
Internet Engineering Task Force A. Malhotra
Internet-Draft Boston University
Intended status: Informational A. Langley
Expires: July 23, 2020 Google
 W. Ladd
 Cloudflare
 January 20, 2020

 Roughtime
 draft-roughtime-aanchal-04

Abstract

 This document specifies Roughtime - a protocol that aims to achieve
 rough time synchronization while detecting servers that provide
 inaccurate time and providing cryptographic proof of their
 malfeasance.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 23, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Malhotra, et al. Expires July 23, 2020 [Page 1]

Internet-Draft Roughtime January 2020

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Requirements Language . 4
 3. Protocol Overview . 4
 4. The guarantee . 5
 5. Message Format . 5
 5.1. Data Types . 6
 5.1.1. uint32 . 6
 5.1.2. uint64 . 6
 5.1.3. Tag . 6
 5.1.4. Timestamp . 7
 5.2. Header . 7
 6. Protocol . 7
 6.1. Requests . 7
 6.2. Responses . 8
 6.3. The Merkle Tree . 9
 6.3.1. Root value validity check algorithm 10
 6.4. Validity of response 10
 7. Integration into ntp . 10
 8. Cheater Detection . 11
 9. Grease . 11
 10. Roughtime Servers . 12
 11. Trust anchors and policies 12
 12. Acknowledgements . 12
 13. IANA Considerations . 13
 13.1. Service Name and Transport Protocol Port Number Registry 13
 13.2. Roughtime Tag Registry 13
 14. Security Considerations 14
 15. Privacy Considerations 15
 16. References . 15
 16.1. Normative References 15
 16.2. Informative References 16
 Appendix A. Terms and Abbreviations 17
 Authors’ Addresses . 17

1. Introduction

 Time synchronization is essential to Internet security as many
 security protocols and other applications require synchronization
 [RFC7384] [MCBG]. Unfortunately widely deployed protocols such as
 the Network Time Protocol (NTP) [RFC5905] lack essential security
 features, and even newer protocols like Network Time Security (NTS)
 [I-D.ietf-ntp-using-nts-for-ntp] fail to ensure that the servers
 behave correctly. Authenticating time servers prevents network

Malhotra, et al. Expires July 23, 2020 [Page 2]

Internet-Draft Roughtime January 2020

 adversaries from modifying time packets, but an authenticated time
 server still has full control over the contents of the time packet
 and may go rogue. The Roughtime protocol provides cryptographic
 proof of malfeasance, enabling clients to detect and prove to a third
 party a server’s attempts to influence the time a client computes.

 +--------------+----------------------+-----------------------------+
 | Protocol | Authenticated Server | Server Malfeasance Evidence |
 +--------------+----------------------+-----------------------------+
NTP, Chronos	N	N
NTP-MD5	Y*	N
NTP-Autokey	Y**	N
NTS	Y	N
Roughtime	Y	Y
 +--------------+----------------------+-----------------------------+

 Security Properties of current protocols

 Table 1

 Y* For security issues with symmetric-key based NTP-MD5
 authentication, please refer to RFC 8573 [RFC8573].

 Y** For security issues with Autokey Public Key Authentication, refer
 to [Autokey].

 More specifically,

 o If a server’s timestamps do not fit into the time context of other
 servers’ responses, then a Roughtime client can cryptographically
 prove this misbehavior to third parties. This helps detect "bad"
 servers.

 o A Roughtime client can roughly detect (with no absolute guarantee)
 a delay attack [DelayAttacks] but can not cryptographically prove
 this to a third party. However, the absence of proof of
 malfeasance should not be considered a proof of absence of
 malfeasance. So Roughtime should not be used as a witness that a
 server is overall "good".

 o Note that delay attacks cannot be detected/stopped by any
 protocol. Delay attacks can not, however, undermine the security
 guarantees provided by Roughtime.

