Introducing MGM: Multilinear Galois Mode draft-smyshlyaev-mgm

Stanislav Smyshlyaev (svs@cryptopro.ru)

CFRG IETF 105, July 2019, Montreal

Brief overview

- MGM an AEAD mode standardized in Russia in 2019.
- Description became available in 2017.
- Motivation for development: need for AEAD mode, security problems of GCM.
- Reasons for not nominating to CAESAR: being too late.
- Don't have any plans for CFRG adoption, just an informative talk.

The construction

Functional properties

According to NIST 800-38D, GCM has the following properties:

- Parallelizeable
- Online
- 3 Inverse-Free (imperentation of E^{-1} is not needed)
- The authenticity of the protected data can be verified independently from the recovery of the confidential data from its encrypted form
- If the unique initialization string is predictable, and the length of the confidential data is known, then the block cipher invocations within the GCM encryption mechanism can be pre-computed
- If some or all of the additional, non-confidential data is fixed, then the corresponding elements of the GCM authentication mechanism can be pre-computed.
- Only one key is needed.
- 8 Can be used for MAC only (without encryption).

Same for MGM, excluding 6.

←□ → ←□ → ← □ → ← □ → へ○

Protection against length extension attacks

Protection against predictable collisions of the counters

Attacks on GCM

Main attacks

- 2005 Ferguson, authentication weaknesses;
- 2007 Joux, "forbidden attack" with repeated IV;
- 2011 Saarinen, cycling attacks and weak keys.

Other attacks

- 2008 Handschuh & Preneel's Key Recovery Attacks;
- 2013 Procter & Cid's General Weak-Key Forgery Framework;
- 2015 Twisted Polynomials and Forgery Attacks.

Inapplicability of Ferguson-like attacks

The problem with GCM: the linear structure of GHASH allows to force bits of the result to zero; GCM encrypts the GHASH result by xorring it with a block of key stream, which does not prevent manipulation of the output bits.

Inapplicability of Saarinen-like attacks

The problem with GCM: in certain conditions on a key, ciphertext blocks can be swapped without affecting the tag.

Security bounds

	Confidentiality	Authenticity (one forgery trial)
$GCM_{[Perm(n)]}$	$\frac{(\sigma+q)^2}{2^{n+1}}$	$\frac{l+1}{2^{s}}\cdot\delta_{n}(\sigma+q+2)$
MGM _[Perm(n)]	$\frac{3(\sigma_{\rm A}+4{\rm q})^2}{2^{\rm n}}$	$\frac{3(\sigma_{\rm A}+4{\rm q}+{\rm l}+3)^2}{2^{\rm n}}+\frac{2}{2^{\rm s}}$

$$\delta_{n}(x) := \frac{1}{(1-\frac{x}{nR})^{x/2}}$$

- q is the number of encryption queries
- l is the maximum possible size of one protected message
- \bullet σ is the total block length of plaintexts
- \bullet $\sigma_{\rm A}$ is the total block length of plaintexts and associated data
- s is the tag size

"Security of Multilinear Galois Mode (MGM)", L. Akhmetzyanova et al., Cryptology ePrint Archive: Report 2019/123

Comparison with other AEAD modes

Mode	MGM	GCM	COLM	OCB3	Deoxys-II	ACORN	AEGIS	Ascon	MORUS
Туре	BC	BC	BC	BC	BC	SC	Dedic	Sponge	Dedic
Parall.	+/+	+/+	+/+	+/+	+/+	+/+	+/-	-/-	-/-
Enc/Dec									
Online	+	+	+	+	+	+	+	+	+
Inverse-	+	+	-	-	-	+	+	+	+
Free									
Incr.	-/-	-/-	+/-	-/-	-/-	-/-	-/-	-/-	-/-
AE/AD					,		,	i i	, i
Fixed	-	+	+	-	-	-	-	-	-
AD									
Reuse									
Intermed.	-	-	+	-	-	-	-	-	-
Tags									
Security	+	+	-	+	+	-	-	+	-
proofs									
Precomp.	+	+	-	-	=	+	-	+	+
Calls	2m + 4	m+2	2m + 4	m + 2	2m + 1				
for enc.									
function									

Thank you for your attention!

