally followed by random octets to pad the key data to the
 length specified earlier in the extension field. That key identifier
 is a shared secret which defines the algorithm to be used and a
 cookie or secret to be used in generating the digest. The MAC digest
 is produced by hashing the data from the beginning of the NTP packet
 up to but not including the start of the MAC extension field. The
 calculation of the digest SHOULD be a hash of this data concatenated
 with the 32-bit keyid (in network-order), and the key. When sending
 or receiving a key identifier each side needs to agree on the key
 identifier, algorithm and the cookie or secret used to produce the
 digest along with the digest lengths. Note that the sender may send
 more bytes than are required by the digest algorithm. This would be
 done to make it more difficult for a casual observer to identify the
 algorithm being used based on the length of the data. The digest
 data begins immediately after the key ID, and any padding octets
 SHOULD be random.

4. Acknowledgements

 MAC-EF: The authors gratefully acknowledge Dave Mills for his
 insightful comments. Hal Murray asked if there was a way for the
 MAC-EF to require only 4 octets of overhead if there was only a
 single MAC in the payload.

5. IANA Considerations

 This memo requests IANA to allocate NTP Extension Field Types:

 0x0003 MAC-EF (Single MAC)

 0x0103 MAC-EF (1 or more MACs)

Stenn & Mayer Expires September 26, 2019 [Page 6]

Internet-Draft NTP MAC/Last Extension Fields March 2019

 0x0008 LAST-EF

6. Security Considerations

 The security considerations of time protocols in general are
 discussed in RFC7384 [RFC7384], and the security considerations of
 NTP are discussed in RFC5905 [RFC5905].

 Digests MD5, DES and SHA-1 are considered compromised and should not
 be used [COMP].

 [DISCUSS] Each MAC length should be at least 20 octets long to allow
 for 4 octets of key ID and at least 16 octets of digest and random
 padding. For a 128-bit digest, there would be 4 octets of key ID, 16
 octets of digest, plus any desired octets of random padding. For
 SHA-256 digests there are 4 octets of key ID, 32 octets digest, plus
 any desired octets of random padding. Using MAC lengths that include
 random padding may make it more difficult for an attacker to know
 which digest algorithms are used.

7. Normative References

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation and Analysis", RFC 1305,
 DOI 10.17487/RFC1305, March 1992,
 <https://www.rfc-editor.org/info/rfc1305>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC7822] Mizrahi, T. and D. Mayer, "Network Time Protocol Version 4
 (NTPv4) Extension Fields", RFC 7822, DOI 10.17487/RFC7822,
 March 2016, <https://www.rfc-editor.org/info/rfc7822>.

Stenn & Mayer Expires September 26, 2019 [Page 7]

Internet-Draft NTP MAC/Last Extension Fields March 2019

Authors’ Addresses

 Harlan Stenn
 Network Time Foundation
 P.O. Box 918
 Talent, OR 97540
 US

 Email: stenn@nwtime.org

 Danny Mayer
 Network Time Foundation
 P.O. Box 918
 Talent, OR 97540
 US

 Email: mayer@ntp.org

Stenn & Mayer Expires September 26, 2019 [Page 8]

Internet Engineering Task Force H. Stenn
Internet-Draft Network Time Foundation
Intended status: Standards Track March 25, 2019
Expires: September 26, 2019

 Network Time Protocol Suggested REFID Extension Field
 draft-stenn-ntp-suggest-refid-05

Abstract

 NTP’s Reference ID, or REFID, identifies the source of time in a
 timestamp or time packet. In NTP packets sent over the network the
 REFID is used to identify the "system peer", and in the long-term
 general case its fundamental purpose is to prevent a one-degree
 timing loop. Each instance of NTP decides for itself what REFID it
 will put in its outgoing packets, and there is currently no way for
 an external time source to tell or recommend this value in the case
 where that external time source is selected as the "system peer."

 The SUGGESTED-REFID NTP Extension Field proposal is a backward-
 compatible way for a time source to tell its peers or clients "If you
 use me as your system peer, use this nonce as your REFID."

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 26, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Stenn Expires September 26, 2019 [Page 1]

Internet-Draft Network Time Protocol Suggested REFID March 2019

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. The REFID . 3
 3. The Suggested REFID Extension Field 4
 4. Generating and Sending a Nonce as the Suggested REFID
 Extension Field . 4
 5. Remembering a Nonce Suggested REFID Extension Field 5
 6. The Suggested REFID Extension Field and Leap Smear REFIDs . . 5
 7. Acknowledgements . 6
 8. IANA Considerations . 6
 9. Security Considerations 6
 10. References . 6
 10.1. Normative References 6
 10.2. Informative References 7
 Author’s Address . 7

