
Key Management for
OSCORE Groups in ACE
draft-ietf-ace-key-groupcomm-oscore-02

Marco Tiloca, RISE
Jiye Park, Universität Duisburg-Essen

Francesca Palombini, Ericsson

IETF 105, ACE WG, Montreal, July 25th, 2019

IETF 105 | Montreal | ACE WG | 2019-07-25 | Page 2

› Message content and exchanges for:
– Joining an OSCORE group through its Group Manager (GM)

– Provisioning keying material to joining nodes and groups (rekeying)

› Build on draf-ietf-ace-key-groupcomm
– Agnostic of the ACE profile used by C and GM

› Out of Scope:
– Authorizing access to resources at group members

– Actual secure communication in the OSCORE group

Recap

Client

AS
(1)

(2)

(3)

(4)

(5)

(6)

(7) Group

Members

Client

Token POST

Group joining

GM

Authorization

IETF 105 | Montreal | ACE WG | 2019-07-25 | Page 3

› Review from Jim (-01) and Ludwig (-02) – Thanks a lot!

› Renaming
– Roles: “requester”, “responder”, “monitor”

– Profile name: “group_oscore_app”

› Consistency with ace-key-groupcomm
– ‘type’ parameter in any request to a Join Resource

– Renamed and revised parameter ‘signed_info’

› Provisioning & checking of public keys at the GM
– Consistency with signature parameters and expected key encoding

– Check for possible public key already owned for that joining node

Selected updates from -01

IETF 105 | Montreal | ACE WG | 2019-07-25 | Page 4

› Agreement on signatures
– ‘sign_info’ , i.e. signature algorithm and parameters

– ‘pub_key_enc’, i.e. encoding of public keys

– Used in Token POST response and/or Join Response

› Proof-of-possession of private key
– The Client gets a nonce in response to the Token POST

– The Client signs the nonce with its own private key

– The signature is included in ‘client_cred_verify’ of the Join Request

Selected updates from -01
2 Open Points

follow on this

1 Open Point

follows on this

IETF 105 | Montreal | ACE WG | 2019-07-25 | Page 5

› The Client has to agree with the GM about

– Countersignature algorithm and parameters

– Countersignature key parameters

– Countersignature key encoding, e.g. COSE_Key

› We are defining three approaches

1. Ask during the Token POST, with ‘sign_info’ and ‘pub_key_enc’

2. Trial & error, with ‘sign_info’ and ‘pub_key_enc’ in a Join Response

3. Early group discovery with the CoRE RD and link target attributes [1]

› Do we agree on … ?

– Keeping all the three approaches

– Avoid recommending/mandating some

[1] draft-tiloca-core-oscore-discovery

Open point #1

IETF 105 | Montreal | ACE WG | 2019-07-25 | Page 6

› We are admitting one public key encoding
– COSE Key, from RFC 8152

– Registered in “ACE Public Key Encoding Values” *2+

› Right now, we have no more encodings to register

› Do we agree on admitting possible future encodings?

– What would be a good registration policy?

[2] draft-ietf-ace-key-groupcomm

Open point #2

IETF 105 | Montreal | ACE WG | 2019-07-25 | Page 7

› Proof-of-possession of the Client’s private key

– The Client gets a nonce in response to the Token POST, as ‘cnonce’

– The Client signs the nonce with its own private key

– The signature is included in ‘client_cred_verify’ of the Join Request

› Signing process

– Now referring to COSE

– In fact, it is fine to just sign a byte stream

› Proposal to sign more data, and avoid oracle:

– Add a further client-generated nonce in the Join Request

– The signature in the Join Request covers both nonces

› Do we agree that nothing more is needed to be signed?

Open point #3

As also addressed in

ace-key-groupcomm

IETF 105 | Montreal | ACE WG | 2019-07-25 | Page 8

› Section 7 “Group Rekeying Process”
– In order to rekey the OSCORE group, the Group Manager distributes

a new Group ID of the group and a new OSCORE Master Secret for that

group. When doing so, the Group Manager may take a best effort to

preserve the same unchanged Sender IDs for all group members.

