Hash to curve update

Armando Faz-Hernández, Sam Scott, Nick Sullivan, Riad S. Wahby, Christopher A. Wood

IETF 105 - CFRG - 25 July 2019

Hash to curve: Roadmap

Three big pieces:

- 1. hash_to_base Arbitrary string \rightarrow Element of finite field \mathbb{F}
- 2. map_to_curve Element of $\mathbb{F} \rightarrow$ Point on E over base field \mathbb{F}
- 3. clear_cofactor Point on $E \rightarrow$ Point in prime-order subgroup G

Goal: constant-time hashing for any E. (No hash-and-check!)

hash_to_base (string $\rightarrow \mathbb{F}$)

parameterized by field ${\mathbb F}$ and a hash function ${\boldsymbol H}$

- → Explicit security requirements
 - igoplus ensure collision resistance, uniform distribution over ${\mathbb F}$
- → Build from HKDF
 - security even if H is not perfect
- → "Prehash for free"
 - only need to hash long input string once
- \rightarrow Domain separation guidelines
 - helps with protocol composition (but: not a panacea!)

map_to_curve ($\mathbb{F} \rightarrow \text{point on E})$

- → Specify how to choose sign of resulting point
 - Interoperability without needing to specify how to compute \sqrt{x}
- → Explicitly handle exceptional cases
 - igoplus map_to_curve functions are defined over all of $\mathbb F$
- → Removed SWU in favor of (generalized) Simplified SWU
 - faster, handles all of the same curves (but: IPR worries?)
- → Unified Elligator 2 for Montgomery and Edwards
 - faster for Edwards, plus cross-curve interoperability
- → New map for pairing-friendly (and other) curves [<u>WB19</u>]

Hash-to-curve suites

- → Specs for widely-used curves, right now comprising:
 - NIST curves (P-256, P-384, P-521)
 - RFC7748 (*25519 / *448)
 - secp256k1
 - ♦ BLS12-381
- → -04 includes constant-time*, optimized pseudocode for P-256, *25519, *448
 - *assuming, of course, that all primitives are constant time!
 - future drafts will provide pseudocode for all suites
- → Planned additions:
 - other curves (e.g., from pairings I-D)
 - flowchart to identify params for curves that are not covered (?)

Open questions and discussion

- \rightarrow What other suites are needed?
 - supersingular curves with $j \in \{0, 1728\}$? (use <u>CSIDH p511</u>?)
- → IPR concerns
 - Icart, Simplified SWU may have patent entanglements
 - Proposal: use Shallue and van de Woestijne as IPR fallback.
 Performance / implementation complexity are same as SWU, and SvdW covers Icart, Simplified SWU, and more.
- \rightarrow Others?
 - email: <u>draft-irtf-cfrg-hash-to-curve@ietf.org</u>
 - GitHub: <u>https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/</u>