1. Introduction

 NTP has been widely used through several revisions, with the latest
 being RFC 5905 [RFC5905]. A core component of the protocol and the
 algorithms is the Reference ID, or REFID, which is used to identify
 the time source. Traditionally, when the source of time was another
 system the REFID was the IPv4 address of that other system. If the
 remote system was using IPv6 for its connection, a 4 octet digest
 value of the IPv6 address was used. The general case core purpose of
 the REFID is to prevent a one-degree timing loop (where if A has
 several timing sources that include B, if B decides to get its time
 from A we don’t want A then deciding to get its time from B). The
 REFID is considered to be "public data" and is a vital core-component
 of the base NTP packet. In an increasingly hostile Internet,
 knowledge of a system’s time source is abusable information. If a
 system’s REFID is the IPv4 address of its system peer, an attacker
 can try to use that information to send spoofed time packets to
 either or both the target or the target’s server, attempting to cause
 a disruption in time service. There is also a clear use-case for
 having a special REFID for use if systems are exchanging leap-smeared
 time. This proposal is a backward-compatible way for a time source
 to tell its peers or clients "If you use me as your system peer, use

Stenn Expires September 26, 2019 [Page 2]

Internet-Draft Network Time Protocol Suggested REFID March 2019

 this nonce as your REFID." This nonce, a Suggested REFID, SHOULD be
 untraceable to the sending system. When used to hide the identity of
 a server, if the receiving system uses this Suggested REFID nonce
 instead of the IPv4 address as its REFID, this type of attack and
 information disclosure is prevented. When used to indicate that a
 system is either offering leap-smeared time or is synchronized to a
 leap-smeared time source, this information can be used to prevent
 unwanted synchronization to a source that is not offering the
 "flavor" of time we want, and, in the case where a leap smear
 correction continues into the next day, the second half of a leap
 smear correction can be applied in the expected manner.

 This SUGGESTED-REFID NTP Extension Field proposal is a simple, clean,
 backward-compatible way for an external time soure to request that
 the receiving system use the provided nonce in the case where the
 receiving system uses the sending system as its system peer.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. The REFID

 The core reason for the REFID in the NTP Protocol is to prevent a
 timing loop of degree 1. Put another way, if servers A and B are
 exchanging time with each other and server B decides to follow A as
 its system peer, the REFID that B will use must be able to identify
 server A. The interpretation of a REFID is based on the stratum, as
 documented in RFC 5905 [RFC5905], section 7.3, "Packet Header
 Variables". At Stratum 2+, which will be the case if servers A and B
 are exchanging packets over IPv4, if server B follows A, then B will
 have A’s IPv4 address as its REFID. When A asks B for its time, A
 will see that B is synchronized to A because B will tell A that its
 REFID is A’s IPv4 address, so when A sees its IP address as B’s
 REFID, A knows that if it were to follow B for its time then there
 would be a timing loop. In this case, A will not select B as a
 potential source of time.

 Another related use case for the REFID centers around the increasing
 use of leap-smearing time servers when the insertion (or any eventual
 deleiton) of a leap second occurs. It is critical that operators and
 client systems be able to identify when a server is offering leap-
 smeared time. Futhermore, with the current practice of smearing the
 insertion of a leap second starting at noon UTC on the day of the
 leap event and completing the smear at noon UTC on the day after the
 leap event, a server that is operating during a leap smear event must

Stenn Expires September 26, 2019 [Page 3]

Internet-Draft Network Time Protocol Suggested REFID March 2019

 be able to immediately identify if it should respond with either
 correct or leap-smeared time.

3. The Suggested REFID Extension Field

 Since there is no way in the base NTP packet for "this" instance of
 an NTP server to tell the "other" instance what REFID it should use
 if the "other" instance decides to use "this" instance as its system
 peer, the best available way to convey this information is via an
 extension field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------------------------------+
 | Field Type | Field Length |
 +-------------------------------+-------------------------------+
 | Suggested REFID |
 +---+

 NTP Extension Field: REFID Suggestion

 Field Type: TBD (Recommendation for IANA: 0x0006 (Suggested REFID))

 Field Length: 0x0008

 Suggested REFID: The 4 octets of the suggested REFID. Random nonce
 REFID values SHOULD be 0xFDxxxxxx, where the bottom 3 octets SHOULD
 be random values.

 Examples: When decoded as an IPv4 address, a random nonce suggested
 REFID would decode as 253.0.0.0 thru 253.255.255.255.

4. Generating and Sending a Nonce as the Suggested REFID Extension
 Field

 A system that decides to send a nonce as a Suggested REFID extension
 field SHOULD generate a new Suggested REFID nonce for each new
 association. It MAY generate a new Suggested REFID nonce for any
 association in any response. In addition to remembering the IP-based
 REFID, the sender MUST also remember its most-recent Suggested REFID
 nonce.

 Since the core NTPv4 and earlier protocols do not contain any way to
 tell the recipient what to use as a REFID and RFC 5905 [RFC5905] uses
 the IPv4 address of the sender as the REFID if the association is
 effected over an IPv4 connection, this means that an attacker can
 simply send an NTP client request to a server knowing that server’s
 system peer will be returned as the REFID in the response packet. At

Stenn Expires September 26, 2019 [Page 4]

Internet-Draft Network Time Protocol Suggested REFID March 2019

 this point, an attacker can, if that REFID is an IPv4 address, begin
 to launch attacks at the target forging the putative IP of the
 target’s time source, or the attacker can start forging packets to
 the putative time server claiming to be from the target, in an
 attempt to cause the time server to limit or deny time service to the
 target.

