Considerations for Benchmarking Network Performance in Containerized Infrastructure

draft-dcn-bmwg-containerized-infra-01

Kyoungjae Sun, Hyunsik Yang, Youngki Park, Younghan Kim
IISTRC, Soong-Sil University
Wangbong Lee
ETRI
Reviews from -00

• Al Morton
 • Need to mention “repeated instantiation and testing to quantify the performance variation”
 • Performance affected by LCM (Lifecycle Management) to Containerized VNF

• Maciek Konstantynowicz
 • More figures including building blocks and traffic paths when benchmark network performance
 • More specifically listing technologies (driver types, etc) used for interconnecting virtual devices

• Luis Contreras
 • Specific guidance or recommendations about what and how to test and benchmark the containerized case
 • References/links for container solutions (Docker, Kubernetes)
 • Potential cons due to containerization
 • Additions that this draft provides with respect to [ETSI-TST-009]
 • Several editorial comments
Updates Summary

- Remove 2 chapters: “Additional Considerations for Container Networking” and “Test Scenarios”
 - Contents of chapter 3.2 moved to “Resource Consideration”
- Add 3 chapters:
 - Container Networking Classification
 - Resource Considerations
 - Benchmarking Scenarios for Containerized Infrastructure
 - Categorize container networking technologies
 - Try to describe different resource utilization support between VM-based and containerized infrastructure
 - Drawing more figures – Container networking models
 - New benchmarking scenarios
3.2. Container Networking Classification

- 3-networking models depending on location of network service creation
 - Kernel space network model
 - User space network model – Device pass-through
 - User space network model – vSwitch model

- Mapping current network technologies to this classification
 - Add 10 references/links ex) SR-IOV, eBPF, VPP
3.3. Resource Considerations

- **Huge-page**
 - In the containerized infrastructure, container is isolated in the application level so that administrators can set Hugepage more granular level (e.g., 2M, 4M, ...)

- **NUMA (Non-Uniform Memory Access)**
 - Instantiation of C-VNFs is somewhat non-deterministic and apparently NUMA-Node agnostic, which is one way of saying that performance will likely vary whenever this instantiation is performed. So, repeated instantiation and testing to quantify the performance variation is required

- **RX/TX Multiple-Queue**
 - Technology that enables packet sending/receiving processing to scale with number of available vCPUs of guest VM
 - **RX/TX Multiple-Queue technology is not supported in the containerized infrastructure**
Detail Updates (3)

4. Benchmarking Scenarios for the Containerized Infrastructure
 - In the [ETSI-TST-009], there are two scenarios
 - Container2Container
 - Pod2Pod (as mapped with BMP2BMP)
 - In this draft, we consider deployment scenario where Pod is running on VM
 - BMP (Baremetal Pod)
 - VMP (Virtual Machine Pod)
 - 2 additional test scenarios – BMP2VMP, VMP2VMP
Detail Updates (4)

• Additional Considerations
 • In the NFV environment, the physical network port commonly will be connected to multiple VNFs rather than dedicated to a single VNF
 • Multiple PVP test setup architecture in [ETSI-TST-009]
 • Therefore, benchmarking scenarios should reflect operational considerations such as number of VNFs or network services defined by a set of VNFs in a single host
 • [draft-mkonstan-nf-service-density] is a good example from this perspective
 • It is not only limited in the containerized infrastructure, but also VM-based infrastructure
Next Step

- We tried to solve all comments from -00 review
 - Are there any missing points?
- Any comments or feedbacks are welcome
- Keep trying to update new technologies, resource considerations

- IETF BMWG Hackathon
 - Proof our draft scenarios and feature
 - Consideration automation benchmark