
Unified Properties for ALTO

Wendy Roome
Sabine Randriamasy

Kai Gao
Y. Richard Yang
J. Jensen Zhang

draft-ietf-alto-unified-props-new-08

Major Updates of Unified Properties -08

2

● Document organization
○ Separated concepts and data type encodings into different sections (Sec 2 and Sec 3)

● Requirements and concepts clarification
○ Clarified requirements of unified properties.
○ Clarified concepts and their motivation
○ Clarified the scope of the design

● Protocol specification update
○ Changed capabilities from entity-domains x properties to {entity-domain ->

properties}

○ Updated IANA registries

Requirements for Unified Properties (UP) Extension
An ALTO client should be able to

● Req-1: Obtain properties of generic entities
○ examples of generic entities: endpoint, pid, AS, country, ...

● Req-2: Obtain requested properties of entities with no message redundancy
● Req-3: Obtain the full map of entity properties

○ Solution: Get-mode property map service

3

Requirements and Design
Req-1: Obtain properties of generic entities

● An ALTO client should have answers to the following questions
○ Q1.1: What entities can an ALTO client query?
○ Q1.2: For each entity, what properties can an ALTO client query?

4

Req-1: Obtain properties of generic entities

● An ALTO client should have answers to the following questions
○ Q1.1: What entities can an ALTO client query?

■ Basic idea: the ALTO server announces a set of types
■ Each type refers to entities of the same semantics and ID format

● e.g., type=ipv4 -> {semantics: an ipv4 address of an endpoint, format: IPv4Addr}
● An entity is valid if it has a valid entity ID

■ Each type defines a complete entity set which consists of all valid entities of this type
● e.g., type=ipv4 represents the set of all valid IPv4Addr

■ An ALTO client can query entities in the complete entity set of any announced type

Requirements and Design

5

Req-1: Obtain properties of generic entities

● An ALTO client should have answers to the following questions
○ Q1.1: What entities can an ALTO client query?

■ Basic idea: the ALTO server announces a set of types
■ Issue: Not all valid entities are meaningful

● e.g., A PID is only meaningful in a network map
■ For a given entity type, an ALTO information resource only contains a subset of the

complete entity set, which is referred to as a resource-specific entity domain
■ Solution: the ALTO server announces a set of resource-specific entity domains

Design Update: Resource-Specific Entity Domain

6

All Valid PIDNames
PIDNames in
networkmap1

The ALTO server only
defines properties for a
subset of the complete

PIDName set

Design Update: Resource-Specific Entity Domain
● Issue: Using entity ID to identify the entity may be ambiguous

○ clients/servers need to distinguish which entity domain an entity belongs to
○ e.g., two "PID1"s in networkmap1 and networkmap2 define two different PIDs

■ the ASN property of "PID1" in networkmap1 is "1234"
■ the ASN property of "PID1" in networkmap2 is "1235"

● Solution: Use EntityDomainName ':' DomainSpecificEntityID to identify entities
○ Entity Domain Names: "networkmap1.pid" and "networkmap2.pid"
○ Domain-Specific Entity ID: "PID1"
○ "networkmap1.pid:PID1" and "networkmap2.pid:PID1" identify two different PID entities

7

All Valid PIDNames

PIDNames in
networkmap1

networkmap1.pid

PIDNames in networkmap2

networkmap2.pid

Req-1: Obtain properties of generic entities

● An ALTO client should have answers to the following questions
○ Q1.1: What types of entities can an ALTO client query?