 o Although delay attacks cannot be prevented, they can be limited to
 a predetermined upper bound. This can be done by defining a
 maximal tolerable Round Trip Time (RTT) value, MAX-RTT, that a
 Roughtime client is willing to accept. A Roughtime client can

Malhotra, et al. Expires July 23, 2020 [Page 3]

Internet-Draft Roughtime January 2020

 measure the RTT of every request-response handshake and compare it
 to MAX-RTT. If the RTT exceeds MAX-RTT, the corresponding server
 is assumed to be a falseticker. When this approach is used the
 maximal time error that can be caused by a delay attack is MAX-
 RTT/2. It should be noted that this approach assumes that the
 nature of the system is known to the client, including reasonable
 upper bounds on the RTT value.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Protocol Overview

 Roughtime is a protocol for rough time synchronization that enables
 clients to provide cryptographic proof of server malfeasance. It
 does so by having responses from servers include a signature with a
 certificate rooted in a long-term public/private key pair over a
 value derived from a nonce provided by the client in its request.
 This provides cryptographic proof that the timestamp was issued after
 the server received the client’s request. The derived value included
 in the server’s response is the root of a Merkle tree which includes
 the hash of the client’s nonce as the value of one of its leaf nodes.
 This enables the server to amortize the relatively costly signing
 operation over a number of client requests.

 Single server mode: At its most basic level, Roughtime is a one round
 protocol in which a completely fresh client requests the current time
 and the server sends a signed response. The response includes a
 timestamp and a radius used to indicate the server’s certainty about
 the reported time. For example, a radius of 1,000,000 microseconds
 means the server is absolutely confident that the true time is within
 one second of the reported time.

 The server proves freshness of its response as follows: The client’s
 request contains a nonce. The server incorporates the nonce into its
 signed response so that the client can verify the server’s signatures
 covering the nonce issued by the client. Provided that the nonce has
 sufficient entropy, this proves that the signed response could only
 have been generated after the nonce.

 Chaining multiple servers: For subsequent requests, the client
 generates a new nonce by hashing the reply from the previous server
 with a random value (a blind). This proves that the nonce was

Malhotra, et al. Expires July 23, 2020 [Page 4]

Internet-Draft Roughtime January 2020

 created after the reply from the previous server. It sends the new
 nonce in a request to the next server and receives a response that
 includes a signature covering the nonce.

 Cryptographic proof of misbehavior: If the time from the second
 server is before the first, then the client has proof that at least
 one of the servers is misbehaving; the reply from the second server
 implicitly shows that it was created later because of the way that
 the client constructed the nonce. If the time from the second server
 is too far in the future, the client can contact the first server
 again with a new nonce generated from the second server’s response
 and get a signature that was provably created afterwards, but with an
 earlier timestamp.

 With only two servers, the client can end up with proof that
 something is wrong, but no idea what the correct time is. But with
 half a dozen or more independent servers, the client will end up with
 chain of proof of any server’s misbehavior, signed by several others,
 and (presumably) enough accurate replies to establish what the
 correct time is. Furthermore, this proof may be validated by third
 parties ultimately leading to a revocation of trust in the
 misbehaving server.

4. The guarantee

 A Roughtime server guarantees that a response to a query sent at t_1,
 received at t_2, and with timestamp t_3 has been created between the
 transmission of the query and its reception. If t_3 is not within
 that interval, a server inconsistency may be detected and used to
 impeach the server. The propagation of such a guarantee and its use
 of type synchronization is discussed in Section 7. No delay attacker
 may affect this: they may only expand the interval between t_1 and
 t_2, or of course stop the measurement in the first place.

5. Message Format

 Roughtime messages are maps consisting of one or more (tag, value)
 pairs. They start with a header, which contains the number of pairs,
 the tags, and value offsets. The header is followed by a message
 values section which contains the values associated with the tags in
 the header. Messages MUST be formatted according to Figure 1 as
 described in the following sections.