 Using a nonce for the REFID that is only recognized by the sending
 machine effectively prevents this type of attack.

 If servers S1, S2, and S3 are all exchanging time with each other and
 are all using the Suggested REFID mechanism, there is a 3 in
 16,777,216 (2^24) chance that two different servers in the same group
 will happen to choose the same nonce, and that would produce a false-
 positive timing loop detection. If a nonce Suggested REFID is never
 changed, this false-positive condition will occur for potentially a
 long time. This small risk can be reduced by periodically generating
 a new Suggested REFID.

5. Remembering a Nonce Suggested REFID Extension Field

 An NTP server keeps track of the IP address it uses to talk to its
 peers. If an NTP server chooses to send a Suggested REFID to an
 associated peer, the server MUST remember this value. When checking
 for a timing loop, the Suggested REFID must also be included in the
 list of tested REFID values.

 A set of NTP servers that are acting as a group of time servers
 SHOULD be using peer associations (NTP mode 1 and 2 packets), and
 SHOULD NOT be using client/server (NTP mode 3 and 4) exchanges.
 Nevertheless, implementors should be aware that the recommendation
 against using client/server associations for time groups may be
 ignored, and should be conscious of the choices they make and the
 configuration options they offer in order to accomodate (or at least
 document) this situation.

6. The Suggested REFID Extension Field and Leap Smear REFIDs

 The Suggested REFID can play an important part when a server has a
 client population that receives leap-smeared time.

 The current preferred behavior for servers that offer leap-smeared
 time is to offer leap-smeared time in response to appropriate client
 (mode 3) requests. There are two competing forces at play during
 this time:

 - Clients that want correct time should get correct time.

Stenn Expires September 26, 2019 [Page 5]

Internet-Draft Network Time Protocol Suggested REFID March 2019

 - Clients that want leap-smeared time should get leap-smeared time.

 An additional complication is that a leap-second insertion event
 begins at noon UTC, when the Leap Indicator is 1, but the smear is
 only halfway applied at midnight UTC, when the Leap Indicator changes
 back to 0. There is no simple way for the client to let its
 server(s) know that it is using leap-smeared time.

 One simple way for the client to let its server(s) know that it is
 using and wants leap-smeared time is for the client to use a Leap
 Smear REFID [DRAFT-LEAP-SMEAR-REFID] in its client (mode 3) requests
 during the entire leap smear period.

7. Acknowledgements

 The author wishes to acknowledge the contributions of Martin Burnicki
 and Sam Weiler.

8. IANA Considerations

 This memo requests IANA to allocate NTP Extension Field Type 0x0006
 (Suggested REFID) for this proposal.

9. Security Considerations

 Adopting this proposal will provide a much needed mechanism by which
 cooperating systems can agree on a less trackable and less
 identifiable nonce for the REFID. It will also provide a means to
 properly and better handle leap-smearing events with populations
 where some clients want correct time and other clients want leap-
 smeared time, thus enabling better time synchronization.

 No reports of adverse consequences of adopting this proposal have
 been received.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

Stenn Expires September 26, 2019 [Page 6]

Internet-Draft Network Time Protocol Suggested REFID March 2019

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

10.2. Informative References

 [DRAFT-I-DO]
 Stenn, H., "draft-stenn-ntp-i-do", 2018.

 [DRAFT-LEAP-SMEAR-REFID]
 Stenn, H., "draft-stenn-ntp-leap-smear-refid", 2018.

Author’s Address

 Harlan Stenn
 Network Time Foundation
 P.O. Box 918
 Talent, OR 97540
 US

 Email: stenn@nwtime.org

Stenn Expires September 26, 2019 [Page 7]

	draft-aanchal-time-implementation-guidance-02
	draft-gont-ntp-port-randomization-04
	draft-ietf-ntp-bcp-13
	draft-ietf-ntp-data-minimization-04
	draft-ietf-ntp-interleaved-modes-07
	draft-ietf-ntp-mode-6-cmds-11
	draft-ietf-ntp-packet-timestamps-09
	draft-ietf-ntp-refid-updates-05
	draft-ietf-ntp-using-nts-for-ntp-28
	draft-ietf-ntp-yang-data-model-17
	draft-ietf-tictoc-ptp-enterprise-profile-26
	draft-mlichvar-ntp-correction-field-04
	draft-mlichvar-ntp-interleaved-modes-01
	draft-mlichvar-ntp-short-extension-fields-00
	draft-roughtime-aanchal-04
	draft-schiff-ntp-chronos-03
	draft-stenn-ntp-extended-information-04
	draft-stenn-ntp-i-do-06
	draft-stenn-ntp-mac-last-ef-04
	draft-stenn-ntp-suggest-refid-05

