The Mathematical Mesh

Phillip Hallam-Baker

Venture Cryptography
Internet security is broken

• Users find security too much effort
 • Can’t solve that by sending users on a two day course

• Applications don’t solve the real security problems
 • Data at Rest

• We haven’t changed our approach
 • Using 1980s techniques to solve 21st century problems
Three core problems

• Device management
• Contact management
• Secure control messaging
 • End-to-end secure
 • Traffic analysis resistance friendly (32KB)
Radical distrust

• Can’t trust device manufacturers
• Can’t trust service providers

• Have to trust someone
 • Separation of duties
 • Can’t trust any single provider
 • Put limited trust in multiple provider
Meta-Cryptography

• 1 Key cryptography was good
• 2 was better
• Using 3 or more keys allows separation of duties
 • The cloud service can control who can decrypt, but can't decrypt
Small, powerful concepts

• UDF Fingerprints describe direct trust relations

• Mesh Profiles describe trust axioms
 • Encoded as a DARE Envelope

• Catalogs, Spools are DARE Containers
 • Append only sequences of DARE envelopes

• Mesh accounts manage collections of catalogs and spools
The project: Meetup Monday 18:10

• Speak now, it will be hard to change things after deployment

• 8 Internet drafts

• MIT License reference code (C#)
 • SciKit Learn for cryptography
 • An easy way to secure applications
 • Can use features individually or as a package
 • Functionality of blockchain, PKCS#7, PGP, X.509, etc. etc.
 • One coherent platform, same encoding and approach throughout.