draft-ali-6man-spring-srv6-oam-03.txt

SRv6 OAM

Zafar Ali - Cisco Systems (zali@cisco.com) - Presenter
Clarence Filsfils - Cisco Systems (cfilsfil@cisco.com)
Satoru Matsushima – Softbank (satoru.matsushima@g.softbank.co.jp)
Daniel Voyer - Bell Canada (daniel.voyer@bell.ca)
Mach Chen – Huawei (mach.chen@huawei.com)
List of Contributors

- Nagendra Kumar (*naikumar@cisco.com*)
- Carlos Pignataro (*cpignata@cisco.com*)
- Rakesh Gandhi (*rgandhi@cisco.com*)
- Darren Dukes (*ddukes@cisco.com*)
- Frank Brockners (*fbrockne@cisco.com*)
- Cheng Li (*chengli13@huawei.com*)
- John Leddy - Individual (*john@leddy.net*)
- Robert Raszuk - Bloomberg LP (*robert@raszuk.net*)
- Gaurav Dawra – LinkedIn (*gdawra.ietf@gmail.com*)
- Bart Peirens – Proximus (*bart.peirens@proximus.com*)
- Faisal Iqbal – Individual (*faisal.ietf@gmail.com*)
History of the Draft

- **draft-ali-6man-srv6-oam-00** was published in July 2017.
 - Main draft describing use-cases including classic ping and traceroute in SRv6 networks.

- **draft-ali-6man-srv6-oam-01** was published in October 2017.
 - Revision with editorial changes.

- **draft-ali-spring-srv6-oam-00.txt** was published in Feb 2018.
 - Added SRv6 ping and traceroute.
 - Added SRv6 segment-by-segment ping and overlay traceroute.

- **draft-ali-spring-srv6-oam-01.txt** was published in July 2018.
 - Moved O-bit from SRH draft to this draft.
 - Presented in 6man at IETF102.

- **draft-ali-spring-srv6-oam-02.txt** was published in October 2018.
 - Presented at IETF103 (6man and Spring).

- **draft-ali-6man-spring-srv6-oam-00.txt**
 - Presented at IETF104 (6man) in March 2018

- Addressed all comments received in the latest revision.
Deployment Status

- Deployed in a nation-wide network at Softbank.
- Deployed in a multi-city network at China Telecom.
- Deployed in a nationwide SRv6 network at Iliad.
- Additional deployments are in preparation.

Source: draft-matsushima-spring-srv6-deployment-status
Implementation and Interoperability Status

• Supported by at least 10 platforms with shipping implementation:
 – Cisco ASR 9000 running IOS XR shipping code
 – Cisco NCS 5500 running IOS XR shipping code
 – Cisco NCS 540 running IOS XR shipping code
 – Cisco ASR 1000 running IOS XE engineering code
 – Huawei ATN with VRPV8 shipping code
 – Huawei CX600 with VRPV8 shipping code
 – Huawei NE40E with VRPV8 shipping code
 – Huawei ME60 with VRPV8 shipping code
 – Huawei NE5000E with VRPV8 shipping code
 – Huawei NE9000 with VRPV8 shipping code
 – Huawei NG-OLT MA5800 with VRPV8 shipping code

• Additional known implementations.

Source: draft-matsushima-spring-srv6-deployment-status
Implementation and Interoperability Status

- In March 2018, the European Advanced Networking Test Center (EANTC) successfully validated multiple implementations of the drafts.

- Results for Multi-vendor Interoperability Testing was showcased at MPLS World congress in April 2019.

- Authors are aware of additional private interoperability testing between different vendors.

Source: draft-matsushima-spring-srv6-deployment-status
Draft Summary

• The document describes how existing ICMP mechanisms can be used in SRv6 Network.

• The document defines SRH.Flags.O-bit
 – The O-bit is used to implement “timestamp, punt and forward” behavior.
 – SRH.Flags.O-bit was originally defined in SRH draft (added in March 2016).

• The document defines two OAM SIDs for programmable OAM:
 – END.OP (OAM Endpoint with Punt)
 – END.OTP (OAM Endpoint with Timestamp and Punt)
Use Cases (I-D illustrations)

• Ping
 – End-to-end
 – Segment-by-segment

• Traceroute
 – Hop-by-hop
 – Segment-by-Segment (Overlay Traceroute)

• SRv6 Paths Monitoring
 – Applicability of RFC8403 to SRv6 Networks
Next Steps

• Draft has been deployed in multiple production networks.
• Multiple interoperable implementations exist.
• The authors like to request the WG for adoption of this work.