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Cameras & video analysis apps are
pervasive

Traffic control Surveillance Factory health/safety

Goal: Enabling video analytics at scale



Video analytics can be prohibitively expensive at scale
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Today'’s Internet systems are built for traditional apps like video

streaming, but unlikely to meet the need of video analytics.




The “Cloud-to-Edge Continuum” for Video

Analytics
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State-of-the-art: Cascading Pipelines

NoScope (VLDB’17), Glimpse (SenSys’15), FastCascading

(CVPR’18), Chameleon (SIGCOMM’18), VideoStorm (NSDI’'17), ...



Two unique properties of video analytics

Video pipelines must be adaptive to real-time video content

Leveraging real-time feedback from the consumer (DNN)




Prior work: Customize the video pipeline to the video
content

Configurations:

* Resolution

* Frames rate

* Object detector
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DNN Object Detection
(e.q., YOLO)




Example: Lower frame rate
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Problem: Best frame rate depends on
content!
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Key observation

Video content varies over time

— best configuration varies over time

* Holds for other configuration knobs (resolution, NN classifier, etc.)

* Prior work does one-time profiling at beginning



Our approach: periodic reprofiling

Cuctomiize the video pipeline to the video content

“Chameleon: Scalable Adaptation of Video Analytics via Temporal and Cross-camera Correlations” SIGCOMM 2018



Our approach: periodic reprofiling

Configurations:
* Resolution
*  Frames rate
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“Chameleon: Scalable Adaptation of Video Analytics via Temporal and Cross-camera Correlations” SIGCOMM 2018



Our approach: periodic reprofiling

Configurations: Chameleon:
* Resolution Configuration Controller
* Framesrate

* Object detector
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“Chameleon: Scalable Adaptation of Video Analytics via Temporal and Cross-camera Correlations” SIGCOMM 2018



Evaluation: Chameleon improves accuracy + cost (traffic)
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20-50% higher accuracy at same cost, or same accuracy at 30-50% of the cost (2-3x
speedup)

“Chameleon: Scalable Adaptation of Video Analytics via Temporal and Cross-camera Correlations” SIGCOMM 2018



Implication: Spiky resource demand
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In-network resource allocation must cope with spiky workload




Two unique properties of video analytics

Pipelines must be adaptive to real-time video content

Leveraging real-time feedback from the analytics logic




Prior solution: Videos are sent by traditional video
stack

Server

Suboptimal bandwidth-accuracy tradeoffs
Low quality — Low accuracy
High quality — Insufficient bandwidth



Our approach: Drive video streaming by server-side
logic

Server

This approach can save 2-5x bandwidth compared to client-side compression

“Reinventing Video Streaming for Distributed Vision Analytics” HotCloud 2018



Takeaways

Pipelines must be adaptive to Computing-In-Network should
real-time video content cope with spiky workloads

Leveraging real-time feedback Many opportunities by bringing
from the analytics logic analytics goals to the control loop
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