■ Solution: the ALTO server announces a set of resource-specific entity domains
○ Q1.2: For each (entity) resource-specific entity domain, what properties can an ALTO client

query?
■ Basic idea: The ALTO server announces a set of resource-specific entity domain ->

property type mapping

Requirements and Design

8

● Issue: For entities in a resource-specific entity domain ri.di, the mapping to
a property of type po may be ambiguous

● Example: ri.di (=networkmap1.ipv4) -> po (=pid)
○ The value of property pid may be defined by either networkmap1 or this property map itself

● Solution: To distinguish between the two cases, the UP design formulates the
mapping as ri.di -> ro.po, where ro is either ri or this

○ The server announces the capabilities using the two mappings:
■ networkmap1.ipv4 -> networkmap1.pid

■ networkmap1.ipv4 -> this.pid

● In RFC 7285, this is not a reserved Resource ID. UP uses .po to represent
this.po

○ To be discussed: or just use po without '.'?

Design Update: Entity to Property Mapping

9

● Each property map provides a set of ri.di -> ro.po mappings
● These mappings must be announced in the property map capabilities
● Three mapping modes are currently considered:

○ "Export": networkmap1.ipv4 -> networkmap1.pid
○ "Extend": networkmap1.pid -> this.geolocation
○ "Define": this.ipv4 -> this.asn

Clarification of Design

10

 domain.resource domain.resource
 (ri) = r (ri) = this
 +-----------------+-----------------+
 prop.resource | Export | Does not exist |
 (ro) = r | | |
 +-----------------|-----------------+
 prop.resource | Extend | Define |
 (ro) = this | | |
 +-----------------+-----------------+

(this = the present UP resource)

● Note that each announced ri.di -> ro.po mapping should be meaningful
○ Entity Domain Type di MUST be supported by ri

■ Bad announcement: networkmap1.asn is not meaningful
○ In Export Mode, Entity Property Mapping di -> po MUST be supported by ro

■ Bad announcement: networkmap1.ipv4 -> networkmap1.asn is not meaningful

● Solution: use additional IANA registries
● For each ALTO Information Resource Type (indicated by the Media Type):

○ Define its Resource-Specific Entity Domain Export Registry for each exportable Entity
Domain Type di of it

○ Define its Entity Property Mapping Export Registry for each exportable EntityDomainType
-> PropertyType mapping di -> po of it

Capability Announcement and Consistency

11

Example of Additional IANA Registries

12

Protocol Specification Update: IRD
From {di} x {po} to {ri.di -> {ro.po}}

13

"filtered-property-map": {
 "uri": "http://alto.exmaple.com/propmap/region",
 "media-type": "application/alto-propmap+json",
 "accepts": "application/alto-propmapparams+json",
 "uses" : ["default-network-map",
 "alt-network-map"],
 "capabilities": {
 "mappings": {
 "default-network-map.ipv4": [
 "default-network-map.pid"],
 "alt-network-map.ipv4": [
 "alt-network-map.pid"],
 "default-network-map.pid": [".region"],
 "alt-network-map.pid": [".region", ".asn"]
 }
 }
}

"filtered-property-map": {
 "uri": "http://alto.exmaple.com/propmap/region",
 "media-type": "application/alto-propmap+json",
 "accepts": "application/alto-propmapparams+json",
 "uses" : ["default-network-map"],
 "capabilities": {
 "entity-domains": ["pid"],
 "properties": ["region", "asn"]
 }
}

Old IRD

New IRD

Request and Response of UP
● Query Request:

○ A set of entities in ri.di announced by IRD
○ A set of properties in ro.po announced by IRD

● Query Response:
○ Property Map for requested properties of requested entities whose mappings are announced

by IRD.

14

{
 "entities" : ["default-network-map.pid:pid1",
 "alt-network-map.pid:pid1"],
 "properties" : [".region", ".asn"]
}

{
 "meta" : {
 "dependent-vtags" : [
 {"resource-id": "default-network-map", "tag": "tag1"},
 {"resource-id": "alt-network-map", "tag": "tag2"}]
 },
 "property-map": {
 "default-network-map.pid:pid1": {
 ".region": "us-west"
 },
 "alt-network-map.pid:pid1": {
 ".region": "us-east",
 ".asn": "3389"
 }
 }
}

Request Response

Req-2: Obtain requested properties of entities with no redundancy

● Current UP design may introduce redundancy in the following cases
○ C2.1: The requested entities may be redundant
○ C2.2: The returned entities may be redundant