› Should it be required (MUST/SHOULD) instead?

– Pros: avoid side effects on public key retrieval and signature verification

› Reasons to keep it best effort

– Pros: flexible refactoring of Sender ID space, e.g. if many nodes leave

– ???

› Note: a node can ask for individual rekeying

– E.g. , the sequence number wraps-around

– The GM may assign a new Sender ID, rather than rekeying the whole group

Open point #4

IETF 105 | Montreal | ACE WG | 2019-07-25 | Page 9

› RISE: ongoing development in Californium:
– Build on the ACE implementation

– Aligned with -01, i.e. basic functionalities

– Work in progress to support -02 and different ACE profiles

– https://bitbucket.org/lseitz/ace-java/

› Other ongoing implementations:

– From Peter van der Stok

– From Jim

› Early tests during the Hackhathon

– Exchange of Join Request/Response over OSCORE

Implementation

https://bitbucket.org/lseitz/ace-java/
https://bitbucket.org/lseitz/ace-java/
https://bitbucket.org/lseitz/ace-java/

IETF 105 | Montreal | ACE WG | 2019-07-25 | Page 10

› Latest major updates

– Parameters for agreements on signature information

– Proof-of-possession of Clients’ private keys, i.e. sign a nonce

› Open points to address

– Which agreement methods for signature information ?

– Other public key encodings than “COSE_Key” ?

– More data to protect/involve during PoP of private keys

– Preservation of same Sender IDs after a group rekeying

› Next steps

– Simplify/shorten the document

– Process comments from Ludwig

– Get more reviews and run interop tests

Summary

Thank you!

Comments/questions?

https://github.com/ace-wg/ace-key-groupcomm-oscore

https://github.com/EricssonResearch/ace-key-groupcomm
https://github.com/EricssonResearch/ace-key-groupcomm
https://github.com/EricssonResearch/ace-key-groupcomm
https://github.com/EricssonResearch/ace-key-groupcomm
https://github.com/EricssonResearch/ace-key-groupcomm
https://github.com/EricssonResearch/ace-key-groupcomm
https://github.com/EricssonResearch/ace-key-groupcomm
https://github.com/EricssonResearch/ace-key-groupcomm
https://github.com/EricssonResearch/ace-key-groupcomm
https://github.com/EricssonResearch/ace-key-groupcomm
https://github.com/EricssonResearch/ace-key-groupcomm

Backup

IETF 105 | Montreal | ACE WG | 2019-07-25 | Page 13

› Structure of the Join Response message

– ‘kty’ , “Group_OSCORE_Security_Context object”

– ‘k’ , Group_OSCORE_Security_Context object

› ‘ms’ , OSCORE Master Secret

› ‘clientID’ , Sender ID of the joining node (if present)

› ‘hkdf’ , KDF algorithm (if present)

› ‘ alg’ , AEAD algorithm (if present)

› ‘salt’ , OSCORE Master Salt (if present)

› ‘contextID’ , Group ID

› ‘rpl’ , Replay Window Type and Size (if present)

› ‘cs_alg’ , signature algorithm

› ‘cs_params’ , signature parameters (if present)

› ‘cs_key_params’, signature key parameters (if present)

› ‘cs_key_enc’, public key encoding (if present)

–‘profile’ , “coap_group_oscore_app”

– ‘exp’ , lifetime of the derived OSCORE Context

– ‘pub_keys’ , public keys of group members (if present)

Join Response message

Defined in ace-key-groupcomm

together with IANA Registry

Defined here and added to
“OSCORE Security Context

Parameters” Registry

Defined in the OSCORE Profile

Extends the CBOR-encoded
OSCORE Security Context

Object of the OSCORE profile

Defined in ace-key-groupcomm

together with IANA Registry

… … …