 Messages may be recursive, i.e. the value of a tag can itself be a
 Roughtime message.

Malhotra, et al. Expires July 23, 2020 [Page 5]

Internet-Draft Roughtime January 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Number of pairs (uint32) |
 +-+
 | |
 . .
 . N-1 offsets (uint32) .
 . .
 | |
 +-+
 | |
 . .
 . N tags (uint32) .
 . .
 | |
 +-+
 | |
 . .
 . Values .
 . .
 | |
 +-+

 Figure 1: Roughtime Message Format

5.1. Data Types

5.1.1. uint32

 A uint32 is a 32 bit unsigned integer. It is serialized with the
 least significant byte first.

5.1.2. uint64

 A uint64 is a 64 bit unsigned integer. It is serialized with the
 least significant byte first.

5.1.3. Tag

 Tags are used to identify values in Roughtime packets. A tag is a
 uint32 but may also be listed as a sequence of up to four ASCII
 characters [RFC0020]. ASCII strings shorter than four characters can
 be unambiguously converted to tags by padding them with zero bytes.
 For example, the ASCII string "NONC" would correspond to the tag
 0x434e4f4e and "PAD" would correspond to 0x00444150.

Malhotra, et al. Expires July 23, 2020 [Page 6]

Internet-Draft Roughtime January 2020

5.1.4. Timestamp

 A timestamp is a uint64 interpreted in the following way. The most
 significant 3 bytes contain the integer part of a Modified Julian
 Date (MJD). The least significant 5 bytes is a count of the number
 of Coordinated Universal Time (UTC) microseconds [ITU-R_TF.460-6]
 since midnight on that day.

 The MJD is the number of UTC days since 17 November 1858
 [ITU-R_TF.457-2].

 Note that, unlike NTP, this representation does not use the full
 number of bits in the fractional part and that days with leap seconds
 will have more or fewer than the nominal 86,400,000,000 microseconds.

5.2. Header

 All Roughtime messages start with a header. The first four bytes of
 the header is the uint32 number of tags N, and hence of (tag, value)
 pairs. The following 4*(N-1) bytes are offsets, each a uint32. The
 last 4*N bytes in the header are tags.

 Offsets refer to the positions of the values in the message values
 section. All offsets MUST be multiples of four and placed in
 increasing order. The first post-header byte is at offset 0. The
 offset array is considered to have a not explicitly encoded value of
 0 as its zeroth entry. The value associated with the ith tag begins
 at offset[i] and ends at offset[i+1]-1, with the exception of the
 last value which ends at the end of the packet. Values may have zero
 length.

 Tags MUST be listed in the same order as the offsets of their values.
 A tag MUST NOT appear more than once in a header.

6. Protocol

 Roughtime messages are sent between clients and servers as UDP
 packets, or over TCP. When transporting over TCP, the packets are
 prefixed with their length as a uint32. Currently no servers exist
 for the TCP version. As described in Section 3, clients initiate
 time synchronization by sending request packets containing a nonce to
 servers who send signed time responses in return.

6.1. Requests

 A request is a Roughtime message with the tag NONC. The size of the
 request message SHOULD be at least 1024 bytes. To attain this size
 the PAD tag SHOULD be added to the message. Tags other than NONC

Malhotra, et al. Expires July 23, 2020 [Page 7]

Internet-Draft Roughtime January 2020

 SHOULD be ignored by the server. Responding to requests shorter than
 1024 bytes is OPTIONAL and servers MUST NOT send responses larger
 than the requests they are replying to.

 The value of the NONC tag is a 64 byte nonce. It SHOULD be generated
 by hashing a previous Roughtime response message together with a
 blind as described in Section 8. If no previous responses are
 avaiable to the client, the nonce SHOULD be generated at random.

 The PAD tag SHOULD be used by clients to ensure their request
 messages are at least 1024 bytes in size. Its value SHOULD be all
 zeros.