Requirements and Improvement Solutions

15

Req-2: Obtain requested properties of entities with no redundancy

● Current UP design may introduce redundancy in the following cases
○ C2.1: The requested entities may be redundant

■ A property map may support multiple entity property mappings for different
resource-specific entity domains of the same type:

● ri1.di -> ri1.po (e.g., networkmap1.ipv4 -> networkmap1.pid)

● ri2.di -> ri2.po (e.g., networkmap2.ipv4 -> networkmap2.pid)

■ An ALTO client has to query entities in ri1.di and ri2.di individually, which is
redundant

● If an ALTO client wants to query both networkmap1.pid and networkmap2.pid of
"192.0.1.1", it has to query both "networkmap1.ipv4:192.0.1.1" and
"networkmap2.ipv4:192.0.1.1"

Requirements and Improvement Solutions

16

Improvement: Aggregated Entity Domain

● Solution: UP allows a property map to use di -> {ri1.po, ri2.po} to
represent the equivalent entity property mappings to above

○ e.g., ipv4 -> {networkmap1.pid, networkmap2.pid}, where ipv4 represents an entity
domain including all domain-specific entity IDs in networkmap1.ipv4 and networkmap2.ipv4
(the union of the two resource-specific entity domains)

○ An ALTO client can query "ipv4:192.0.1.1" to get both networkmap1.pid and
networkmap2.pid

17

Example of Aggregated Entity Domain in IRD

18

"filtered-property-map": {
 "uri": "http://alto.exmaple.com/propmap/region",
 "media-type": "application/alto-propmap+json",
 "accepts": "application/alto-propmapparams+json",
 "uses" : ["default-network-map",
 "alt-network-map"],
 "capabilities": {
 "mappings": {
 "default-network-map.ipv4": [
 "default-network-map.pid"],
 "alt-network-map.ipv4": [
 "alt-network-map.pid"],
 "default-network-map.pid": [".region"],
 "alt-network-map.pid": [".region", ".asn"]
 }
 }
}

IRD without aggregated entity domain

"filtered-property-map": {
 "uri": "http://alto.exmaple.com/propmap/region",
 "media-type": "application/alto-propmap+json",
 "accepts": "application/alto-propmapparams+json",
 "uses" : ["default-network-map",
 "alt-network-map"],
 "capabilities": {
 "mappings": {
 "ipv4": ["default-network-map.pid"
 "alt-network-map.pid"],
 "default-network-map.pid": [".region"],
 "alt-network-map.pid": [".region", ".asn"]
 }
 }
}

IRD with aggregated entity domain

Req-2: Obtain requested properties of entities with no redundancy

● Current UP design may introduce message redundancy in the following cases
○ C2.1: The requested entities may be redundant

■ Improvement Solution: aggregated entity domain
○ C2.2: The returned entities may be redundant

■ For some types of entities, a group of entities may have the same properties
● e.g., ipv4 entities in a cidr 192.0.1.0/24 may have the same ASN property value

■ Returning properties for each entities in such a group individually is redundant
● e.g., To obtain the ASN property of all ipv4 entities in the cidr 192.0.1.0/24, the

client has to enumerate all 256 individual ipv4 addresses

Requirements and Improvement Solutions

19

Revisit: Hierarchy and Inheritance
● Current Design:

○ Introduce the entity block to represent a set of individual entities, and allow the server to return
properties for entity blocks

■ e.g., cidr as an entity block representation for ipv4 addresses
○ Define the property inheritance rule on the entity block representation

■ e.g., an ipv4 address / cidr inherits properties of the longest-match cidr

ipv4:192.0.2.0/26: P=v1
ipv4:192.0.2.0/28: P=v2
ipv4:192.0.2.0/30: P=v3
ipv4:192.0.2.0: P=v4

ipv4:192.0.2.16: P=v1
ipv4:192.0.2.0/29: P=v2
ipv4:192.0.2.1: P=v3
ipv4:192.0.2.64: (not defined)

