Directions for COIN

draft-kutscher-coinrg-dir

Dirk Kutscher, Jorg Ott, Teemu Karkkainen

25 July 2019 — COIN RG-to-be

Outline

 What does in-network really mean?
* Exploring numerous (present and future) options

* Some thoughts on computing
* Looking at code and its provisioning, execution, etc.

 What could/should COIN look at?

What does “in-network” really mean?

Lots of Computing “in the Network” Today

* SmartNICs

* Web servers

* CDNs

e Cloud platforms

* Note: Some forms of ,Edge Computing” are merely about extending the
cloud computing concept to specific hosts at the edge

* These approaches are applied (more or less) successfully today and do not
need COIN research...

 ...but there is lots of engineering to be done in the IETF

Example: Mobile Edge Computing

Mx1
} Operations Support System
= ¥
Mx2 W=
25
Mobile Edge 2%
Orchestrator =
Mp3
? = Mm4
ME app ME
Dthe ’ platform rules & app —
obile Mobile element reqts lifecycle S
dge Edge mgmt mgmt mgmt f
platform 1
. - g
Mobile Edge 8
Platform Manager B
=2
. 2
”ob"r. Virtualisation Virtualisation =
Edge Infrastructure Infrastructure Manager
Host Mobile Edge Host Mm7

https://datatracker.ietf.org/meeting/98/materials/slides-98-nfvrg-sessb-12-multi-access-edge-computing-mec-applications-00

Example: Streaming Frameworks

Sﬁ"b”r

Transactions

Logs
10T

Y

Clicks

(Real-time)
Events

(D —
5= —

Database,
File System,
KV-Store

katka.

A distributed streaming platform

Event-driven Streaming
Applications Pipelines

Stream & Batch
Analytics

.

(K8s, Yarn, Mesos,

Resources | Storage
...) | (HDFS, S3, NFS,

@&
@& —

)

©) samza

— [

— (N
— [E=F

® Elaborate services and guarantees for different use cases
® Apache Flink: Different streaming connectors — but typically as network overlays

Application

Event Log

Database,
File System,
KV-Store

Decoupling Computing from the Network

@ é@-

Host Network Host

Decoupling Computing from the Network

* Circuit-like connectivity

* Limited visibility into network
* Different namespaces

* DNS, discovery
* Trust often centralized

* PKils for TLS certificates etc.

Joint Optimization of

Computing and Networ

KINg

* Holistic resource management ° Multi-dimensional
requirements/preferences sets

* Network capacity

* App developer

* Compute resources . User

* Storage

* Network operator

(Virtualized) Compute Servers in Networks Networked Computations

Joint Optimization of
Computing and Networking

* Do not require fixed locations of data and computation
* Can lay out processing graphs flexibly — meeting requirements optimally
* Sometimes we can move functions (to be close to large data assets)
* At others we gradually move data where it is needed (e.g., where specific computations run)

* Conditions may change dynamically and constantly: network to adapt to application
requirements, network conditions etc.

* Optimization based on application requirements & view of all relevant resources

Service Function Chaining

Gateway GPRS
Support Node

3
3
: |
3
: |

5

— Beyond
= the Edge
CDN
i
= Switch L2 Load Video/Web Switch Firewall Provider
Packet Switch Balancer Optimizer Edge

Gateway Pool Pool

Available Network Resources

PCRF OCS IWF AnalyS|s OSS DNS

CDN - content delivery network; CGNAT - Steering/Carrier Grade Network Address Translation; DPI - deep packet inspection; DNS - domain name system;

GPRS - General Packet Radio Service; IWF — interworking function; LI - lawful interception; OCS - online charging system; OSS — operational support system;
PCRF - policy and charging rules function

https://builders.intel.com/blog/implementing-dyhamic-service-function-chaining-for-gi-lan-uses/

https://builders.intel.com/blog/implementing-dynamic-service-function-chaining-for-gi-lan-uses/

Service Function Chaining

Flow/Packet-based abstraction
* Think DPI, Firewalls
Assumes function is within security perimiter and can access all packets in a flow

Intended for operator ,,Gi-LAN® scenarios — not a platform for distributed
computing

General remarks also apply to name-based service chaining and segment routing

12

Programmable Data Plane

Example: NetPaxos
p Exa m p I e: DAI ET https://sands.kaust.edu.sa/daiet/

~—. Proposer
'Y ":..-/ En-m" Data aggregation is

Consensusis a
fundamental

Facilitate

a common task in

Coor,

problem for fault-

PR inat % bottlenecks
software < - o
g e R many DC apps; high
tolerant systems Acceptor «, , » Accept Acgeptor y i Pps; NIg Worker 1 Worker 2 Worker N
potent|al for ML Updates Updates Updates
Learner Learner
* Offering consensus as a network service has : icro- .
i nificfnt erformance benefits » Offload aggregation task to switches to Aggregation micro-benchmark:
. Irr? IementpPaxos logic in network devices alleviate communication bottlenecks and * 1.28GB, 320M-element tensor
e D P s 8 t9M / improve overall training time * Tofino switch
emqns rate consensus a msgs /s Forwarding | 0.37 073 _ « Exploit full network bandwidth of workers * 2to 8 workers at 10Gbps
(4.3x improvement) and low latency (80% Coordinator| 072 | 121 | 0.33%0.01 Results:
reduction) Acceptor | 0.79 144 | 081001 Transfer time 1.9 s (1.56s optimal limit)