6.2. Responses

 A response contains the tags SREP, SIG, CERT, INDX, and PATH. The
 SIG tag is a signature over the SREP value using the public key
 contained in CERT, as explained below.

 The SREP tag contains a time response. Its value is a Roughtime
 message with the tags ROOT, MIDP, and RADI.

 The ROOT tag contains a 32 byte value of a Merkle tree root as
 described in Section 6.3.

 The MIDP tag value is a timestamp of the moment of processing.

 The RADI tag value is a uint32 representing the server’s estimate of
 the accuracy of MIDP in microseconds. Servers MUST ensure that the
 true time is within (MIDP-RADI, MIDP+RADI) at the time they compose
 the response packet.

 The SIG tag value is a 64 byte Ed25519 signature [RFC8032] over a
 signature context concatenated with the entire value of a DELE or
 SREP tag. Signatures of DELE tags use the ASCII string "RoughTime v1
 delegation signature--" and signatures of SREP tags use the ASCII
 string "RoughTime v1 response signature" as signature context. Both
 strings include a terminating zero byte.

 The CERT tag contains a public-key certificate signed with the
 server’s long-term key. Its value is a Roughtime message with the
 tags DELE and SIG, where SIG is a signature over the DELE value.

 The DELE tag contains a delegated public-key certificate used by the
 server to sign the SREP tag. Its value is a Roughtime message with
 the tags MINT, MAXT, and PUBK. The purpose of the DELE tag is to
 enable separation of a long-term public key from keys on devices
 exposed to the public Internet.

Malhotra, et al. Expires July 23, 2020 [Page 8]

Internet-Draft Roughtime January 2020

 The MINT tag is the minimum timestamp for which the key in PUBK is
 trusted to sign responses. MIDP MUST be more than or equal to MINT
 for a response to be considered valid.

 The MAXT tag is the maximum timestamp for which the key in PUBK is
 trusted to sign responses. MIDP MUST be less than or equal to MAXT
 for a response to be considered valid.

 The PUBK tag contains a temporary 32 byte Ed25519 public key which is
 used to sign the SREP tag.

 The INDX tag value is a uint32 determining the position of NONC in
 the Merkle tree used to generate the ROOT value as described in
 Section 6.3.

 The PATH tag value is a multiple of 32 bytes long and represents a
 path of 32 byte hash values in the Merkle tree used to generate the
 ROOT value as described in Section 6.3. In the case where a response
 is prepared for a single request and the Merkle tree contains only
 the root node, the size of PATH is zero.

6.3. The Merkle Tree

 A Merkle tree is a binary tree where the value of each non-leaf node
 is a hash value derived from its two children. The root of the tree
 is thus dependent on all leaf nodes.

 In Roughtime, each leaf node in the Merkle tree represents the nonce
 of one request that a response message is sent in reply to. Leaf
 nodes are indexed left to right, beginning with zero.

 The values of all nodes are calculated from the leaf nodes and up
 towards the root node using the first 32 bytes of the output of the
 SHA-512 hash algorithm [RFC6234]. For leaf nodes, the byte 0x00 is
 prepended to the nonce before applying the hash function. For all
 other nodes, the byte 0x01 is concatenated with first the left and
 then the right child node value before applying the hash function.

 The value of the Merkle tree’s root node is included in the ROOT tag
 of the response.

 The index of a request’s nonce node is included in the INDX tag of
 the response.

 The values of all sibling nodes in the path between a request’s nonce
 node and the root node is stored in the PATH tag so that the client
 can reconstruct and validate the value in the ROOT tag using its
 nonce.

Malhotra, et al. Expires July 23, 2020 [Page 9]

Internet-Draft Roughtime January 2020

6.3.1. Root value validity check algorithm

 One starts by computing the hash of the NONC value from the request,
 with 0x00 prepended. Then one walks from the least significant bit
 of INDX to the most significant bit, and also walks towards the end
 of PATH.