Questions?

- Materials, questions, comments:
 - svs@cryptopro.ru

Backup slides

Performance on FPGAs

FPGA implementations: Virtex 6/ Virtex 7

Mode	Throughput (Mbits/s)	Area (LUTs)	TP/A
MORUS	$49,\!421 \; / \; 88,\!576$	3,406 / 4,022	14.510 / 22.023
AEGIS	$70,927 \ / \ 94,208$	7,592 / 7,504	$9.342 \ / \ 12.554$
ACORN	11,303 / 11,232	$1,224\ /\ 1,234$	9.086 / 9.102
Ascon	3,1-5,1 / 4-5,4	1,2- $1,5$ $/$ $1,5$ - $1,8$	2.4-3.2 / 2.6-2.9
GCM	$3{,}239 \; / \; 3{,}223$	3,175 / 3,105	1.020 / 1.038
Deoxys-II	$2,\!870 \; / \; 3,\!115$	$3{,}162\ /\ 3{,}297$	$0.908 \; / \; 0.945$
MGM	3,490 / 3,840	3,900 / 3,888	$0.894 \ / \ 0.988$
OCB	$3{,}122\ /\ 3{,}744$	4,249 / 4,483	$0.735 \ / \ 0.835$
COLM	$3{,}095 / 3{,}060$	7,718 / 8,131	$0.401 \; / \; 0.376$

Description of GCM

 $Y_0 = \begin{cases} IV \| 0^{31}1, & |IV| = 96, \\ GHASH(H,IV), & \text{otherwise.} \end{cases}; \ H = E_K(0); \ \text{mult $_H$} - \text{multiplying by H in the field $GF(2^{128})$}$

4 D > 4 B > 4 E > 4 E > E 9 Q O

Limits of the modes

For GCM (according to NIST 800-38D 2007)

- ① max. length of (P): $\leq 2^{39} 256 \simeq 64$ GB;
- ② max. length of (A): $\leq 2^{64} 1$;
- 3 length of IV: $\leq 2^{64} 1$;
- 4 MAC sizes: 32,64,96,104,112,120,128.

For MGM

- ① max. length of (P): $\leq 2^{64} 1$;
- 2 max. length of (A): $\leq 2^{64} 1$;
- 3 length of IV: 127;
- 4 MAC sizes: from 32 to 128.

Joux, "forbidden attack"

Exploits repeated nonce (which is forbidden).

Obtaining a MAC subkey

- for GCM \rightarrow malleability for all nonces;
- for MGM \rightarrow (hypothetically) malleability for the same nonce.

Confidentiality bounds

For any fixed parameters

$$Adv_{GCM}^{Conf} < Adv_{MGM}^{Conf}$$

(due to potential collisions among block cipher inputs in MGM).

However, confidentiality reducing is negligible: for n=128 and q full-size records ($l=2^{12}$ blocks) in TLS 1.3 we have the following confidentiality bounds

q	GCM	MGM
2^{20}	$\approx 2^{-65}$	$\approx 2^{-62}$
2^{30}	$\approx 2^{-45}$	$\approx 2^{-42}$

Moreover, ciphering nonces in MGM minimizes the number of plaintext/ciphertext pairs of blocks known to an adversary (to resist, e.g., linear and differential cryptanalysis, side-channel attacks)

Authenticity bounds

Consider n = 128, s = 64.

① TLS 1.3: after processing of recommended number $(q=2^{24})$ of full-size records $(l=2^{12} \text{ blocks})$

$$GCM : Adv_{GCM}^{Auth} \approx 2^{-51}$$

$$MGM : Adv_{MGM}^{Auth} \approx 2^{-54}$$

② CMS: after processing of one (q = 1) long $(l = 2^{40})$ message

$$GCM : Adv_{GCM}^{Auth} \approx 2^{-23}$$

$$MGM : Adv_{MGM}^{Auth} \approx 2^{-44}$$

! MGM is better suited for long messages processing with short tags (due to non-linearity).