THALES

Using Service Function Chaining for In-Network Computation

Adrien WION (Thales/Telecom ParisTech)

Service Function Chaining for In-Network Computation

Current practices: Centralized control infrastructure

Problems:

- Single Point of Failure
- Scalability
- Legacy Interoperability
- No Incremental Deployment
- Under exploitation of in-network resources

Proposal: Augment the IGP and make it function aware

Proposed approach: Divide & Conquer

Exploiting the existing in-network resources

If you have a large network you have an IGP (Interior Gateway Protocol)

Announced address are actually VNF

Idea(s): Binding a prefix to a specific function

Leveraging on anycast addressing

Idea(s): Binding a prefix to a specific function + Anycast Addressing

Advantages

- Prefix to select the function
- IGP metric to select the function instance

Leveraging on anycast addressing

Idea(s): Binding a prefix to a specific function + Anycast Addressing

Advantages

- Prefix to select the function
- IGP metric to select the function instance

LES

Augmenting network layer routing

Network view

IGP View

Augmented IGP topology:

- Service mapped to an anycast prefix
- Node advertise available service
- Routing decision taken with shared topology
- Routing decision is applied per flow

Augmenting network layer routing

Network view

IGP Augmented View

Augmented IGP topology:

- Service mapped to an anycast prefix
- Node advertise available service
- Routing decision taken with shared topology
- Routing decision is applied per flow

NFV Router Architecture & Implementation

High Level Policies

*Network Service Header (RFC 8300)

Highlights on evaluation results

Network emulation:

- > NFV Routers \Rightarrow LXC container
- Deployed on 48 nodes cluster
- 10 VNF (nodes with max betweenness centrality)

Routing policy:

- Shortest Path to next VNF
- Hop-by-hop routing

Load balancing on VNF

Source: https://sites.uclouvain.be/defo/

The higher LSA **update frequency**, the higher the network traffic distribution **stability**

What did we achieve ?

Fully distributed framework to chain in-network function

- > No need to rely on fast responses from a controller => Resilience, Scalability
- Load balancing between VNF instance
- Interoperability with legacy network => No need of SDN architecture, may rely on distributed routing protocol like OSPF
- > No configuration needed for adding new VNF instances

Future Work

- Inter-Domain Service Provisioning
- > VNF metrics
- > Maintenance and Failure
- > VNF Provisioning

References:

https://hal.archives-ouvertes.fr/hal-01889856v1 https://hal.archives-ouvertes.fr/hal-02165785v1

THALES

Backup slides