
Directions for COIN
draft-kutscher-coinrg-dir

Dirk Kutscher, Jörg Ott, Teemu Kärkkäinen

25 July 2019 – COIN RG-to-be

1

Outline

• What does in-network really mean?
• Exploring numerous (present and future) options

• Some thoughts on computing
• Looking at code and its provisioning, execution, etc.

• What could/should COIN look at?

2

What does “in-network” really mean?

3

Lots of Computing “in the Network“ Today

• SmartNICs
• Web servers
• CDNs
• Cloud platforms
• Note: Some forms of „Edge Computing“ are merely about extending the

cloud computing concept to specific hosts at the edge

• These approaches are applied (more or less) successfully today and do not
need COIN research…
• ...but there is lots of engineering to be done in the IETF

4

Example: Mobile Edge Computing

https://datatracker.ietf.org/meeting/98/materials/slides-98-nfvrg-sessb-12-multi-access-edge-computing-mec-applications-005

Example: Streaming Frameworks

6

• Elaborate services and guarantees for different use cases
• Apache Flink: Different streaming connectors — but typically as network overlays

Decoupling Computing from the Network

7

Host Network Host

Transport

Security

8

Host Network Host

Transport

Security

• Circuit-like connectivity
• Limited visibility into network

• Different namespaces
• DNS, discovery

• Trust often centralized
• PKIs for TLS certificates etc.

Decoupling Computing from the Network

• Holistic resource management

• Network capacity

• Compute resources

• Storage

9

(Virtualized) Compute Servers in Networks Networked Computations

• Multi-dimensional
requirements/preferences sets

• App developer

• User

• Network operator

Joint Optimization of
Computing and Networking

• Do not require fixed locations of data and computation
• Can lay out processing graphs flexibly – meeting requirements optimally
• Sometimes we can move functions (to be close to large data assets)
• At others we gradually move data where it is needed (e.g., where specific computations run)

• Conditions may change dynamically and constantly: network to adapt to application
requirements, network conditions etc.

• Optimization based on application requirements & view of all relevant resources

10

Joint Optimization of
Computing and Networking

https://builders.intel.com/blog/implementing-dynamic-service-function-chaining-for-gi-lan-uses/

Service Function Chaining

11

https://builders.intel.com/blog/implementing-dynamic-service-function-chaining-for-gi-lan-uses/

• Flow/Packet-based abstraction

• Think DPI, Firewalls

• Assumes function is within security perimiter and can access all packets in a flow

• Intended for operator „Gi-LAN“ scenarios – not a platform for distributed
computing

• General remarks also apply to name-based service chaining and segment routing

Service Function Chaining

12

Marco Canini: In-Network Computation is a Dumb Idea Whose Time Has Come

Programmable Data Plane

13

• Offloading certain tasks in a distributed computing system to programmable
switches

• Programming application-specific switch behavior (for example, with P4)

• Good example that highlights the potential of a particular execution environment

• Effectively similar assumptions as service chaining approach

• Operate on packets

• Does not need/provide transport/security functionality

Programmable Data Plane

14

Two directions

• From application layer overlays to native support
• Pushing down the stack

• From per-packet matching and decisions to larger application data
units
• Moving up the stack

15

COIN Example

/node/r1/a /node/r1/b

/node/r2/a

/node/r3/a /node/r3/b

/node/r4/a /node/r4/b /node/r4/c

• Nodes in a network
offering compute
services

• Agnostic to specific
execution
environment

• But be able to
leverage different
platforms (GPUs, TEE)
and select
appropriate ones

16

COIN Example

/node/r1/a /node/r1/b

/node/r2/a

/node/r3/a /node/r3/b

/node/r4/a /node/r4/b /node/r4/c

• Nodes could part of a
distributed
application context

• Nodes could be part
of more than one
context at a time

17

COIN Example

/node/r1/a /node/r1/b

/node/r2/a

/node/r3/a /node/r3/b

/node/r4/a /node/r4/b /node/r4/c

• In a distributed
application session,
the system can
instantiate/invoke
functions, actors as
required

• 2 types:
• Stateless functions
• Stateless actors

• Application semantics
and resource
allocation strategies
determine where
functions/actors reside

18

COIN Example

/node/r1/a /node/r1/b

/node/r2/a

/node/r3/a /node/r3/b

/node/r4/a /node/r4/b /node/r4/c

• RMI protocol for
invoking stateless
functions and actor
member functions

• No assumption on
function complexity,
execution time

• Function calls can
trigger other calls etc.