Marco Canini: In-Network Computation is a Dumb Idea Whose Time Has Come

13

Programmable Data Plane

* Offloading certain tasks in a distributed computing system to programmable
switches

* Programming application-specific switch behavior (for example, with P4)
* Good example that highlights the potential of a particular execution environment
* Effectively similar assumptions as service chaining approach

* Operate on packets

* Does not need/provide transport/security functionality

14

Two directions

* From application layer overlays to native support
e Pushing down the stack

* From per-packet matching and decisions to larger application data
units

* Moving up the stack

COIN Example

/node/r4/a

/node/r4/b

/node/r3/b

/node/r3/a

/node/rl/a

/node/r2/a

/node/r4/c

/node/r1/b

Nodes in a network
offering compute
services

Agnostic to specific
execution
environment

But be able to
leverage different
platforms (GPUs, TEE)
and select
appropriate ones

16

COlN Example * Nodes could part of a
distributed

application context

- - - * Nodes could be part
of more than one

/node/r4/a /node/r4/b /node/r4/c .
context at a time

/node/r3/a /node/r3/b

- /nOde/rZ/a

/node/rl/a

/node/r1/b

17

COlN Example * |n a distributed

application session,
the system can

-r AWE> e
functions, actors as

/node/r4/a /node/r4/b /node/r4/c

required
* 2 types:
o 0 » Stateless functions
froselnls frode/alp * Stateless actors

* Application semantics
and resource
allocation strategies
determine where
/node/rl/a /node/r1/b functions/actors reside

/node/r2/a

18

COlN Example * RMI protocol for

invoking stateless
functions and actor
member functions

* No assumption on
function complexity,
execution time

* Function calls can
trigger other calls etc.

/node/r4/a /node/r4/b

/node/r3/a

/node/r4/c

/node/r3/b

/node/r2/a

/node/rl/a /node/r1/b

19

Information in the system

COIN Exam P le « _Where are functions”

 Resource utilization
e Performance

/node/r4/a /node/r4/b

/node/r3/a

* Also: availability of
unallocated resources
(nodes)

/node/r4/c

/node/r3/b

* Info maintained by
distributed data

structures
/node/r2/a

Concept of using

routing system to
distribute some of this
info 20

/node/rl/a /node/r1/b

Some thoughts on “computing”

Granularity of functions

 ADD S42, %eax
* Maybe not

... lots of options in-between ...

* find_faces_and_identify_people_in_photo ()
e Possibly

Functions need data — where from?

e Parameters of a function call
* E.g., an image to process

* Operational context
* E.g., the trained ML parameters

* Background data
* E.g., the large key value store or database for lookups

* Function calls need to provide parameters and identify context
* In-packet / in payload

What’s a sensible data unit?

* Per-packet processing can be a useful tool
* But may not be the ultimate goal

* Need a sensible notion of Application Data Units (ADUs)
* Transport layer (termination)
* Need an idea of how to apply security properties

Side effects of functions?

* Persistent
* Updates to background data and/or operational context
* Need to propagate or store

* Temporary
e Stack when in-network functions call other in-network functions
* State management
* Failure handling and garbage collection

* Where to keep?
* In the node? In a (growing) ADU?

* In-between

 Computed results (interim or final)
e Sharable?

Pull processing vs. push processing

e Pull

* RPC-style interaction driven by the “calling” application
* On-demand

* Push (data-driven, triggered)
» Data flows towards aggregation points (e.g., smart cities)

* Pre setup

* Line switching: Node Red-style dedicated setup
* Packet switching: Rules govern dynamic instantiation

* Distinguish application semantics from network forwarding primitives

Performance considerations

* Passing / fetching values
* On-demand vs. prefetching
* Pipelining
* Handles

 Data reuse
e Caching

e Controlled sharing
* Naming data + semantics (+ scoping)

Life cycle... (of a function or a process)

* Provisioning

* Instantiation

* Running | | waiting

* Replicating

* Terminating + garbage collecting

* Extremes
* Dedicated hardware box for quantum crypto
* Generic execution platform that fetches bytecode

And COIN...”?

Target environment

e We are the Internet Research Task Force

* Open networking environments

* Do not make (too m)any assumptions on trustworthiness of peers,
code, ...

e Assume vast heterogeneity
* Provisioning
e Capabilities and performance of compute nodes

Structuring use classes

Enterprise/

pubrllz |°n'1°"d FHHAA4 FH49
* Use cases are a good to provide motivation L

Factory/
enterprise EEE Eéég
DC |

e But we need to also understand the e

programming characteristics Factory -
Floor e
* Not by domain but by functional properties Ream @ uﬁ% u@!%

Deterministic
Networking
Realm

OO X2 2777 7. .00

31

Things to Agree On

* RMI model and protocol

* Types of function and semantics
(stateless functions vs. Stateful
actors)

* Programming model (not
language bindings)

* Resource description and
semantics

 Resource allocation mechanisms

Things to Agree On

* RMI model and protocol

* Types of function and semantics
(stateless functions vs. Stateful
actors)

* Programming model (not
language bindings)

* Resource description and
semantics

 Resource allocation mechanisms

Implementation Specifics

e Execution environment
architectures

* Programs and programming
abstractions for platforms

e What else?

Wait, There is More...

* Discovery: resources, functions, results

* Programming models, APls, bindings

* Versioning

* Resilience against failure, bugs (loops), DOS attacks
* Orchestration

 Management & operations

* Policies