 If PATH ends then the remaining bits of the INDX MUST be all zero.
 This indicates the termination of the walk, and the current value
 MUST equal ROOT if the response is valid.

 If the current bit is 0, one hashes 0x01, the current hash, and the
 value from PATH to derive the next current value.

 If the current bit is 1 one hashes 0x01, the value from PATH, and the
 current hash to derive the next current value.

6.4. Validity of response

 A client MUST check the following properties when it receives a
 response. We assume the long-term server public key is known to the
 client through other means.

 o The signature in CERT was made with the long-term key of the
 server.

 o The DELE timestamps and the MIDP value are consistent.

 o The INDX and PATH values prove NONC was included in the Merkle
 tree with value ROOT using the algorithm in Section 6.3.1.

 o The signature of SREP in SIG validates with the public key in
 DELE.

 A response that passes these checks is said to be valid. Validity of
 a response does not prove the time is correct, but merely that the
 server signed it, and thus guarantees that it began to compute the
 signature at a time in the interval (MIDP-RADI, MIDP+RADI).

7. Integration into ntp

 We assume that there is a bound PHI on the frequency error in the
 clock on the machine. Given a measurement taken at a local time t1,
 we know the true time is in [t1-delta-sigma, t1-delta+sigma].
 After d seconds have elapsed we know the true time is within [t1-
 delta-sigma-d*PHI, t1-delta+sigma+d*PHI]. A simple and effective way
 to mix with NTP or PTP discipline of the clock is to trim the
 observed intervals in NTP to fit entirely within this window or

Malhotra, et al. Expires July 23, 2020 [Page 10]

Internet-Draft Roughtime January 2020

 reject measurements that fall to far outside. This assumes time has
 not been stepped. If the NTP process decides to step the time, it
 MUST use roughtime to ensure the new truetime estimate that will be
 stepped to is consistent with the true time.

 Should this window become too large, another roughtime measurement is
 called for. The definition of "too large" is implementation defined.

 Implementations MAY use other, more sophisticated means of adjusting
 the clock respecting roughtime information.

8. Cheater Detection

 A chain of responses is a series of responses where the SHA-512 hash
 of the preceding response H, is concatenated with a 64 byte blind X,
 and then SHA-512(H, X) is the nonce used in the subsequent response.
 These may be represented as an array of objects in JavaScript Object
 Notation (JSON) format [RFC8259] where each object may have keys
 "blind" and "response_packet". Packet has the Base64 [RFC4648]
 encoded bytes of the packet and blind is the Base64 encoded blind
 used for the next nonce. The last packet needs no blind.

 A pair of responses (r_1, r_2) is invalid if MIDP_1-RADI_1 >
 MIDP_2+RADI_2. A chain of longer length is invalid if for any i, j
 such that i < j, (r_i, r_j) is an invalid pair.

 Invalidity of a chain is proof that causality has been violated if
 all servers were reporting correct time. An invalid chain where all
 individual responses are valid is cryptographic proof of malfeasance
 of at least one server: if all servers had the correct time in the
 chain, causality would imply that MIDP_1-RADI_1 < MIDP_2+RADI_2.

 In conducting the comparison of timestamps one must know the length
 of a day and hence have historical leap second data for the days in
 question. However if violations are greater then a second the loss
 of leap second data doesn’t impede their detection.

9. Grease

 Servers MAY send back a fraction of responses that are syntactically
 invalid or contain invalid signatures as well as incorrect times.
 Clients MUST properly reject such responses. Servers MUST NOT send
 back responses with incorrect times and valid signatures. Either
 signature MAY be invalid for this application.

