Service Function Chaining for In-Network Computation

Current practices: Centralized control infrastructure

Problems:
- Single Point of Failure
- Scalability
- Legacy Interoperability
- No Incremental Deployment
- Under exploitation of in-network resources

Proposal: Augment the IGP and make it function aware
Proposed approach: Divide & Conquer

Centralized Management and Orchestration (MANO)

Distributed MANO
Exploiting the existing in-network resources

If you have a large network you have an IGP (Interior Gateway Protocol)
Announced address are actually VNF

Idea(s): Binding a prefix to a specific function
Leveraging on anycast addressing

Idea(s): Binding a prefix to a specific function + Anycast Addressing

Advantages
- Prefix to select the function
- IGP metric to select the function instance
Leveraging on anycast addressing

Idea(s): Binding a prefix to a specific function + Anycast Addressing

Advantages
- Prefix to select the function
- IGP metric to select the function instance
Augmenting network layer routing

Augmented IGP topology:
- Service mapped to an anycast prefix
- Node advertise available service
- Routing decision taken with shared topology
- Routing decision is applied per flow
Augmenting network layer routing

Augmented IGP topology:
- Service mapped to an anycast prefix
- Node advertise available service
- Routing decision taken with shared topology
- Routing decision is applied per flow
NFV Router Architecture & Implementation

- **Virtualization**
- **Namespaces**
- **Encapsulation**
- **Routing**

D-MANO
- Ressource Monitor
- VNF Routing Algorithm
- Route Injector

Network
- **NSH** *(RFC 8300)*
- **IGP**
- **OSPF**

Router

Connector

VNF 1 ... **VNF n**
Highlights on evaluation results

- **Network emulation:**
 - NFV Routers ⇒ LXC container
 - Deployed on 48 nodes cluster
 - 10 VNF (nodes with max betweenness centrality)

- **Routing policy:**
 - Shortest Path to next VNF
 - Hop-by-hop routing

- **Load balancing on VNF**

The higher LSA update frequency, the higher the network traffic distribution stability.

Source: https://sites.uclouvain.be/defo/

Topology Distribution

<table>
<thead>
<tr>
<th>Topology</th>
<th>Nodes</th>
<th>Edges</th>
<th>Demands</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>rf1755</td>
<td>87</td>
<td>372</td>
<td>7527</td>
<td>Rocketfuel</td>
</tr>
<tr>
<td>rf3967</td>
<td>79</td>
<td>294</td>
<td>6160</td>
<td>Rocketfuel</td>
</tr>
<tr>
<td>synth50</td>
<td>50</td>
<td>276</td>
<td>2449</td>
<td>Synthetic</td>
</tr>
</tbody>
</table>
What did we achieve?

- **Fully distributed framework to chain in-network function**
 - No need to rely on fast responses from a controller => Resilience, Scalability
 - Load balancing between VNF instance
 - Interoperability with legacy network => No need of SDN architecture, may rely on distributed routing protocol like OSPF
 - No configuration needed for adding new VNF instances

- **Future Work**
 - Inter-Domain Service Provisioning
 - VNF metrics
 - Maintenance and Failure
 - VNF Provisioning

References:
https://hal.archives-ouvertes.fr/hal-01889856v1
https://hal.archives-ouvertes.fr/hal-02165785v1
Backup slides