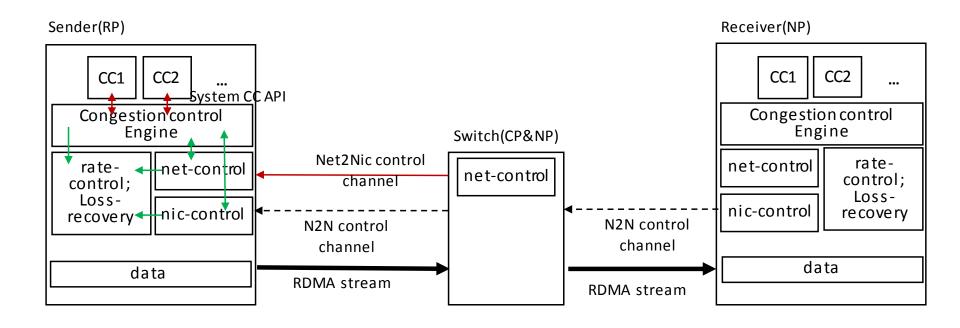
An Open Congestion Control Architecture with network cooperation for RDMA fabric draft-zhh-tsvwg-open-architecture-00 draft-yueven-tsvwg-dccm-requirements-00

IETF 105, Montreal, Canada

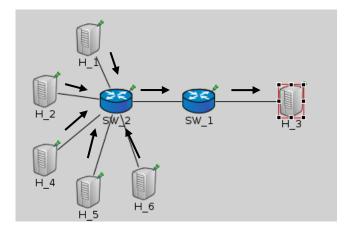

Rachel Huang (Presenter), Yan Zhuang Yu Xiang, Roni Even Huawei Technologies An open congestion control architecture with network cooperation for RDMA fabric

- Scope
 - Managed datacenter networks
 - RDMA traffics for applications, such as HPC and storage....requiring low latency, high throughput...
- Motivation, requirements and use cases
 - Incast traffic suffers from congestion in the network.
 - Mixture of RDMA traffic and TCP traffics effects each other.
 - More efficient and effective congestion controls are needed to support the scalability and high performance.

Objectives

 Define an open congestion architecture with network cooperation to enable more effective congestion controls for RDMA fabrics.

Architecture Overview

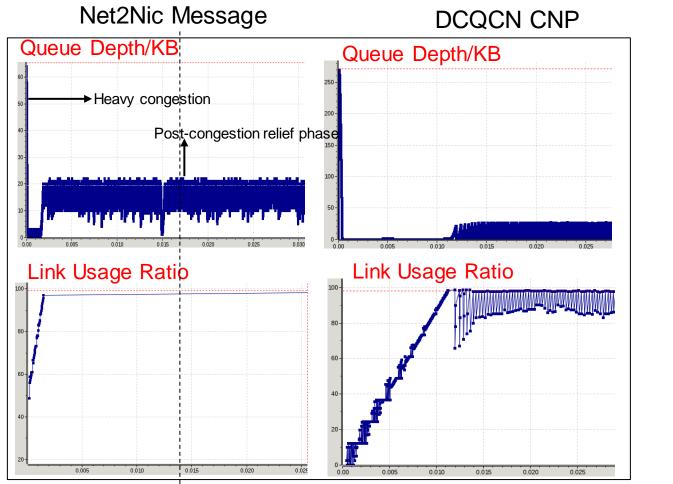


- · Open to congestion control deployment and management
- Open to network cooperation

Open for Network Cooperation

- What?
 - Net-control module inside network nodes (e.g. switches) can signal back to senders' NIC, and further incorporated into NICs' transmit rate control.
- Why?
 - **Fast Convergence**: reduce the CC feedback/control time.
 - Accurate congestion awareness: as congestion point, network aware of the degree of the ongoing and expected congestion and can requests for proper moderation of the selected flows.
- How?
 - A Net2Nic control message can be used to report congestion information from the network nodes to sender NICs.

Initial Experiment on Open Network Cooperation


Simulation Environment :

- H_1, H_2, H_4, H_5, H_6 each sends 10MB data to H_3 simultaneously.
- Each port of SW_2 is 10Gbps
- ECN Threshold : 20Kb PFC Threshold : 300Kb

- Net2Nic Message : SW_2 Sends messages from network. DCQCN is CC algorithm.
- DCQCN CNP : DCQCN mechanism. Sending CNP from H_3.
- Parameters Setting :

Mechanisms	Parameter settings	
	Feedback Message Interval /us	Sending Rate increase interval /us
Net2Nic Message	10	15
DCQCN CNP	50	55

Result Comparison

Result:

- Heavy congestion: Net2Nic Message can prevent overshoot (prevent triggering PFC). After congestion is relieved, the rate can be quickly restored to ensure throughput and bandwidth utilization.
- Slight congestion: Net2Nic Message prevention of microburst issues (Excessive suppression, hard to guarantee throughput, and high bandwidth usage fluctuation)

Mechanism	Average FCT(us)	
Net2Nic Message	40296.02	
DCQCN CNP	47434.08	

Net2Nic Message FCT gains 15%

Open for Congestion control deployment and management • What?

- Deploy/manage congestion control algorithms in a common way based on the traffic patterns as well as the network resources regardless of the detailed hardware implementation.
- Why?
 - More flexibility: Traffic patterns may differ in CC choices.
 - Easy to deployment in HW: New CC algorithms are suggested to be implemented in hardware.
- How?
 - Provide a system CC interface to the operators to deploy CCs through a common platform and then be mapped to local actions/functions.
 - Local functions related to congestion controls can be implemented as function blocks and interact with each other through internal interfaces to achieve the final congestion controls.

Next Step

• Solicit more feedbacks/comments/interests on this open architecture.