Malhotra, et al. Expires July 23, 2020 [Page 11]

Internet-Draft Roughtime January 2020

10. Roughtime Servers

 The below list contains a list of servers with their public keys in
 Base64 format. These servers may implement older versions of this
 specification.

 address: roughtime.cloudflare.com
 port: 2002
 long-term key: gD63hSj3ScS+wuOeGrubXlq35N1c5Lby/S+T7MNTjxo=

 address: roughtime.int08h.com
 port: 2002
 long-term key: AW5uAoTSTDfG5NfY1bTh08GUnOqlRb+HVhbJ3ODJvsE=

 address: roughtime.sandbox.google.com
 port: 2002
 long-term key: etPaaIxcBMY1oUeGpwvPMCJMwlRVNxv51KK/tktoJTQ=

 address: roughtime.se
 port: 2002
 long-term key: S3AzfZJ5CjSdkJ21ZJGbxqdYP/SoE8fXKY0+aicsehI=

11. Trust anchors and policies

 A trust anchor is any distributor of a list of trusted servers. It
 is RECOMMENDED that trust anchors subscribe to a common public forum
 where evidence of malfeasance may be shared and discussed. Trust
 anchors SHOULD subscribe to a zero-tolerance policy: any generation
 of incorrect timestamps will result in removal. To enable this trust
 anchors SHOULD list a wide variety of servers so the removal of a
 server does not result in operational issues for clients. Clients
 SHOULD attempt to detect malfeasance and have a way to report it to
 trust anchors.

 Because only a single roughtime server is required for successful
 synchronization, Roughtime does not have the incentive problems that
 have prevented effective enforcement of discipline on the web PKI.
 We expect that some clients will aggressively monitor server
 behavior.

12. Acknowledgements

 Thomas Peterson corrected multiple nits. Marcus Dansarie, Peter
 Loethberg (Lothberg), Tal Mizrahi, Ragnar Sundblad, Kristof Teichel,
 and the other members of the NTP working group contributed comments
 and suggestions.

Malhotra, et al. Expires July 23, 2020 [Page 12]

Internet-Draft Roughtime January 2020

13. IANA Considerations

13.1. Service Name and Transport Protocol Port Number Registry

 IANA is requested to allocate the following entry in the Service Name
 and Transport Protocol Port Number Registry [RFC6335]:

 Service Name: Roughtime

 Transport Protocol: udp

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Roughtime time synchronization

 Reference: [[this memo]]

 Port Number: [[TBD1]], selected by IANA from the User Port range

13.2. Roughtime Tag Registry

 IANA is requested to create a new registry entitled "Roughtime Tag
 Registry". Entries SHALL have the following fields:

 Tag (REQUIRED): A 32-bit unsigned integer in hexadecimal format.

 ASCII Representation (OPTIONAL): The ASCII representation of the
 tag in accordance with Section 5.1.3 of this memo, if applicable.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries in this registry SHOULD be:
 Specification Required.

 The initial contents of this registry SHALL be as follows:

Malhotra, et al. Expires July 23, 2020 [Page 13]

Internet-Draft Roughtime January 2020

 +------------+----------------------+---------------+
 | Tag | ASCII Representation | Reference |
 +------------+----------------------+---------------+
 | 0x00444150 | PAD | [[this memo]] |
 | 0x00474953 | SIG | [[this memo]] |
 | 0x434e4f48 | NONC | [[this memo]] |
 | 0x454c4544 | DELE | [[this memo]] |
 | 0x48544150 | PATH | [[this memo]] |
 | 0x49444152 | RADI | [[this memo]] |
 | 0x4b425550 | PUBK | [[this memo]] |
 | 0x5044494d | MIDP | [[this memo]] |
 | 0x50455253 | SREP | [[this memo]] |
 | 0x544e494d | MINT | [[this memo]] |
 | 0x544f4f52 | ROOT | [[this memo]] |
 | 0x54524543 | CERT | [[this memo]] |
 | 0x5458414d | MAXT | [[this memo]] |
 | 0x58444e49 | INDX | [[this memo]] |
 +------------+----------------------+---------------+

14. Security Considerations

 Since the only supported signature scheme, Ed25519, is not quantum
 resistant, this protocol will not survive the advent of quantum
 computers.