19

COIN Example

/node/r1/a /node/r1/b

/node/r2/a

/node/r3/a /node/r3/b

/node/r4/a /node/r4/b /node/r4/c

Information in the system
• „Where are functions“
• Resource utilization
• Performance

• Also: availability of
unallocated resources
(nodes)

• Info maintained by
distributed data
structures

• Concept of using
routing system to
distribute some of this
info 20

Some thoughts on “computing”

21

Granularity of functions

• ADD $42, %eax
• Maybe not

… lots of options in-between …

• find_faces_and_identify_people_in_photo ()
• Possibly

22

Functions need data – where from?

• Parameters of a function call
• E.g., an image to process

• Operational context
• E.g., the trained ML parameters

• Background data
• E.g., the large key value store or database for lookups

• Function calls need to provide parameters and identify context
• In-packet / in payload

23

What’s a sensible data unit?

• Per-packet processing can be a useful tool
• But may not be the ultimate goal

• Need a sensible notion of Application Data Units (ADUs)
• Transport layer (termination)
• Need an idea of how to apply security properties

24

Side effects of functions?

• Persistent
• Updates to background data and/or operational context
• Need to propagate or store

• Temporary
• Stack when in-network functions call other in-network functions
• State management
• Failure handling and garbage collection
• Where to keep?

• In the node? In a (growing) ADU?

• In-between
• Computed results (interim or final)
• Sharable?

25

Pull processing vs. push processing

• Pull
• RPC-style interaction driven by the “calling” application
• On-demand

• Push (data-driven, triggered)
• Data flows towards aggregation points (e.g., smart cities)
• Pre setup

• Line switching: Node Red-style dedicated setup
• Packet switching: Rules govern dynamic instantiation

• Distinguish application semantics from network forwarding primitives

26

Performance considerations

• Passing / fetching values
• On-demand vs. prefetching
• Pipelining
• Handles

• Data reuse
• Caching
• Controlled sharing

• Naming data + semantics (+ scoping)

27

Life cycle… (of a function or a process)

• Provisioning
• Instantiation
• Running || waiting
• Replicating
• Terminating + garbage collecting

• Extremes
• Dedicated hardware box for quantum crypto
• Generic execution platform that fetches bytecode

28

And COIN…?

29

Target environment

• We are the Internet Research Task Force

• Open networking environments
• Do not make (too m)any assumptions on trustworthiness of peers,

code, …
• Assume vast heterogeneity
• Provisioning
• Capabilities and performance of compute nodes
• …

30

Structuring use classes

• Use cases are a good to provide motivation

• But we need to also understand the
programming characteristics
• Not by domain but by functional properties

31

Things to Agree On

• RMI model and protocol
• Types of function and semantics

(stateless functions vs. Stateful
actors)
• Programming model (not

language bindings)
• Resource description and

semantics
• Resource allocation mechanisms

32

Things to Agree On

• RMI model and protocol
• Types of function and semantics

(stateless functions vs. Stateful
actors)
• Programming model (not

language bindings)
• Resource description and

semantics
• Resource allocation mechanisms

Implementation Specifics

• Execution environment
architectures
• Programs and programming

abstractions for platforms
• What else?

33

Wait, There is More…

• Discovery: resources, functions, results
• Programming models, APIs, bindings
• Versioning
• Resilience against failure, bugs (loops), DOS attacks
• Orchestration
• Management & operations
• Policies
• …

34

