The ALTO Path Vector Extension

draft-ietf-alto-path-vector-08

K.Gao® Y.Lee! S.Randriamasy?Y.R.Yang® J.Zhang*®
'Huawei 2Nokia Bell Labs 3Sichuan University ~ “Tongji University °Yale University

July 25,2019 @ IETF 105

Updates

In-07
> Finalize the specification
> Revert the cost type design to -05
» Add a new IRD capability and request field to negotiate properties
> Add a new property to support use cases other than coflow scheduling
» Re-categorize some references (based on the IESG statement)
In-08
> Better clarify the necessity of the PV draft
> Motivated by new usage scenarios from both application requirements (high-speed data
transfers) and network innovations (in-network computation and storage)
» Provide correlations of network paths, in addition to preferences of network paths (which
motivates the base protocol)
» Add two more use cases
» Clarify some design decisions including concepts (ANE, Part Resource ID), and
procedures (property negotiation, incremental updates)

Cost Type

In -05:

» cost mode: array, cost metric: ane-path
In-06:

» cost mode: path-vector, cost metric: maxresbw
Since -07: (same as -05)

» cost mode: array, cost metric: ane-path

This cost type better conform to the ALTO cost type design principle: mode -
interpretation, metric - semantics.

Property Negotiation

In -05:

» Property query is handled by the Unified Property Map extension
In -06:

» Property is encoded as the cost metric
Since -07:

» Available properties are announced in an IRD entry capability
> Selected properties are submitted in a query
» It mimics the negotiation process of cost types

Property Negotiation Example

Left: IRD entry, Right: PV request

"uri": “"http://alto.example.com/proxy-props",
“media-type": "application/alto-propmap+json®,
“accpets": “application/alto-propmapparams+json”,
“capabilities": {
“mappings": {
“http-proxy": [“price"]

}

h
“endpoint-cost-pv": {
"uri": “http://alto.exmaple.com/endpointcost/pv",
“media-type": “multipart/related
type=application/alto-endpointcost+json”,
“accepts": "application/alto-endpointcostparams+json”,
“capabilities": {
"cost-type-names":
"ane-properties":

["path-vector®],
maxresbw", "persistent-entities”

"uses": ["http-proxy-props"

"update-pv": {

Content-Length: [TBD]
Content-Type: application/alto-endpointcostparams+json

“cost-type": {
“cost-mode": “array",
“cost-metric": “"ane-path"

h
“endpoints*: {
"sres”: "ipv4:192.0.2.2" |,
"dsts": ["ipv4:192.0.2.89",
“ipv4:203.0.113.45",
"ipv6:2001:db8::10" |

h
“ane-properties": ["maxresbw", "persistent-entities"

}

HTTP/1.1 200 0K

Content-Length: [TBD]

Content-Type: multipart/related; boundary=example-2;
type=application/alto-endpointcost+json

P

u]
b}
I

]
it
kN

b

5/18

Persistent Entity Property

Introduced in -07:

» An array of entity identifiers that are persistent in the scope of an ALTO server
» Not present is same as an empty list
» Motivations:

>
>
|

Allow clients to query further information related to entities discovered by PV

Enable applications such as in-network cache planning, etc.

In contrast to ANE, which is dynamically generated and specific to the query, persistent
entities are persistent and can be used to query related properties in another unified
property map.

Persistent Entity Property Example

Domain used in the example: http-proxy (not formally registered)
» Exported by another unified property map:

"http-proxy-props": {

"capabilities": {
"mappings": { "http-proxy": ["price"] }
}
1},

» Used by a PV resource:

"endpoint-cost-pv": {

"capabilities": {

"cost-type-names": ["path-vector"],

"ane-properties": ["maxresbw", "persistent-entities"]
3,
"uses": ["http-proxy-props"]

Persistent Entity Property Example (Cont.)

