
DetNet

Bounded Latency-04
draft-finn-detnet-bounded-latency-04

Norman Finn, Jean-Yves Le Boudec, Ehsan Mohammadpour,
Huawei EPFL EPFL

Jiayi Zhang, János Farkas, Balázs Varga
Huawei Ericsson Ericsson

IETF 105 DetNet WG

Montréal, 22 July, 20197/16/2018 1

A reminder to new attendees …

• DetNet is about an upper bound on end-to-end latency – not low
average latency.

• Bounded latency leads to the ability to compute exactly how many
buffers are required to achieve zero congestion loss (and vice versa).

• Feedback that slows down flows to avoid congestion is not an option
for the application space of interest to DetNet.

• Mathematically sound assurances can be given on latency and
congestion loss.

7/16/2018 2

Major changes from -03 to -04

• Section 3 reorganized—the “reserve before use” paradigm applies to
both the static and the dynamic latency computation problems.

• All of the various supported queuing techniques have been made
subsections of section 6, “Queuing techniques”.

• The different queuing techniques have been given more equal
attention, some enhanced, some shortened.

• Section 8, “Parameters for the bounded latency model”, has been
deleted.

7/16/2018 3

Clause 3
Flows are created by:

1. Configure the network.

2. Characterize the flow.

3. Establish the path the flow is to take.

4. Compute the ability of the network to handle the flow and the suitability
to the flow’s requirements of the QoS offered, e.g. compute latency.
• The Static latency computation: Recompute every flow’s latency whenever any flow

is added or removed.
• The Dynamic latency computation: Compute absolute worst-case latency once,

when flow is created.

5. If satisfactory results, reserve the resources and give the sender
permission to start.

7/16/2018 4

Clause 6: Queuing techniques

6.2 Preemption: The transmission of exactly one Ethernet frame can be
suspended many times, with critical frames transmitted in each gap.

6.3 Time-scheduled queuing: Each output queue is gated by a
synchronized, rotating schedule set by management.

6.4 Asynchronous Traffic Shaping: Hierarchical per-flow and per-class
shaping, with fewer than one queue per flow.

6.5 IntServ: Hierarchical per-flow and per-class shaping, without one
queue per flow.

6.6 Cyclic Queuing and Forwarding: Double- or triple- buffering for each
class on each port, with buffers cycled in synchrony across network.

7/16/2018 5

6.6 Cyclic Queuing and Forwarding

• Two-buffer version: Two buffers per port. Input and output
buffers swap at the same moment, once every cycle, period
TC. Small guard band to allow for transit and forwarding time.
 All relay nodes are synchronized and swap buffers at the
same moment. Cycle time TC > transit time + forwarding time
+ clock inaccuracy + max data transmit time.

7/16/2018 6

6.6 Cyclic Queuing and Forwarding

• Two-buffer version: Two buffers per port. Input and output
buffers swap at the same moment, once every cycle, period
TC. Small guard band to allow for transit and forwarding time.
 All relay nodes are synchronized and swap buffers at the
same moment. Cycle time TC > transit time + forwarding time
+ clock inaccuracy + max data transmit time.

7/16/2018 7

TICK!

6.6 Cyclic Queuing and Forwarding

• Two-buffer version: Two buffers per port. Input and output
buffers swap at the same moment, once every cycle, period
TC. Small guard band to allow for transit and forwarding time.
 All relay nodes are synchronized and swap buffers at the
same moment. Cycle time TC > transit time + forwarding time
+ clock inaccuracy + max data transmit time.

7/16/2018 8

TICK!

6.6 Cyclic Queuing and Forwarding

• Three-buffer version: Three buffers per port. Same as two-
buffer version, but input buffer swap is out-of-phase with
output buffer swap to allow for arbitrary link delay.

7/16/2018 97/16/2018 9

6.6 Cyclic Queuing and Forwarding

• Three-buffer version: Three buffers per port. Same as two-
buffer version, but input buffer swap is out-of-phase with
output buffer swap to allow for arbitrary link delay.

7/16/2018 107/16/2018 10

TICK!

6.6 Cyclic Queuing and Forwarding

• Three-buffer version: Three buffers per port. Same as two-
buffer version, but input buffer swap is out-of-phase with
output buffer swap to allow for arbitrary link delay.

7/16/2018 117/16/2018 11

TICK!

6.6 Cyclic Queuing and Forwarding

• Three-buffer version: Three buffers per port. Same as two-
buffer version, but input buffer swap is out-of-phase with
output buffer swap to allow for arbitrary link delay.

7/16/2018 127/16/2018 12

TICK!

6.6 Cyclic Queuing and Forwarding

• Three-buffer version: Three buffers per port. Same as two-
buffer version, but input buffer swap is out-of-phase with
output buffer swap to allow for arbitrary link delay.

7/16/2018 137/16/2018 13

TICK!

6.6 Cyclic Queuing and Forwarding

• Three-buffer version: Three buffers per port. Same as two-
buffer version, but input buffer swap is out-of-phase with
output buffer swap to allow for arbitrary link delay.

7/16/2018 147/16/2018 14

TICK!

6.6 Cyclic Queuing and Forwarding

• Three-buffer version: Three buffers per port. Same as two-
buffer version, but input buffer swap is out-of-phase with
output buffer swap to allow for arbitrary link delay.

7/16/2018 157/16/2018 15

TICK!

6.6 Cyclic Queuing and Forwarding
• Time-based CQF is defined in IEEE 802.1 standards.

• Packet-marker based CQF is suggested in private DetNet drafts.

• CQF can be operated at multiple frequencies on one port to serve
more than one Class of Service (bandwidth/latency range):

7/16/2018 16

Slow
Medium
Fast

Summary*
Technique Latency

computation
Overprovisioning
necessary

Handles
predictably
bursty flows

State required
per-hop

Time sync
required

6.3 Time-
scheduled

Static
NP hard

Small Yes Per class schedule Yes

6.4 IntServ Static (recompute
all flows on any
change)

Small No Per-flow state,
per-flow queue

No

6.5 Time-Aware
Shaping

Static (recompute
all flows on any
change)

Small No Per-flow state,
per-port-pair queue

No

6.6 Cyclic Queuing
& Forwarding

Dynamic (trivial
addition)

More No None Yes

* This table is a generalization. There are many factors that can mitigate the differences.
Other queuing schemes have been proposed that make other trade-offs.

Final steps…

• Refining the terminology to conform DetNet.
• Using DetNet terminology and terms.

• Formal delay analysis of CQF.

• Per-node buffer size calculation.

• Consistency check with the other WG drafts.

1824/07/2019

QUESTION

• Are we ready for adoption?

7/16/2018 19

7/16/2018 20

Thank you

	Slide 1
	A reminder to new attendees …
	Major changes from -03 to -04
	Clause 3
	Clause 6: Queuing techniques
	6.6 Cyclic Queuing and Forwarding
	6.6 Cyclic Queuing and Forwarding
	6.6 Cyclic Queuing and Forwarding
	6.6 Cyclic Queuing and Forwarding
	6.6 Cyclic Queuing and Forwarding
	6.6 Cyclic Queuing and Forwarding
	6.6 Cyclic Queuing and Forwarding
	6.6 Cyclic Queuing and Forwarding
	6.6 Cyclic Queuing and Forwarding
	6.6 Cyclic Queuing and Forwarding
	6.6 Cyclic Queuing and Forwarding
	Summary*
	Final steps…
	QUESTION
	Slide 20