20

Clarification: Hierarchy and Inheritance
● Requirement: The property inheritance must not be ambiguous
● Solution: Claim the following constraint

○ For a given entity type, if its entity block representation is defined, the representation MUST be
hierarchical

■ In other words, if there are two entity blocks including the same entity, they MUST NOT
be partially intersected

● Note that this is a sufficient but not necessary condition to avoid ambiguity

e1 e2e1∩e2e''e'e

Valid Entity Block Representation for
Property Inheritance

Invalid Entity Block Representation
for Property Inheritance

21(e, e', e'', e1, e2 are entity blocks)

e1 = 192.*.*.1
e1 -> asn = 1234
e2 = 192.0.*.*
e2 -> asn = 1235
how about asn of 192.0.1.1?

Conclusions
● Each property map announces a set of ri.di -> ro.po mappings

○ Announce di -> {ro.po} to avoid potential message redundancy

● For each information resource, register supported di and di -> po in IANA
registries

● An ALTO client requests a set of entities and properties and the ALTO server
returns a property map

○ Entity block representation and inheritance rule can be applied to reduce the message size

22

Next Steps
Go to WGLC Request?

23

Backup

24

An ALTO client SHOULD be able to

● Req-1: Obtain properties of generic entities.
○ Req-1.1: What type of entities an ALTO client can query?
○ Req-1.2: For each entity, which properties an ALTO client can query?
○ Req-1.3: For each entity type, which entities the ALTO server MAY define certain properties

for?

Requirement Space of Unified Properties

25

entity.property value entity is in domain entity is not in domain

(entity -> property) exists defined/undefined undefined

(entity -> property) doesn’t exist undefined undefined

Motivation: Resource-Specific Entity Domain
When querying entity properties, the client should know which entities are valid
and effective:

● Valid: each entity has a type to indicate its valid identifier encoding
○ Use specification/IANA registry to register types and their encoding format

● Effective: the server should indicate an effective set of entities for client to
query

○ Entity Domain: an effective set of entities with the same type
○ Effectiveness: somebody defines this entity to provide some properties for it
○ Enumerating all effective entities is not efficient
○ Instead of it, use existing ALTO information resources to export entity domains

26

Requirement Space of Unified Properties
An ALTO client SHOULD be able to

● Req-1: Obtain properties of generic entities.
○ Req-1.1: ALTO clients need to know which entities may exist and may have properties to be

queried.
■ If defined by an existing ALTO information resource, ALTO clients need to know how this

ALTO information resource exports all those entities.
○ Req-1.2: ALTO clients need to know the semantics of each entity property.

■ If defined by an existing ALTO information resource, ALTO clients need to know how this
ALTO information resource maps an entity to its property. (Refer to Sec 11.2.2 of
[RFC7285])

● Req-2: Obtain the full map for properties of a given set of entities.

27

Design Point: Aggregated Entity Domain
● Entities in different resource-specific entity domains may have the same

identifier but has different properties.
● Depending on the application, the server may regard them as the same object

or not.
○ Two "PID1" associated to two different network maps should be different objects.
○ Two "192.0.1.1" associated to two different network maps may be the same object.

■ The client may want to know all the properties of "192.0.1.1" in two resource-specific
entity domains.

■ The server can export the aggregated entity domain for several resource-specific entity
domain with the same type so that the client can query the aggregated entity properties.

netmap-1's IPv4 Entity Domain

192.0.1.1

netmap-1.pid: PID1

netmap-2's IPv4 Entity Domain

192.0.1.1

netmap-2.pid: PARIS

Aggregated IPv4 Entity Domain

192.0.1.1

netmap-1.pid: PID1 netmap-2.pid: PARIS
28

Syntax Sugar: Aggregated Entity Domain

● A property map MUST NOT use aggregated entity domain if it contains
ambiguous mappings