» Returned in the PV response

"meta": {
"dependent-vtags": [
{ "resource-id": "endpoint-cost-pv.ecs", "tag": ... },
{ "resource-id": "http-proxy-props", "tag": ... }
]
},
"property-map": {
"ane:NET001": {
"persistent-entities": ["http-proxy:192.0.2.1"]
1,
"ane:L002": { "maxresbw": 48000000 },
"ane:L003": { "maxresbw": 35000000 }
}

Restructured Sections

In-07:
» Introduction: requirements on the path vector design

» Overview: how the extension addresses the requirements
> Motivation: the co-flow use case
Since -08:
» Introduction: the importance of path vector extension in two aspects
» |t can be used to support new usage scenarios
» It provides fundamentally different information: correlations of network paths (while the
base protocol provides preferences of network paths)
» Overview: a top-down exploration of the design space and design decision
justifications

» Why encode the information in a single message
» Why introduce abstract network element
» Why the specification extensions are essential

> Motivation (renamed to use cases): 3 use cases covering different usage scenarios

» only the correlations of network paths (shared risk resource group)
> correlations of network paths and bandwidth information (co-flow scheduling)
> correlations of network paths and in-network resources (in-network cache planning)

Synchronized with the SSE draft -16

In-07:
> Still assume SSE uses resource-id to demultiplex updates
Since -08:

» Synchronized with SSE draft -16, which uses client-id to demultiplex updates
» Define Part Resource ID to demultiplex update streams of the (endpoint) cost map
part and the property map part

Part Resource D

» Two usages:

» Inthe PV response, specify the resource dependency

> Inthe SSE update stream, demultiplex updates for the two resources returned by PV
» Add a WARNING that the resource-id and client-id for each part MAY violate the

length constraint of Resourceld and Clientld. Recommend clients and servers to use
identifiers of less than 31 characters when using PV

Part Resource ID Example

» Specified in the part header

--example-1
Resource-Id: ecsmap

--example-1
Resource-Id: propmap

» Used in vtag and dependent-vtags to specify dependency

Resource-Id: ecsmap
"vtag": { "resource-id": "endpoint-cost-pv.ecsmap", "tag": ... },
Resource-Id: propmap

"dependent-vtags": [{ "resource-id": "endpoint-cost-pv..ecsmap", "tag":

Part Resource ID Example (Cont.)

» Used in SSE update streams to demultiplex updates

event: application/merge-patch+json, ecspvsubl.ecsmap
data: <Merge patch for endpoint-cost-map-update>

event: application/merge-patch+json, ecspvsubl.propmap
data: <Merge patch for property-map-update>

Cost Calendar Compatibility

In-07:
» The integration with Cost Calendar is left as a future requirement
Since -08:

» The Cost Calendar extension can be used directly with the path vector extension
» One requirement: the same ANE in different time intervals with different properties
MUST be treated as different ANEs

» |t can cover time-varying routing and time-varying properties simultaneously

Cost Calendar Example

> Request:
{

"cost-type": { "cost-mode": "array", "cost-metric": "ane-path" },
"endpoints": {
"srcs": ["ipv4:192.0.2.2"],
"dsts": ["ipv4:192.0.2.89", "ipv4:203.0.113.45"]
1,
"ane-properties": ["maxresbw"],
"time-interval-size": 3600,
"number-of-intervals": 2

}
» Response (PV part)

{ ...
"ipv4:192.0.2.2": {
"ipv4:192.0.2.89": [["ane:L001", "ane:L003"], ["ane:L004", "ane:L003"] 1],
"ipv4:203.0.113.45": [["ane:L002", "ane:L003"], ["ane:L005", "ane:L003"]]
}
3}

Cost Calendar Example (Cont.)

» Response (property map part)

{
"ane:L001": { "maxresbw": 1000000000 },
"ane:L002": { "maxresbw": 1000000000 },
"ane:L003": { "maxresbw": 1000000000 },
"ane:L004": { "maxresbw": 500000000 1},
"ane:L005": { "maxresbw": 1500000000 }
}

LO04 and LOO5 can either be different ANEs or the same ANEs as LOO1 and LO02 but with
different property values.

Conclusion

» Current status

> The main specifications are stable

> The design decisions are better clarified and justified
» Great thanks to the coauthors and the reviewers for the feedback and guidance
» Next steps:

> WGLC? (Agreed in IETF 104 to issue WGLC after feedback is collected)

Q&A

Join the Discussion at alto@ietf.org!

Questions and Comments are Welcome!

alto@ietf.org

