draft-ietf-6tisch-msf

Presenter: Yasuyuki Tanaka
Tengfei Chang,
Malisa Vucinic,
Xavier Vilajosana,
Simon Duquennoy,
Diego Dujovne.
Updates since IETF 104 at Prague

• Three versions of MSF are iterated
 • draft-ietf-6tisch-msf-02 (presented at IETF04 at Prague)
 • draft-ietf-6tisch-msf-03 (April 8th)
 • draft-ietf-6tisch-msf-04 (July 2nd)
 • draft-ietf-6tisch-msf-05 (July 8th)

• Main Changes
 • Usage of Autonomous cell
 • Downward traffic adaptation
 • Resolve comments from Fabrice, Atis, Yatch, Toshio, Thomas, Pascal (available on mailing list)
Main changes

• Usage of Autonomous cell
 • (MSF-02, MSF-03) AutoUpCells and AutoDownCells
 • AutoUpCells, (slotOffset, channelOffset) hashed with parent EUI64 address
 • (Tx=1, Rx=1, Shared=1)
 • AutoDownCells, (slotOffset, channelOffset) hashed with node itself EUI64 address
 • (Tx=1, Rx=1, Shared=0)
 • **AutoCells are installed permanently**
 • (MSF-04, MSF-05) AutoTxCells and AutoRxCells
 • AutoTxCells, (slotOffset, channelOffset) hashed with l2 destination address of packet to send
 • (Tx=1, Rx=0, Shared=1)
 • AutoRxCells, (slotOffset, channelOffset) hashed with node itself EUI64 address
 • (Tx=0, Rx=1, Shared=0)
 • **AutoRxCells are installed permanently, AutoTxCells are installed on-demand.**
Main changes

• Usage of Autonomous cell
 • (MSF-02, MSF-03) AutoUpCells and AutoDownCells
 • AutoUpCells, (slotOffset, channelOffset) hashed with parent EUI64 address
 • (Tx=1, Rx=1, Shared=1)
 • AutoDownCells, (slotOffset, channelOffset) hashed with node itself EUI64 address
 • (Tx=1, Rx=1, Shared=0)
 • AutoCells are installed permanently
 • (MSF-04, MSF-05) AutoTxCells and AutoRxCells
 • AutoTxCells, (slotOffset, channelOffset) hashed with l2 destination address of packet to send
 • (Tx=1, Rx=0, Shared=1)
 • AutoRxCells, (slotOffset, channelOffset) hashed with node itself EUI64 address
 • (Tx=0, Rx=1, Shared=0)
 • AutoRxCells are installed permanently, AutoTxCells are installed on-demand.
Main changes

MSF-02, 03

- AutoDownCell (Tx=1, Rx=1, Shared=0)
- AutoUpCell (Tx=1, Rx=1, Shared=1)

MSF-04, 05

- AutoTxcell (Tx=1, Shared=1)
- AutoRxcell (Rx=1)

Join/6P Req
Join/6P Resp
Main changes

• Downward traffic adaptation
 – Issue a 6P request to add a Rx to parent
 – NUM_CELLELAPSED and NUM_CELLUSED for Rx
 • CELLELAPSED++ when the current cell is a Rx cell to parent
 • CELLUSED++ when received something at a Rx Cell from parent
 • When CELLELAPSED == MAX_NUMCELL:
 • If CELLUSED /CELLELAPSEED > HIGH_THRESHOLD:
 • Trigger a 6P Request to add one cell with celloption Rx=1 to parent
 • If CELLUSED /CELLELAPSEED < LOW_THRESHOLD:
 • Trigger a 6P Request to delete one cell with celloption Rx=1 to parent
Main changes

• Comments Resolved
 • Formula to calculate the channelOffset should use MAX_NUMCHANNEL rather than 16
 • Recommended/suggestions value for MAX_NUMCELLS
 • Looking for “frame is used for...” is implementation-specific. Instead using “MUST”, use “SHOULD”
 • Unprotected frames will never send on negotiated cell, so no need to state only security packet sent on negotiated cell.
 • Length of CellList is implementation specific. 5 should just be a recommended value
 • CellOptions in 6P ADD/DELETE request are not specified.
 • Items 1 and 2 for “parent switching” in Section 5.2 are not necessary.
 • For start State, there are other process may undergoing, e.g. the 6LoWPAN ND, describe that phase and add a reference for it.
 • Layer 2 source address - > Layer 2 destination address
 • The node should not synchronize before listening expected EB and should listen for a certain mount of duration.
 (this is stated in the RFC8180, will add a reference from there)

• To be discussed
 • Rules for CellList
 • Downward traffic adaptation
Discussion

- Rules for CellList
 - Add rules to listen to the cells for a few slotframes to ensure that they are not used by neighbors.
 - Answers:
 - This situation is handled by “locked” feature in RFC8480 at section 3.4.3.

> In this case, the cells involved in an ongoing 6P Transaction MUST be "locked" until the transaction finishes....If the requested cells are locked, it MUST reply to that request with a 6P Response with return code RC_ERR_LOCKED (as per Figure 38). The node receiving RC_ERR_BUSY or RC_ERR_LOCKED MAY implement a retry mechanism as defined by the SF.
(offline) Discussion

- The issue of current downstream traffic adaptation
 - Each node installs one Rx negotiated cell at beginning, which is one Tx cell from its parent side. When a node has too many children, the Tx cells to children will occupy mostly of the schedule without being used frequently.
- Solution after discussed with Malisa and Thomas:
 - For Node A:
 - For upstream adaptation, nothing changes. The node A starts to adapt traffic when the first 6P negotiated Tx cell is installed
 - For downstream adaptation, the node A starts to adapt when the autoRx cell is installed. And we only count the NUMCELL_USED for packet from the parent of node A.
 - The downstream adaptation works in the fact that the children of node A will transmit on the 6P negotiated Tx cell, which won't conflict with the traffic from node A's parent.
- Will be in the next version of MSF
Conclusion

• Publish the new version after this meeting according to the discussion
 – Changes:
 • Apply the new downward traffic adaptation changes
 • Apply the new changes according to the discussion