○ For di -> {ri1.po1, …, riN.poN}, a property map MUST either support rik.di ->
rik.pok or this.di -> rik.pok but NOT BOTH

○ e.g., networkmap1.pid -> this.geo-location, networkmap2.pid ->
this.geo-location CANNOT be aggregated as pid -> geo-location

29

IRD Design
Representation of (ri, di)

EntityDomain := ResourceID '.' EntityDomainType # e.g., netmap1.ipv4, costmap1.ane

 | '.' EntityDomainType # shortcut of (this, di)

 | EntityDomainType # shortcut of (*, di)

Representation of (ro, po)

Property := ResourceID '.' PropertyType # e.g., netmap1.pid

 | '.' PropertyType # shortcut of (this, po)

"uses" : [ResourceID...], # all ro

"capabilities" : {

 "mappings" : {

 EntityDomain : [Property...], # representation of (ri, di) -> (ro, po)

 ...

 }

}
30

Protocol Update: IANA Registry
● For each new Entity Domain Type, go to ALTO Entity Domain Type

Registry.
● For each new Property Type, go to ALTO Entity Property Type Registry.
● For each ALTO Information Resource Type (indicated by the Media Type):

○ Define its Resource-Specific Entity Domain Export Registry for each exportable Entity
Domain Type of it.

○ Define its Entity Property Mapping Export Registry for each exportable EntityDomainType ->
PropertyType mapping of it.

31

Design Point: Entity Property
● Each entity property has a type which specifies its data format and semantics

of the value.
○ Data format: the value of a "pid" property MUST be a PIDName format JSON string.
○ Semantics: the value of a "pid" property is an ALTO PID defined by a network map.

32

Design Update: Resource-Specific Entity Domain
● Each information resource exports several types of entities.

○ The entities of the same type define an entity domain, which is referred to as a
resource-specific entity domain.

■ e.g., a network map exports an ipv4 entity domain, an ipv6 entity domain and a pid entity
domain.

○ (To be revised) By querying this information resource, the client can know
the content of entity domains exported by it.

33

netmap-1:

{
 "PID1": {
 "ipv4": ["192.0.1.0/24", "192.0.2.0/24"]
 },
 "PID2": {
 "ipv4": ["192.0.3.0/24"]
 }
}

Entity Domain "netmap-1.pid"
=> {"PID1", "PID2"}

Entity Domain "netmap-1.ipv4"
=> {"192.0.1.0", "192.0.1.1", ..., "192.0.1.255",
 "192.0.2.0", "192.0.2.1", ..., "192.0.2.255",
 "192.0.3.0", "192.0.3.1", ..., "192.0.3.255"}

Entity Domain "netmap-1.ipv6"
=> {}

All Valid PIDNames

PIDNames in networkmap1

● Problem: Only using property type cannot specify the entity to property
mapping clearly.

○ Multiple ALTO information resources MAY have different values for the same type of property
for an entity.

○ Property type specifies data format and semantics of property values, but does not specify
which resource the value comes from.

○ e.g., Sec 11.2.2 of [RFC7285] defines how a network map maps an IP address to a PID
property

● Solution:
○ Each ALTO information resource exports a set of entity -> property mappings in IANA registry.
○ UP announces all supported entity -> property mappings in its IRD capabilities

Design Update: ...

34

Design Update: Resource-Specific Entity Domain
● For a given entity type, an ALTO information resource only contains a given set of

entities. This set is referred to as a resource-specific entity domain.
○ This entity type is also called the type of this resource-specific entity domain.

● Two resource-specific entity domains MAY include the same domain-specific entity IDs.
To distinguish which entity domain the entity belongs to, UP uses EntityDomainName
':' DomainSpecificEntityID to identify entities.

● The ALTO server does not guarantee the same domain-specific entity ID in two different
resource-specific entity domain means the same physical/logical object.

35

All Valid PIDNames

PIDNames in
networkmap1

networkmap1.pid

PIDNames in networkmap2

networkmap2.pid