 Maintaining a list of trusted servers and adjudicating violations of
 the rules by servers is not discussed in this document and is
 essential for security. Roughtime clients MUST update their view of
 which servers are trustworthy in order to benefit from the detection
 of misbehavior.

 Validating timestamps made on different dates requires knowledge of
 leap seconds in order to calculate time intervals correctly.

 Servers carry out a significant amount of computation in response to
 clients, and thus may experience vulnerability to denial of service
 attacks.

 This protocol does not provide any confidentiality, and given the
 nature of timestamps such impact is minor.

 The compromise of a PUBK’s private key, even past MAXT, is a problem
 as the private key can be used to sign invalid times that are in the
 range MINT to MAXT, and thus violate the good behavior guarantee of
 the server.

 Servers MUST NOT send response packets larger than the request
 packets sent by clients, in order to prevent amplification attacks.

Malhotra, et al. Expires July 23, 2020 [Page 14]

Internet-Draft Roughtime January 2020

15. Privacy Considerations

 This protocol is designed to obscure all client identifiers. Servers
 necessarily have persistent long-term identities essential to
 enforcing correct behavior. Generating nonces from previous
 responses without using a blind can enable tracking of clients as
 they move between networks.

16. References

16.1. Normative References

 [ITU-R_TF.457-2]
 ITU-R, "Use of the Modified Julian Date by the Standard-
 Frequency and Time-Signal Services", ITU-R
 Recommendation TF.457-2, October 1997.

 [ITU-R_TF.460-6]
 ITU-R, "Standard-Frequency and Time-Signal Emissions",
 ITU-R Recommendation TF.460-6, February 2002.

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <https://www.rfc-editor.org/info/rfc20>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

Malhotra, et al. Expires July 23, 2020 [Page 15]

Internet-Draft Roughtime January 2020

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

16.2. Informative References

 [Autokey] Rottger, S., "Analysis of the NTP Autokey Procedures",
 2012, <https://zero-entropy.de/autokey_analysis.pdf>.

 [DelayAttacks]
 Mizrahi, T., "A Game Theoretic Analysis of Delay Attacks
 Against Time Synchronization Protocols",
 DOI 10.1109/ISPCS.2012.6336612, 2012,
 <https://ieeexplore.ieee.org/document/6336612>.

 [I-D.ietf-ntp-using-nts-for-ntp]
 Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", draft-ietf-ntp-using-nts-for-ntp-20 (work in
 progress), July 2019.

 [MCBG] Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,
 "Attacking the Network Time Protocol", 2015,
 <https://eprint.iacr.org/2015/1020>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Malhotra, et al. Expires July 23, 2020 [Page 16]

Internet-Draft Roughtime January 2020

 [RFC8573] Malhotra, A. and S. Goldberg, "Message Authentication Code
 for the Network Time Protocol", RFC 8573,
 DOI 10.17487/RFC8573, June 2019,
 <https://www.rfc-editor.org/info/rfc8573>.

Appendix A. Terms and Abbreviations

 ASCII American Standard Code for Information Interchange

 IANA Internet Assigned Numbers Authority

 JSON JavaScript Object Notation [RFC8259]

 MJD Modified Julian Date

 NTP Network Time Protocol [RFC5905]

 NTS Network Time Security [I-D.ietf-ntp-using-nts-for-ntp]

 UDP User Datagram Protocol [RFC0768]

 UTC Coordinated Universal Time [ITU-R_TF.460-6]

Authors’ Addresses

 Aanchal Malhotra
 Boston University
 111 Cummington Mall
 Boston 02215
 USA

 Email: aanchal4@bu.edu

 Adam Langley
 Google

 Email:
 agl@google.com

 Watson Ladd
 Cloudflare
 101 Townsend St
 San Francisco
 USA

 Email: watsonbladd@gmail.com

Malhotra, et al. Expires July 23, 2020 [Page 17]

